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Nonlinear second sound in solMs
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We study the nonlinear propagation of thermal waves in rigid heat conductors using a model intro-
duced by Ruggeri et al. We derive the lowest-order nonlinear corrections to the wave speed and show
that the quadratic nonlinearity can be small for NaF and Bi. The smallness of the nonlinear steepening
parameter complicates the wave dynamics, allowing for both forward and backward steepening waves

within the same pulse. We show that this mixed condition places limits on the size of admissible discon-
tinuities; we then argue that this limit on the size of shock waves limits the arrival times of thermal sig-

nals. Using this, we propose an experiment to measure arrival times to look for this limiting behavior.
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where p is the mass density, e the internal energy, q the
heat flux vector, and a, v constitutive scalars depending
on the absolute temperature, 8. The quantity tc is the
(possibly) temperature-dependent thermal conductivity,
and a prime indicates a derivative with respect to 8. The
first equation represents the first law of thermodynamics,
while the second is a generalized version of the Maxwell-
Cattaneo relation. Equation (2) reduces to Fourier's law
in which the heat flux is proportional to the temperature
gradient if we take the Morro-Ruggeri inertia parameter
a=0. We recover the well-known Maxwell-Cattaneo law
by assuming the thermal inertia parameter is constant,
and then the quantity ~=aviv' would be the Maxwell-
Cattaneo relaxation time. In general, Eqs. (1) and (2)
form a closed system for the fields 8(x, t) and q(x, t), once
we specify the constitutive functions e(8), tt(8), and
Uz(8). Here, Uz(8) is the signal speed in the equilibrium
limit. Ruggeri, Muracchini, and Seccia give a concise
summary of how to determine a(8) and v(8) from e and
UE they find that
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where c =e'(8} is the specific heat.

Ruggeri, Muracchini, and Seccia, ' Morro and Rug-
geri, ' and Ruggeri have proposed the following set of
conservation laws to describe high-frequency heat flow in
rigid conductors:

e
p +V q=O,

The above references to Ruggeri and his co-workers
discuss the difFerences between (1) and (2) and the con-
ventional Maxwell-Cattaneo theory. In particular, they
show that the generalized Fourier law (2) satisfies all
commonly accepted physical principles, including the ex-
pectation that the system, (1) and (2), be hyperbolic and
that the specific heat, c, remain non-negative for all 8)0.
In the linear limit, both the Maxwell-Cattaneo and
Morro-Ruggeri theories yield precisely the same results.
Thus, the most convenient way to distinguish between
these macroscopic models is through the use of experi-
ments or theories which involve nonlinear effects. The
purpose of this work is to outline a theory of weakly non-
linear, weakly dissipative heat waves based on (1) and (2).
Our restriction to weakly dissipative configurations
comes from the fact that frequencies and wavelengths
corresponding to strong dissipation tend to obscure the
nonlinear effects of interest here. The simplification to
weakly nonlinear systems will reveal the underlying dy-
namics with a minimum of complication. Furthermore,
this assumption does not appear to be overly restrictive
given the amplitudes attained in recent experiments (e.g.,
Jackson, Walker, and McNelly, McNelly et al. , Jack-
son and Walker, Narayanamurti and Dynes ).

%'e now focus our attention on one-dimensional
[8=8(x,t), q =q(x, t}) simple waves propagating in an
initially uniform equilibrium [ ( 8,q )= ( Ho, 0) f undis-
turbed state. Here, t is the time and the positive x direc-
tion lies along the direction of propagation. The sub-
script 0 will always denote properties evaluated at the un-
disturbed state. We assume that both the nonlinear dis-
tortion and the decay due to a finite conductivity are
small; the decay rate is assumed to be on the same order
of magnitude as the nonlinear distortion or smaller. The
authors have applied both the systematic perturbation
scheme developed by Taniuti and Wei and a first-
principles approximation based on the method of charac-
teristics to the hyperbolic system (1) and (2). In either
case, we found the resulting nonlinear wave speed to be
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A=Ugo' 1+I080
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where

r(8)=-j. a
U2
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and

UE(8) =( A +B8")

where A, B, and n are empirical constants. The resultant
expression for I'(8) is

4 1+(1—
T—3n)(B/A )8"

1+(B/A)8"
We plot the nondimensional combination 8I' in Fig. 1 for
the materials NaF and Bi, obtained using the parameters
given by Ruggeri, Muracchini, and Seccia' and Ruggeri. 4

This figure shows that I'=0 for each of these substances
in the temperature ranges studied. The temperature
where I vanishes is 8,„„„,=[(A/B)5/(3n —5)]'~", and
corresponds exactly to 8 in Ruggeri.

