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Acoustic properties below incommensurate phase transitions are severely influenced by phason
modes. These unique massless Goldstone modes may lead to coexistence anomalies within the whole
phase of broken continuous symmetry. The present theory, based on an order parameter model ap-
propriate for a universality class containing the A2 BX4 family, employs an extended renormalization
scheme. Within this scheme, critical behavior of the Goldstone modes is governed by a fixed point,
permitting an exact treatment of the anomalies induced by them. With regard to the coefficient
of sound attenuation, the hydrodynamic behavior is not altered by the phason modes, but they
lead to a singularity of the scaling function, which describes the crossover from the critical region
to the coexistence regime. Determining the universal scaling function and revealing its coexistence
anomaly constitute a main result of our study, which explicitly takes fluctuation contributions of the
phason and amplitudon modes into account. The sound velocity is predicted to display a minimum
in its temperature dependence below the maximum sound attenuation at the same frequency. A
treatment of the high-temperature phase is also included. Application to experiments on Rb2ZnCly
and K2SeOy4 reveals agreement with our theoretical predictions over several orders of magnitude of
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the scaling variable.

I. INTRODUCTION

We study the influence of Goldstone modes on acous-
tic anomalies, which occur when a system undergoes
a second-order phase transition to a low-temperature
phase of broken continuous symmetry. Based on the
time-dependent Ginzburg-Landau model, whose renor-
malization enables an exact treatment of the coexistence
anomalies, we determine the coefficient of critical sound
attenuation and the sound velocity. Our theory can be
applied to the normal-incommensurate phase transition
of a large group of materials.

The lattice dynamics of structurally incommensurate
phases displays certain aspects that are distinct from or-
dinary crystalline phases.! In the spectrum of dynamical
modes associated with the incommensurate modulation,
there appear two nondegenerate branches of modes. One
of these is known as the amplitudon branch and exhibits
common soft-mode behavior, whereas the other, the pha-
son branch, represents the massless Goldstone modes.?
Since they are massless within the whole low-temperature
phase, they may induce new types of anomalies, referred
to as coexistence anomalies. A well-known example is the
g~ ¢ divergence (¢ = 4 — d) of the static, wave-number-
dependent longitudinal susceptibility at small .23

Among other topics, research on materials with in-
commensurate phases is concerned with the primary dy-
namical modes and the interactions of these with other
degrees of freedom, such as acoustic waves.? The pres-
ence and form of acoustic anomalies near a phase tran-
sition depends on the type of coupling of acoustic and
order-parameter modes and gives insight into the under-
lying lattice dynamics of the structurally incommensu-
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rate solid. Our theory is based on a coupling of a single
phonon mode to two order-parameter modes, a proto-
type interaction that has frequently been investigated.?>
At this point the interesting question arises as to whether
the coupling of the acoustic modes to the phasons leads
to an observable effect, thus providing ultrasonic mea-
surements as a tool capable of detecting phasons. For
quite some time, the general conclusion has been that the
phason has no such effect.®” However, this opinion was
based on a Landau-Khalatnikov-type® mean-field treat-
ment of the aforementioned coupling. Through the ne-
glect of order-parameter fluctuations, sound attenuation
at and above the transition temperature is absent within
a mean-field theory. This demonstrates the importance
of order-parameter fluctuations, and this is where the
phasons come into play. However, because of the pe-
culiarities of phason dynamics at low frequencies, cer-
tain subtleties arise. For instance, an erroneous treat-
ment led to the prediction of nonhydrodynamic behavior
of the coefficient of sound attenuation,® in contradiction
to experiment.!® Even though the importance of anhar-
monic fluctuation contributions to sound anomalies was
emphasized in a more recent paper,'! the contribution
of the Goldstone modes was overestimated and had to
be suppressed by the ad hoc introduction of an energy
gap. While infrared divergent contributions appear at
intermediate steps of the perturbation theory, earlier in-
vestigations by Dengler and Schwabl showed already that
these cancel in the final result, leading to a finite univer-
sal amplitude ratio of sound attenuation.'?

