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We report ab initio calculations of the residual resistivity and the deviations from Matthiessen's
rule for dilute ternary alloys. We consider nonmagnetic (Cu) as well as ferromagnetic host materials

(Ni) with an admixture of simple-metal (4sp, 5sp) or transition-metal (3d, 4d) impurities. The
calculations are performed within the frame of density functional theory and the Korringa-Kohn-
Rostoker Green's-function method. The transport is described quasiclassically by means of the
Boltzmann equation. In the case of a ferromagnetic host a two-current model is applied. Both
impurity atoms are considered as noninteracting and the scattering properties of each impurity atom
are calculated self-consistently including in addition to the impurity potential one shell of perturbed
host potentials around the impurity. Our results show satisfactory agreement with experiments and
con6rm the validity of Matthiessen's rule in nonmagnetic systems. In ferromagnetic systems the
two-current model is con6rmed.

I. INTRODUCTION

We often wish to calculate transport properties of a
solid where several diff'erent scattering processes are go-
ing on at the same time, for example, where electrons are
being scattered by two difFerent noninteracting impurities
A and B. A crude argument suggests that the resulting
resistivity is the sum of the resistivities due to each type
of scattering separately. This is only true in certain spe-
cial circumstances, and we then say that Matthiessen's
rule is satisfied. How deviations &om this rule occur is
easily understood &om the following considerations. The
two types of elastic scattering, defined by two equilibrium
transition probabilities, lead to two scattering operators
PA and PB. %hereas the total scattering operator is the
sum of both contributions

PAB + PA + PB) (3)

and the equality sign only holds when the same function
4 is a solution of the Boltzmann equation for all three
scattering operators, i.e., PA, PB, and PAB, apart from

PAB = P~ + PB)

this is not true, e.g. , for the resistivity. Substituting the
scattering operator in the variational expression of the
Boltzmann transport theory we find for the resistivity

(4, P~4) + (4, Pgy@)

(4, X(E = l))
where 4 is the exact solution of the Boltzxnann equation
involving the operator PAB and X is the generalized force
in a unit electric field (E = 1). In general, 4 is not the
exact solution of the Boltzxnann equation for the scat-
tering operators PA or PB. Thus we obtain from the
variational expression

some constant multiplier. Only then is Matthiessen's rule
satisfied.

Even when Matthiessen's rule is not exactly true, the
deviations are not expected to be large. By the vari-
ational principle, a first-order error in 4 leads to a
second-order error in the value of the resistivity. This
seems to be confirmed for (A, B) impurities in nonmag-
netic hosts, but in ferromagnetic hosts, such as Ni or
Fe, large deviations of Matthiessen's rule are obtained
experimentally. 2 4

The origin of these deviations can be explained within
the two-current model. ' In ferromagnetic metals the
electrons can be classified as having spin up (g, paral-
lel to the saturation magnetization M, ) or spin down ($,
antiparallel to M, ). The conduction can be described
as taking place by two currents in parallel. Even if
Matthiessen's rule is satisfied for each current separately,
this does not guarantee that it is satisfied for the total
resistivity.

Owing to the developments of density-functional the-
ory and sophisticated nuxnerical techniques we are now
able to perform realistic ab initio calculations, and we
can check the reliability of such model studies mentioned
above. Within the Korringa-Kohn-Rostoker (KKR)
Green's-function method a detailed analysis of the range
of charge and magnetization perturbations around im-
purities in either a nonmagnetic or a magnetic host was
performed. The same formalism was applied to cal-
culate the transport properties of dilute Ni alloys. For
this purpose the microscopic transition probability for
an impurity atom with perturbed neighboring potentials
around the impurity is calculated and fed into the Boltz-
mann equation. The formalism is now extended to cal-
culate the deviations &om Matthiessen's rule for dilute
ternary alloys ab initio, that is, without introducing any
&ee parameter.
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The outline of the paper is as follows. In Sec. II the
microscopic scattering probability is derived within the
Green's-function method and fed into the transport equa-
tion to calculate the resistivity. In Sec. III methodical
aspects are presented, and in Sec. IV the results are dis-
cussed and compared with experimental data.

» =( —*)»+*k~A B (10)

orem connecting diagonal elements of the transition ma-
trix TA, k to a sum over all transition probability rates for
scattering out of state k.

To simulate a dilute ternary alloy we use the following
ansatz for the microscopic transition probability

II. THEORY

The scattering of host electrons at one impurity po-
tential leads to a transition from a state k into a state
k', where k is a shorthand notation for the wave vector
k and the band index v. The corresponding microscopic
scattering probability is given by

P» = 2«IT'» I'~(sI —e~ )

h 1
T»' = ) CL(k)QL(k ).