The fact that the steepening parameter I changes sign
indicates that at least two qualitatively different evolu-
tions are possible. These different evolutions are summa-
rized in Fig. 2, where we show the temperature distribu-
tions corresponding to I 0&0 and I 0(0 undisturbed
states. When I 0&0, the warmer regions of the wave

I.O

and Uzo= Uz(80). In (5) we have used the first of (3) to
obtain the latter form of the nonlinear steepening param-
eter.

In order to obtain numerical values for the steepening
parameter (5), we follow Ruggeri, Muracchini, and Sec-
cia' and Ruggeri in using the Debye specific heat and
Coleman and Newman's' fit for the equilibrium wave
speed, i.e.,

c =const 8

&-e,
eo t=o

(o) r, &o

8-&0
e,

t=o

propagate faster than the colder regions, and the wave
tends to steepen forward, forming the temperature-
raising shock sketched in Fig. 2(a). On the other hand, if
I 0 & 0, the warmer regions tend to move slower than the
cooler regions, and the steepening is backwards, relative
to the propagation direction, as depicted in Fig. 2(c).
Similar observations were made in the context of second
sound in liquid He II; see, for example, Putterman. " The
apparent interpretation of the so-called "critical" temper-
ature is that the nonlinear steepening is identically zero.
That is, simple wave solutions to the nonlinear system (1)
and (2) propagate linearly.

Because the higher-order terms correctly neglected in
the 80I 0=0(1) theory may be as large as the lowest-
order nonlinearity retained in (4), we expect that the ap-
proximation scheme leading to (4) is invalid when I 080 is
sufficiently small. A more physical argument leading to
the conclusion that (4) is incorrect in the vicinity of I'=0
is that any finite strength wave having 80I 0 small and
positive is likely to result in a change in sign of the local
value of the steepening parameter. As a result, simul-
taneous backward and forward steepening within the
same pulse is possible. Because 80I'0 is a numerical con-
stant in (4), such a sign change in the local value of I' is
not consistent with (4). Thus, we need to amend the ap-
proximation to the wave speed (4) to incorporate the ad-
ditional assumption of small 8oI p.

A self-consistent approximation valid in the vicinity of
the zeros of I seen in Fig. 1 follows from the assumptions

(b) r, =o

re

O.O-

e-e,
e,

t=o
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FIG. 1. Plot of nondimensional steepening parameter as a
function of temperature for Bi and NaF.

(c) r, &o

FIG. 2. Sketch of the evolution of a square-wave initial pulse.
(a) I p8Q=0( 1 ) and positive, (b) I QOQ small and positive, and (c)
I QHQ 0( 1 ) and negative.
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0

0 d
=0(1),

where Lz ——ao/( Uz~co ) is the skin depth and the L is the
wavelength. As expected, we take the nondimensional
measure of I 0 to be small, in addition to the usual small
disturbance and weak dissipation [L =o(L&)] assump-
tions. The relation between 80I 0 and the wave amplitude
allows for the possibility that part of the wave can corre-
spond to positive I (forward steepening) while other
parts may correspond to negative values of I (backward
steepening). The condition relating the wavelength to the
wave amplitude ensures that the typical decay time
v& =0(L&IUEO) is no shorter than the time over which
significant nonlinear steepening may be observed; the
latter time scale is of order

L 1 0
Usa 8prQ[(8 80)/80] UEO

8—80

80

Finally, we confine our attention to simple right-running
waves and seek an approximation that is valid over time
scales on the order of those corresponding to nonlinear
steepening; both of these general assumptions were also
implicit in the derivation of (4) and (5).