In this paper we use a renormalization scheme appro-
priate for the specific features of the phason modes. This
scheme was introduced by Lawrie!3 for the study of static
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coexistence anomalies. Recently its applicability to the
dynamical properties was demonstrated by Tauber and
Schwabl.l* A brief account of our theory has been pre-
sented in Ref. 15. Besides giving more details and addi-
tional results, the range of applicability of our theory is
extended to Brillouin scattering experiments.

The velocity and the coefficient of sound attenuation
depend on the wave vector k and frequency of the sound
wave w and on 7 «x T — Ty, where Ty is the transition
temperature to the incommensurate phase. We will be
able to determine the scaling law for the coefficient of
critical attenuation of longitudinal sound modes

a(k,w,7) < w?|7|7° g(ké,w/wean) / Alk,w,| 7T ),
(1.1)

where the hydrodynamic asymptotics have been sepa-
rated off (k =| k l) This permits the following conclu-
sions: In the hydrodynamic regime, aside from a tem-
perature dependence expressed by a critical exponent p,
a quadratic frequency dependence is found. Thus the
Goldstone modes do not alter the hydrodynamic asymp-
totics; however, they lead to a cusp singulartity of the
scaling function g(k€,w/wcn) at small scaling variables k¢
and w/wen, where € is the correlation length and wy, is
the characteristic order-parameter frequency. This cusp
singularity is the unequivocal signature of the Goldstone
modes. It already has been predicted by Dengler and one
of the present authors.!? In a recent paper,'® we obtained
the corresponding result by means of a 1/n expansion.
The present theory puts the prediction of the Goldstone
singularity on a firm basis, suitable for a comparison with
experiment.

The scaling behavior of the sound velocity is more
intricate to analyze, but of course is comprised in our
treatment. For fixed frequency, the sound velocity has a
minimum at a temperature below the maximum of the
attenuation. Application of our theory to Rb;ZnCl, and
K2SeO4, members of the universality class of our model,
leads to good agreement between theoretical predictions
and experimental data on sound velocity and attenua-
tion.

This paper is organized as follows: In Sec. II, we
present our model free energy including the coupling of
the sound wave to the order parameter ® of the in-
commensurate phase transition. The dynamics of these
modes is described by stochastic equations of motion of
the Langevin type. An expression for the coefficient of
sound attenuation and the sound velocity is derived by
means of a ®2 correlation function. In Sec. III we intro-
duce the stochastic functional required for a calculation
of the ®? correlation funtion in the low-temperature (in-
commensurate) phase. Special care is taken with regard
to the limiting coexistence behavior, where the Goldstone
anomalies show up. The next section is devoted to renor-

| soliton-regime plane-wave-regime L
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malization of the theory and concludes with an explicit
result for the renormalized ®2 correlation function. In
Sec. V, the renormalization-group equation is integrated
by the method of charateristics. The scaling law for the
&2 is derived in Sec. VI, and we discuss its implications
for the coefficient of sound attenuation and the sound ve-
locity. We determine critical exponents appearing in the
asymptotic power laws of the hydrodynamic and critical
regimes and the universal crossover scaling functions. In
Sec. VII, we give an application of our theory to mem-
bers of the A3 BX4 family. In the last section, we sum-
marize our results and discuss further directions of inves-
tigation. Appendix A contains a coherent presentation
of important properties of the theory within the coex-
istence limit. Appendix B details the computation of
frequency and wave vector integrations necessitated by
the fluctuational contributions. In Appendix C we sum-
marize the treatment of the ®? correlation function in
the high-temperature phase.