2m REF

L denotes a pair of angular-momentum indices, i.e.,
L = (I,, m) and n characterizes the sites of the perturbed
potentials in the cluster. CL (k) and QL (k) are general-
ized wave function coefIicients for the host and the alloy,
respectively. The latter are connected by the relation

QP, (k) = ).TL,I, C7, (k)
L'n

(6)

Neglecting lattice distortion efFects the T-matrix coefB-
I

cients TLL, contain the structural Green's-function ma-

trix elements |11, (Refs. 13—15) of the perturbed system

where c is the atomic concentration of impurities. %ithin
the powerful KKR Green's-function formalism the
transition matrix elements TI,I, for the scattering of
Bloch electrons by an impurity cluster embedded in an
ideal host crystal are

with two types of noninteracting impurities, A and B, be-
ing statistically independently distributed. Correspond-
ingly; the electron lifetime becomes

1 1 1—= (1 —z) +z
&k

A 7B '

In the dilute limit c &( 1 the residual resistivity of impu-
rities can be obtained Rom the solution of the linearized
Boltzmann equation

A B
A:

(1 —z)rP + z7.~"

xl ~~+).l(1 —z)PI".I. +zPIs )As I

for the vector mean free path AA. . Here e& is the Fermi
velocity.

Obviously, Eq. (12) is an integral equation, which we
solve by iteration. For a ferromagnetic host, where k
includes also the spin quantum mimber cr Eq. (10) rep-
resents a system of coupled integral equations for the
vector mean free path A&. Assuming, that for the con-
sidered Ni alloys the spin-fIip scattering can be neglected
the Boltzmann equation decouples for both spin direc-
tions and can be solved separately.

The resistivity can be obtained &om

(p~a), ,' = e' ).b(sI —ez) ~s; AI,
T"", = e '"i gt~(b"", + |~",Qt", )e (7)

Here g&' are the scattering phase shifts of the unperturbed
potentials, and At& represents the difI'erences between
the single-site t matrices of the perturbed potentials and
the unperturbed ones. The structural Green's-function

I

matrix GLL, contains all the information about multiple
scattering between the perturbed mufIin tins and can be
related to its counterpart for the host crystal by an alge-
braic Dyson equation. s io Substitution of Eqs. (5), (6),
and (7) in Eq. (4) results in

fh.')
~(ea —ei )g2m) E~

x ) QL, *(k)QI., (k)CI.(k')Cl. , (k').
LLInnl

The electron lifetime due to impurity scattering is given
by

For cubic systems we have p&& ——p~~b;~. This equation
can be used for each spin separately in ferromagnetic
hosts leading to pAB for the majority electrons and pAB
for the minority ones.

Due to the parallel addition of the two currents the
total resistivity becomes for ferromagnetic cubic systems

PAB + PAB
PAB

PABPAB

In the limit x = 0 the residual resistivity of the im-
purity A, pA, and in a ferromagnetic host the corre-
sponding anisotropy ratio of the subband resistivities
a~ ——p&/p& are reached. Analogously, for z = 1 the
residual resistivity pB of impurity B with the anisotropy
ratio aII = p&/p& will be obtained.T

Finally, the deviations kom Matthiessen's rule are de-
fined as

TQ = ) P»' — 2c III1Tfi

The second equality in Eq. (9) expresses the optical the-

+PAB —PAB PA PB,

and the relative deviations are defined as Ap~n/(p~ +
PII).
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III. METHOD

This section specifies the numerical details in the cal-
culation. A basic ingredient are the self-consistent poten-
tials for pure Cu and Ni, which are taken &om Moruzzi
et al. The KKR method with an angular-momentum
truncation at I „=4 was used.

The imaginary part of the structural Green's-function
was generated within the same KKR method by means
of a Brillouin-zone integration using the tetrahedron
method. ' The real part of the Green's-function was
calculated by a Hilbert transformation with a trunca-
tion energy of 2.0 Ry.

The self-consistent impurity calculations are performed
within the frame of density functional theory using
the local spin-density approximation as proposed by von
Barth and Hedin~e with parameters as chosen by Moruzzi
et al. is To obtain the Green's-function of the perturbed
system the algebraic Dyson equation is solved. The di-
mension of this equation is made finite by truncating the
angular-momentum expansion at l = 3 and by assuming
potential perturbations only at the impurity site and at
the first shell atoms around the impurity.