Under the assumptions discussed above, two ap-
proaches can be employed to derive the appropriate ap-
proximation to (1) and (2). In the first, one could simply
solve the hyperbolic system (1) and (2) with the method of
characteristics and then approximate the resultant solu-
tion in a manner consistent with our assumptions; this
approach is essentially the same as the first-principles
method of characteristics approach used to derive (4) and
(5). A second equivalent approach is to apply the sys-
tematic perturbation scheme developed by Cramer and
Sen'~ to (1} and (2). This scheine was specifically
designed to extend the method of Taniuti and Wei to
cases where the quadratic steepening parameter is small.
As a check on the algebra, we applied both techniques in-
dependently and demonstrated the expected consistency
between the two approaches. The result of both ap-
proaches is that the wave evolution is governed by the
following modification of the inviscid Burgers equation:

Bu A, Bu 5

Bt Usa Bx
(10)

is a nondimensional measure of the disturbance function,
and

X= U„I1+r8,u+-,'A8', u'] (12}

is the correct approximation to the nonlinear wave speed
when 801 0 is small. The new nonlinearity parameter, A,

where x =x /L, t = tUEo/L are the nondimensional forms
of the spatial and temporal variables, 5=E./Ld (&1 is a
nondimensional dissipation parameter,

8—80 q
80 Pc0 UE080

has the following form:

UE'
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UE
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38 c

(13b)

with all derivative evaluated as the undisturbed tempera-
ture 80. To obtain the form (13a), one must explicitly use
the condition that 80I'0 is small. Form (13b) follows from
(13a) upon using the relation (3). As discussed by Cramer
and Sen, ' (13) may be evaluated at either the actual un-
disturbed state or the zero of I', at least to the accuracy
iinplicit in (10)-(13}.

We can use (6} to determine numerical values for the
cubic nonlinearity parameter. If, as discussed above, we
evaluate A at the zero of I for each conductor, we find
that A8,„„~=—4.333 for NaF and A8,„„„i=—5.423
for Bi. We intuit the fact that A &0, since (8I )' &0 at
the zero of I. However, it is important to note that
AA(81 )'/8 or any other simple form of I". The assump-
tion that A should be proportional to I" is usually based
on the idea that the cubic nonlinearity arises directly
from the quadratic nonlinearity through the use of a Tay-
lor series. As discussed by Cramer and Sen, ' ' the ap-
proximations leading to the lowest-order quadratic
steepening parameter may neglect terms which are im-
portant when the cubic nonlinearity is computed. Fur-
thermore, the calculation of the cubic nonlinearity neces-
sarily involves the first-order disturbances (the linear
theory being zeroth order) which are correctly ignored in
theories restricted to the study of the quadratic non-
linearity.

Having obtained the correct nonlinear wave speed (12},
we should briefly address the issue of shock structure.
Here, we follow Olenick' and I.ax' in writing the shock
speed corresponding to (10) as

2u]+u2 u ]+u]u2+u22

A,, =UEO'1+I 080 +A80 ', (14)

in order to distinguish admissible from inadmissible
shocks. If we assume that the present model can be em-
bedded in a more comprehensive diffusive, rather than
dispersive, theory, i.e., that we replace (15) by a "viscosi-
ty criterion" (cf. Hagan and Slemrod' ) to determine
shock existence, then it is easy to show that (15) is both
necessary and sufhcient for the existence of shock waves
in the cubic theory presented here.

The equality in (15) corresponds to shock waves which
propagate at the characteristic speed of the state immedi-
ately behind the shock. Such states are similar ta
Chapman-Jouget points in detonation wave theory and
are commonly referred to as sonic shocks in nonlinear

where subscripts 1 and 2 denote conditions immediately
ahead of and behind the shock, respectively. We will also
follow the above authors in employing the speed-ordering
conditions

(15)
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gas dynamics (see, e.g., Cramer and Kluwick' or the ar-
ticles by Cramer' or Kluwick' }. Because the present
context involves thermal rather than sound waves, we
will refer to shocks with A,, =A, z as thermic shocks. We
should also note here that the class of shocks A,, =A,

&
is

expected to be inadmissible when A&0. From this, we
expect such upstream thermic shocks to appear only
when A&0.