II. ORDER PARAMETER MODEL
AND COUPLING TO SOUND WAVES

A. Structurally incommensurate systems

Among the systems that undergo a transition to an
incommensurate phase, some substances exhibit a quite
complicated scenario with a whole sequence of incom-
mensurate and commensurate phases.* In this paper,
we focus on the vicinity of the second-order transition
at Tt from the high-temperature paraphase to a struc-
turally incommensurate phase extending to Ty, the tem-
perature of the (first) lock-in transition, as shown in
Fig. 1. The real-space displacement field corresponding
to the one-dimensional incommensurate modulation can
be represented by its normal mode coordinates Q(q).2
We restrict ourselves to systems where the star of soft
modes consists of two wave vectors +q, along one of
the principal directions of the Brillouin zone. Within
the plane-wave regime, the incommensurate modulation
is dominated by the primary Fourier components with
wave vectors +q,, i.e., (Q(q)) o d(q £ q,)e??°. We
therefore use the Q(q) as a primary-order parameter of
the normal-to-incommensurate phase transition in the
Landau-Ginzburg-Wilson free-energy functional, whose
harmonic part is diagonalized by the following transfor-
mation

Py(k) = —= [e7*°Q(-q, + k) — € Q(q, + k)] ,

V2
(2.1)

Pa(k) = 71‘5 [ Q(~q, + k) +¢*°Q(q, + k)] .

The fluctuations of P4 (k) about its finite mean value can
be identified with fluctuations of the amplitude of the dis-
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FIG. 1. Sketch of the phase diagram re-
ferring to a normal-incommensurate transi-
tion at Tr and a lock-in transition at T'r.

High temperature para phase
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placement field.? Complementary, P,(k) with vanishing
mean value describes fluctuations about the phase ¢, of
the incommensurate displacement field. The dynamical
excitations of the order parameter associated with Py
and P, fluctuations are called phason and amplitudon
modes, respectively.

In the following theoretical treatment, for the sake of
generality, the two-component order parameter (P¢, PA)
is considered as a special case of an n-component order
parameter ®,, i.e., (Pp,Pa) = (®o1,Po2). By means of
the new variables, the effective energy functional within
the plane wave regime may be written as!

Ho= 33 [ o 4101200020 (-h)

+% Z /;1 .. .L4 @oi(kl)Qoi(lQ)q)oj(kli)

7,j=1
x®o;(kq) 8 (Z k,) ,
i

(2.2)

Mo =3 /k / 1 / Usa(ansae) ms(k) Qar) Qa) Sk +ay T ).
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which is just the n-component isotropic Heisenberg
model. The universality class of the two-component
model contains incommensurate solids with orthorhom-
bic D1? space group of the high-temperature paraphase
(e.g., members of the A, BX, family.!”) As a consequence
of the O(2) symmetry of this model, massless Goldstone
modes appear in the phase with broken continuous sym-
metry. In the present case, this is the P4(k) phason
mode.

B. Coupling to sound waves

The nature of critical acoustic anomalies crucially de-
pends on the coupling of the sound waves to the order
parameter. Here, we investigate a coupling linear in the
acoustic phonon variable and bilinear in the primary or-
der parameter?

(2.3)

The sound wave in (2.3) is described by the components of the strain field ys(k). The coupling constants Uxs(q;,q2) =
Uxs(q3,q;) depend on the wave vector of the order-parameter modes involved and obey momentum conservation.
Expressing (2.3) in terms of phason and amplitudon modes leads to

How= 3 [ [ mot0] K@+ W[PA@P(-a -1+ Pa@Pa(-a-1)
By q

+2K 3 (q,q + k) i[P¢(q)PA(—q - k)] }

(2.4)

In (2.4), different couplings appear for the quadratic combination (PgPs+ P4 P4) and the mixed bilinear term (PgP,),

respectively

[ SRR

1 2
Kia)/( )(‘h»‘h) =

From obvious symmetry properties it follows that
KSS)(O,O) # 0 is allowed, however Kf\zé) (0,0) = 0. Since
the main contribution to integrations in the reciprocal
lattice arises from the vicinity of +q,, the couplings
are usually expanded, i.e., Uxs(q,,—q, + k) ~ Uxs +
>, Uxs k7. With the help of the expanded coupling
functions