The Boltzmann equation is solved by iteration.
The necessary Fermi surface integrations were performed
with a modified tetrahedron method.

IV. RESULTS AND DISCUSSION

A. Nonmagnetic host

As examples we considered Cu cHluted with 4sp impuri-
ties (Zn, As), with 3d transitioa metal impurities (Co,Ti)
and with a combination of4' and 3d impurities (Cr,As).
The results for Cu(Za, As) are shown in Table I. The cal-
culated relative deviations from Matthiessen's rule are
smaller than 1% for all compositions of dilute Cu(Zn)
with Cu(As). Although Zn aad As have difFerent 4p
occupation aumbers, their scattering properties can be
essentially described by pseudopotentials difFeriag only
by the different excess charges b,Z, so that the micro-
scopic scattering probabilities P&~a& ~ COP~~& and also
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FIG. 1. Relative deviations from Mat thiessen's rule
against composition z for Cu(Cri, As ). The cal-
culated residual resistivities of the binary systems are
10.00 pO cm/at. % for Cu(Cr) and 6.37 pO cm/at. '%%uo for
CU(As).

the relaxation time rP Co7&+' of both scatterers, Za
and As, are comparable apart Rom a constant multi-
plier Co (b,Zz /EZA, ) . Nearly the same situation
was obtained for all compositions of dilute Cu(Co) with
Cu(Ti) as representatives for 3d transition-metal scat-
terers. Although Co and Ti have different 3d occupation
numbers, the scattering behavior in a Cu matrix is ob-
viously so similar that the calculated relative deviations
from Matthiessen's rule are smaller than 1%o. Only the
combination of dilute Cu(Cr) with dilute Cu(As), with
Cr as a representative of 3d transition-metal impurities
and As as a simple-metal impurity, diHer in their scatter-
ing behavior in a more pronounced way, so that the rela-
tive deviations from Matthiessen's rule increase to about
4% for a fifty-fifty admixture (see Fig. 1). Finally, we can
conclude that Matthiessea's rule is a good approximation
for combined scattering of two noninteracting impurities
embedded in a nonmagnetic host, like Cu.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pznAs

0.250
0.864
1.483
2.094
2.704
3.312
3.924
4.536
5.147
5.758
6.370

pzn + pA8

0.250
0.862
1.474
2.086
2.698
3.310
3.922
4.534
5.146
5.758
6.370

0.0
2 Ox 10 3

6.2 x 10
3.8x 10
2.2 x 10
0.6 x 10
0.5x10 3

0 4x10 3

0.2x 10
0.0x 10
0.0

TABLE I. Calculated residual resistivities pz„~„predic-
tion of Matthiessen's rule pz„+ pA, and relative deviations
from Matthiessen's rule for Cu(Zni, As ) in dependence on
the composition z. All resistivities are given in pA cm/at. 'Fo.

B. Ferromagnetic host

In this section we present calculated deviations &om
Matthiessen's rule for a variety of dilute ternary Ni al-
loys in comparison with experimental results (see Fig.
2). The cobxmns in each figure illustrate the relative
subband contributions to the conductivity in the binary
alloys hatched parts belong to minority spin contribu-
tions and the black part to majority spin contributions.
The general trend is that larger diH'erences

between the relative subband conductivities of the di-
lute binary systems lead to larger deviations &om
Matthiessen's rule. In order to understand the origin of
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our results with resultsthese deviations we can compare our re
predicted by the two-current model '

~

nto the following e&p«we can transform Eq. 1 ln 0
for the deviations from Matthiessen's rule

t(I )P + P t[(I )P +*P ]
( )

(I —*)p~ + *p~ + (I —*)p~ + *p~

u osed that the impurities A and B add
their resistivity in each

l d f the subband resistivities. sing erule is valid or e s
nd the two-current model Eq. 13anisotropy ratios o; an

(o'~ —cIa) P~PI3
(I+cI~) n~p&+ (I+ n~) n&pz'

h is more comfortable for the comparison with ex-
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TABLE II. Calculated residual resistivities pc,T;, prediction of Matthiessen's rule pc, +pT; and
relative deviations &om Matthiessen's rule calculated by solving the Boltzmann equation for several
compositions and due to the band model using Eq. (15) for Ni(Cr&, Ti ). All resistivities are
given in pQ cm/at. '%%ua.