As pointed out be Ruggeri, Muracchini, and Seccia,
the dynamics of the present model can be considerably
more complex than those where the steepening is strictly
positive or strictly negative. A configuration typical of
the I o8o=0 theory is sketched in Fig. 2(b} for I'o) 0,
A(0 and a square-wave input. The new feature charac-
teristic of the present theory is the fact that both
temperature-lowering and temperature-raising shocks ap-
pear in the same pulse. Such double-shock configurations
have been observed experimentally in the related area of
second sound in He II by Turner and Torczynski. '

Cramer and Sen' present detailed solutions to the 5=0
version of (10) and (11) and (14) and (15); because of the
canonical nature of these solutions, the He II work can
be carried over to the 5=0 version of the present study
with a minimum of complication.

Previous investigations have revealed that thermic
shocks will frequently occur when an inadmissible
discontinuity is introduced through initial or boundary
conditions. In particular, the inadmissible discontinuity
will break up into either a centered temperature-raising
or temperature-lowering fan or a thermic shock-centered
fan combination. Examples in the context of gas dynam-
ics can be found in the work of WendrofF2 and Cramer
and Iouwick. '

We can use this information to design an experiment to
observe some of these nonlinear efFects. We envision a
one-dimensional crystal at an equilibrium temperature,
8o, with a constant heat flux Qo located at the origin with

a detector a distance H to the right. In the context of the
5=0 theory, we can easily predict the travel time across
the sample for this pulse. (The 5%0 case is considerably
more involved and we will present detailed solutions at a
later time. ) If the tnagnitude, uo=go/(pcoUso8o), is

below the thermic shock value of 31o/28o~A~, then the
heat pulse propagates as a conventional temperature-
raising shock wave with speed (14} with u, =0 and

u2 =un. The arrival time at the detector will be
T

r,8, ~A~8', ,t, = 1 — uo+ uo
Eo. 2

which we recast as

0.5-
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FIG. 3. Plot of arrival time deviation, 6 [Eq. (17}],as a func-

tion of scaled amplitude, A.

nonlinear character of the wave, and A =un ~A~8o/I o is
the scaled amplitude. If the initial pulse strength is larger
than 3 =—„then the discontinuity is inadmissible and it
breaks up into a fan-thermic shock configuration. This
implies that the arrival times should saturate at the ar-
rival time for the thermic shock: 5=—', . Figure 3 shows

the complete behavior of the arrival times for any ampli-
tude. The definitive signature of nonlinear behavior is
the leveling off of the arrival time with increasing ampli-
tude.

To see if these efFects are detectable, we calculate the
difFerence between the linear and nonlinear arrival times
of a thermic disturbance for NaF at 8o=12 K and Bi at
8o=2. 5 K. In each case, the numerical values for A8o
are those given above. The remaining parameters are
summarized in Table I. Then the deviation is simply
3I'o/8~A~, which is 0.016 for NaF and is 0.031 for Bi.
Thus, a sample crystal with a length H =1 cm requires a
temporal resolution of at least 61 ns for NaF and 331 ns
for Bi, within the reach of 100-MHz transducers.

We have derived the 1owest-order nonlinear correc-
tions to the wave speed for thermal waves (second sound)

where

A A
1——

2 3
(16)

TABLE I. This table shows the values of 81 and UE for NaF
and Bi for the conditions of the experiment outlined in the text.

1—) A (
UEot arr

r02 0
is the scaled arrival time deviation, which encodes the

NaF
Bi

oI o

0.434
0.670

UEo
(cm/s)

2.67 X 10
9.36X 10
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in solids using the constitutive theory of Ruggeri, Murac-
chini, and Seccia' and Ruggeri for the region where the
quadratic nonlinearity is sma11. %e identified the temper-
ature at which the nonlinearity parameter changes sign
with Ruggeri s critical temperature and outlined the ex-

istence theory for discontinuities within this constitutive
model. Finally, we have proposed an experiment to mea-
sure the arrival times of heat pulses to demonstrate some
of the nonlinear effects predicted with this model.
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