KSS)(qlv d;) ~ Uns

and (2.6)
K (a1,9;) ~ D Unsy(a] +43)
Yy

the interaction part reads in terms of the generalized
order-parameter fields ®,

Hint = ’\Z,&/k""“(k)[ Uxs ®2(—k)

+23 Uy eg(—k)], (2.7)

~

[Um(q, +41,—q, —4z) +/ — Uns(—q, + 41,9, — q2) ]

(2.5)

[
with the composite fields

B0 = [ 3 Bol) oy (e~ ) (2.8)

n—1

0 (k) = /k (2k] — k)i ) ®oa(ks)®on(k — k1).

a=1

(2.9)

Here v denotes a Cartesian component of both, the ex-
ternal wave vector k and the internal integration vari-
able k;. Finally, the components of the deformation
are written as a sum of normal coordinates Qx,, i.e.,
msk) =13, Qk,nel’:,nk‘s, with the polarization vector
€k,x, Polarization k, and wave vector k. In the total
Hamiltonian of the coupled system of phonons and or-
der parameter modes H = Hg + Hphon, the phonon part
Hphon is given by
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Hopon = [ 302 1hcolk,n) [ Que I

4
+ /,j: > ik[Aq (K, 5)] Qe o (<) -
- (2.10)

The first term is the purely elastic energy with the mass
density p and the bare sound velocity c,(k, k). The sec-
ond term describing the interaction is written in a form
familiar from the discussion of other structural phase

transitions.!® The order parameter fields ¥, (k) and the
ensuing coupling coefficients A, (k, x) are listed in Table
I, with the unit wave vector  (k = k/k).

Concerning the existence of the coefficients in the ex-
pansion of the phonon order-parameter coupling, one has
to specify the space group of the normal phase of the in-
commensurate solid. In this work we consider systems
with K,SeO4 structure, i.e., D%g space group. In that
case the zeroth-order coefficients Uys are nonvanishing
for the diagonal elements (A = §) only. Of the first order
coefficients Uys, the nonvanishing ones are listed in Refs.
5 and 19. The explicit form of the coupling coefficients
A,,(l::,n) for the K2SeQ4 structure is given in Table II.
From this table the couplings possible for acoustic modes
propagating along high-symmetry directions can be eas-
ily read off. Thus for longitudinal sound modes coupling
of the type 0 = 1,2 is allowed and for transverse sound
modes that with o = 3,4.

C. Phonon dispersion relation

With reference to the linear wave vector dependence,
the phason is sometimes called an acousticlike mode.
However, acoustic phonons have a damping proportional
to k2, and are always underdamped at small k. For pha-
sons, the damping is finite at £ = 0, and therefore they
are always overdamped for small k,2° as described in the
following Langevin-type equation of motion?!

0H

on(k,t) ==X m

+ 'I‘j(k,t) ,

i=(@,...,n) (2.11)
with
(ri(k,t)) =0,

(ri(k,t)rj(k',t')) = 2)0.6; ;0(k — k)é(t — t') .

TABLE I. Coupling coefficients and order-parameter
fields appearing in the interaction of acoustic modes with
the order parameter near incommensurate phase transitions.
(72 =, Y3 =Y, Y4 = z)»

R 1/2
o (A,(k, n)) o, (k)
1 t Dons knk’Uns $2(k)
1 A 8 Yo
2,34 * ZA,J ek,nk UA';"Ya 26 (k)
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TABLE II. Explicit form of the coupling coefficients for
K2SeO, structure (q, || a*).

(A,,(ic, n))1/2

o
; NI

2 2 €,k Usre

3 %(Ez,nszumv + elzc,nkyUva)
; kU + KT

The equation of motion for the acoustic mode reads

. _ oM ) .