0.0
0.1
0.3
0.5
0.7
0.9
1.0

PCr Ti

4.35
4.42
4.49
4.50
4.42
4.22
4.08

PCr + PTi

4.35
4.32
4.27
4.21
4.16
4.11
4.08

[&p/(pc. + pm)]st

0.000
0.018
0.047
0.061
0.056
0.027
0.000

[&p/(p& + p& )] «
0.000
0.022
0.052
0.069
0.062
0.029
0.000

18% for Ni(Cro s,Tio q) and smaller otherwise. Conse-
quently, we can conclude that Matthiessen's rule is well
satisfied (comparable to the nonmagnetic systems) for
the subband resistivities, p~~ ——p~ + p~.

In Ni(Rh, Ru) [Fig. 2(a)] the calculated deviations from
Matthiessen's rule for the total resistivity p~~ are gen-
erally small (up to 10%). The scattering behavior in the
subbands is comparable, which can be seen from the sim-
ilar relative conductivity contributions. A maximum is
reached near Ni(Rh) mixed with 15% Ni(Ru). The resid-
ual resistivities and also the a ratios of both constituents
agree with experiment (see Table III). The experimen-
tally obtained negative deviations of Matthiessen's rule
are impossible and can only be accepted with large error
bars reaching the positive side. From the variational so-
lution of the resistivity discussed in the Introduction it
becomes clear that p~~ & p~ + p~. That means, that
Zip is always positive.

For Ni(Cr, Ti) [Fig. 2(b)] the calculated deviations
from Mat thiessen's rule are smaller than 10% for a nearly
fifty-fifty composition in agreement with experiments. s

The residual resistivities for the dilute binary systems
agree well with experiments (see Table III), but the a
ratios, particularly for Ni(Ti), differ more Rom experi-
ment. As a consequence of Eq. (16) our calculated devi-

TABLE III. Calculated residual resistivities p, l, and sub-
band ratios o,, l, in comparison to experimental results or-
dered with increasing o.. The resistivities are given in
pQ cm/at. '%%ua.

atiogs &om Matthiessen's rule can be expected to difFer
from the experimental results. But the experiments also
differ by about 100%. The system Ni(Ru, Ti) [Fig. 2(c)]
shows deviations from Matthiessen's rule up to 20% for a
composition of 70% Ni(Ti) and 30% Ni(Ru) in very good
agreement with experiment.

The system Ni(Cr, Mn) [Fig. 2(d)] shows stronger de-
viations from Matthiessen's rule, up to 30% in our cal-
culation and up to 75% experimentally. The position of
the maximum near to 70% ¹(Mn) is well refiected in our
calculation. The differences between the absolute theo-
retical and experimental values should be connected with
the a ratio of Ni(Mn) which also differs strongly.

The system ¹(Co,Rh) [Fig. 2(e)] is an example for
large diHerences in the subband contributions to the con-
ductivity. ¹(Co)with exclusively majority band contri-
butions and Ni(Rh) with comparable majority and mi-
nority band contributions to the conductivity. The de-
viations from Matthiessen's rule reach up to 100% for a
ternary alloy consisting of 90% Ni(Co) and 10% Ni(Rh).

Finally, starting from our detailed analysis of the resid-
ual resistivity of dilute Ni alloys we would like to pre-
dict some systems that should show about 300—400% de-
viations of Matthiessen's rule. In Ni all combinations of
Pd impurities, which cause mostly minority conduction,
with impurities like Cd, Ag, Fe, Co, or Cu, which show
mainly conduction in the majority band, should deviate
strongly &om Matthiessen's rule. The calculated devia-
tions for Ni(Pd, Cd) [Fig. 2(f)] illustrate this fact.

V. SUMMARY

Impurity

Pd
Ru
Cr

Rh
Tl

Cd
Co

Reference 2.
Reference 3.

Pcalc

0.03
6.27
4.35

2.23
4.08

3.13

0.39
0.04

pexpt

4.9
4.8
5.0b

1.79
34
2.9b

0.72
0.61

0.145

O'calc

0.19
0.17
0.3

0.77
0.85

2.42

15.2
92.4

~expt

0.29
0.5

0.45
0.65
1.1
4.0b

8.9
15.0

30.5

We have shown that Matthiessen's rule is a very good
approximation for the resistivity of two noninteracting
impurities in a nonmagnetic host. For a ferromagnetic
host Matthiessen's rule is valid for the subband resistiv-
ities, but due to the parallel conduction of the majority
and minority currents large deviations of Matthiessen's
rule occur which are determined by the diÃerences be-
tween the relative subband conductivities of the consid-
ered scatterers.
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