P Qu,x(t) = —m — p Dk? Qe x(t) + Re(k, t),
(2.12)

with

(Ri(k,t)) =0,

(Ru(k,t)Rer (K',t')) = 25D k%, 06 (k — K')o(t — t'),

where D, is the bare damping. The stochastic forces
rj(k,t) of (2.11) and R.(k,t) of (2.12) produce a
Gaussian white noise obeying the Einstein relations.

An investigation of critical behavior of sound modes
requires the interacting phonon propagator. Recently, a
treatment of this problem has been elaborated for a gen-
eralized class of dynamic models by Drossel and one of
the present authors.?? As a result, the phonon disper-
sion relation for the above model can be written in the
following way

w? + D(l::,w, K)kZiw — cz(l::,w,n)kz =0 , (2.13)
with the interacting damping D(l;:,w,n) and sound ve-
locity c(l?:, w, k), which are shifted from their bare values
through the appearance of phonon self-energy contribu-
tions. In this paper our main interest will be directed to-
wards the description of longitudinal sound modes propa-
gating along high-symmetry directions, i.e., k — €;, Kk —
l. Inspection of Table II then yields two self-energy con-
tributions for longitudinal phonons, steming from the
isotropic coupling due to A; and the anisotropic cou-
pling due to A,. However, in the low-frequency regime
accessible to ultrasonic experiments, the anisotropic cou-
pling yields only a negligible contribution to the acoustic
anomalies'! compared to the isotropic coupling, and for
that reason, we omit it from our theoretical expressions.
For transverse sound modes, anisotropic coupling (see A3
and A4 in Table II) represents the interaction involving
the lowest number of coupled modes, and a summary of
the properties of its contribution to sound anomalies will
be given at the end of Sec. VI.

Here, we proceed with the treatment of isotropic cou-
pling, yielding the following expressions for the damping
and sound velocity

o
D(k,w,k) =Dy — (k%) 11 L ,
@ 1+4n(v)? 11 (k,w)
(2.14)
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2 (k,w, k) = c2(k, ) Re ! , (2.15) and (%)? = As(ei,l)/[pci(es; )] is an abbreviation for

1+4n(v)? IO (k,w)
where the &2 correlation function is an expectation value
of composite order-parameter fields

1 [ iwt @ 2 2
(k,w) = —= dt e* — (®5(k,t) ®5(—k,0)),
2 Jo dt

the coupling strength. The index i is determined by the
direction along which the acoustic phonon propagates.
In the computation of the ®2 correlation function, the
phonon degrees of freedom contained in (2.10) can be
integrated out. Concerning statics, this can be achieved
by completing the square, yielding a Gaussian integral

(2.16)  for the acoustic degrees of freedom
J
P 1 1 2 0
Hphon = 5 | keolk, w P Aoz | D [Aa (R, R)]) 2 s (K
pron = [ S § heahon) Pl @u P g [ e (ko e )
4
%[22 (Ao (k)7 o (K] } , (2.17)
o'=1
[ ~
with shifted normal coordinates D(k,w, k) via
Qux = Quex + Z M T, (k) (2.18) alk,w,k) = ——i—— D(k,w, k) (2.19)
&1 Pl keolk,r) |2 2¢3(k, w, k)

Obviously, elimination of the phonons introduces vertices
of the order parameter fields not contained in the initial
Hamiltonian. Out of the second term contained in (2.17),
there is a contribution similar to the well-known ®? ver-
tex, isotropic in order parameter space, but whose pre-
factor depends on direction in wave-vector space in case
of elastic anisotropy. For an elastically isotropic system,
the only effect of the acoustic phonons thus would be a
shift of the quartic coupling constant 4, — u, from
Eq. (2.2).22 For an elastically anisotropic system, the
significance of this kind of vertex has been investigated
in a quite general context, revealing the importance of
the sign of the specific-heat exponent a.?® As a conclu-
sion it follows that for negative «, which is the case for
the systems under consideration (n = 2, d = 3), the
critical behavior including the phonon coupling is un-
changed with respect to the rigid system. Since the bare
value of the quartic coupling constant is unknown and
substituted in later applications of the theory by its cor-
responding universal fixed point value, we neglect this
vertex in the present situation. Concerning the contin-
uous symmetry of our model, one has to be aware that
the additional terms in (2.17) are not rotationally in-
variant. However, the extra wave number dependence of
the composite order-parameter fields denoted explicitly
in Eq. (2.9) renders these vertices irrelevant.

Finally we turn to the dynamic aspects of the phonon
order-parameter coupling. Since the dynamics of the
sound mode is fast compared to the order-parameter
dynamics, the bare sound velocity and damping are ir-
relevant quantities for the computation of expectation
values.?2 The ®? correlation function does not actually
involve the complete energy functional H, but only the
part He. Thus it is a quantity of pure critical dynamics.
Equation (2.14) is closely related to, but not identical
with, an earlier phenomenological approach,?* which is
confirmed in significant limiting cases.

In ultrasonics, one uses the coefficient of sound at-
tenuation a(k,w, k), which is related to the damping

Through the appearance of k, we express the dependence
on the direction of the sound wave, whose frequency and
wave numbers are related through (2.15).

III. LOW-TEMPERATURE PHASE
AND COEXISTENCE BEHAVIOR

A. Dynamical functional
In the phase of broken symmetry, the expectation value

of the order parameter is nonzero, and without loss of
generality we assume orientation along the n axis

3
(@oi) = w e On,i (3.1)
It will be convenient to introduce new fields
(K "(k w)
w) = ‘/ mod(k)d(w) + oo (k,w)
(a=1,...,n—1), (3.2)

where the longitudinal field o,(k,w) has zero expecta-
tion value and the (n — 1) transverse fields =, (k,w) =
(rl(k,w),..., 72 }(k,w)) are massless due to a Ward
identity.'* From (0,(0,0)) = 0, a relation between the
temperature variable r, and m, can be derived: 1, +

—m;i = A. The quantity A is determined perturbatively
and will give rise to counterterms appearing in the per-
turbation theory when the temperature dependence in
our model is parametrized by m, instead of r,.1*

The model for the critical dynamics contained in Eq.
(2.11) can be equivalently represented by the stochas-
tic functional J in a path integral formulation.?%:26 In-
troduction of auxiliary fields ®, = (#%,...,#771,5,) re-
duces the complexity of the stochastic functional,?” which
can be split into a harmonic part Jharm and an interac-
tion part Jine. To facilitate giving explicit expressions,
we introduce the shorthand notation
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/ / Uit 5 ... % Uie
ki,....kp Jwi,...,wp

d%k ddk dw dw i . 4 P
= /(Zn)z . (27r)d / 1, /2—7:\11 (k1,w1) R 14 (k,,,wp)é (lz:; kz) 5(; w;) s (3,3)

where the ¥¢ in (3.3) stand for any of the fields 72, 0., #%, or &,. The harmonic part of the dynamic functional in
the phase of broken symmetry clearly distinguishes between transverse and longitudinal modes:

Tharm ({75}, 00, {73}, 60) = /k § / [ZAofrs‘frsHo Fobo — Y #e[iwr + Aoki]|mS
1,82 wy,w?2 a

a

—&o [iwy + Ao(md + kf)]ao] : (3.4)
From Jharm, the harmonic propagators are given by
« - - - 1
(2 (ky w)72(Q, @)Y narm = §(k + Q) 6(w + @) do i (3.5)
~ - - 1
(‘TO(k’ “"')UO(q’ @))harm =0(k + q) d(w + @) (3.6)

Ao(m2 + k2) —iw

The interaction part contains vertices with four fluctuating fields, and as a new feature of the low-temperature phase
there are vertices with three fluctuating fields

- 3u, . - -
T {3}, 175),52) = =2 Lo, | / (3 2#emeos + 3 omsns + 360000
6 ki k2 k3 Jw;,wz,ws a

(e
7l b oo+ Z&anﬂf‘w? + &oaoaoac] .
ki, kg Jwg,.. 1“’4 a,B a
(3.7)
We remark that the contribution of a Jacobian Jrp(®.,®,] = [dx [ dt 22 &Ifoj %—:7 guarantees the cancellation of

acausal terms in perturbation theory. Because the temperature is parametrized in terms of m, instead of r, in our
theory, an additional counterterm,

T ==A [ [ [T Aens + Autioos] = Aov/3uomo 450(0,0)
ki ks Jwi,wa VTG

appears, which is depicted by the symbol x in the following diagrammatic representation of perturbation theory.

B. The ®&2—correlation function

Our goal is the computation of the ®?-correlation function (2.16). With the help of a fluctuation-dissipation
theorem,26 it is expressed as a composite field response function

2 o ~
T (k,w) = (B2(k,w) (Bo®)(~k, —w)). (3.8)
We introduce cumulants using the notation
o (M,M)
Gy (kywis. kg skywrs kg wgs s ke,wow) (3.9)

where the index M specifies the number of (.7, + o’oao)(k w) insertions, M that of (w2 + 02)(k,w) insertions and

N, N counts external fields 6., 0o, respectively; (w2 + 02)(k,w) is a short-hand notation for the wave-vector- and
frequency-dependent composite operator

4ot = [ f I(Zw‘*( Ky, —w1)n3 (k + ka,w + w1) + 00 (— kl,—wl>ao(k+k1,w+w1)) (3.10)

a=1

and (7o7o + 0.6,)(k,w) is defined analogously. The 2 correlation function is now expressed as a sum of cumulants

2n o o (1,1) o (0,1) o (1, 0) 6 2 ©° (0,0)
N I (k,w) = G(o,0) (k,w) + mo G0 (k,—w)+2 mo Go,1) (kyw) + amo G, (kyw). (3.11)
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In our notation for the arguments of the cumulants in
(3.11) it is sufficient to display explicitly only the wave
vector and the frequency belonging to the last nonzero
index, according to the sequence of (3.9).

In preparation of the next section, we wish to relate
the cumulants of (3.11) to vertex functions. As usual,
this is achieved by a Legendre transformation, and the
lowest ones are

0 (0,0) 1
F(l,l) (kaw) = 50,0 s (3.12)
G(l,l) (_k’ —w)
o (1,0)
0(1:0) 3 G 0,1 (k,w)
(1,0 (k,w) = —V u_mo - -ﬁ(ﬁ%——— , (3.13)
G,y (k,w)
o (0,1)
0(0:1) G 0 (k w)
T(o,1) (k,w) = —-21/ ~mo — 0_(6%'—)_—‘”— ,  (3.14)
G, (—k,—w)
o(1,1) o (1,1)
L(0,0) (k,w) == G(o,0) (k,w)
o (1,0) (k,w) 0(0,1)( )
PRCICEY G (-k —w
—00) . (3.15)

G(1,1) (k,w)

With these vertex functions, the 2 —correlation function
(3.11) can be expressed by

2n o o(1,1)
x II (k,w) = — T(,0) (k;w)
r(lo’ (kyw) P (<K, )
(1,0) w (0,1)
~6.0) . (3.16)
Fay (—k, —w)

In the computation of the expectation values contained
in the cumulants of (3.11), the explicit form of Jharm
and Jiyt leads to the diagrams of Fig. 2 in one-loop
order. Before going into further computational details,
important conclusions can be drawn with respect to the
limiting coexistence behavior.

C. Coexistence limit

At the transition temperature T = Ty, the order pa-
rameter has zero expectation value (m, = 0), and crit-
ical phenomena arise from n fluctuating critical modes.
At any temperature below the transition point, with no
external field applied, we are confronted with a continu-
ously broken symmetry. There are (n—1) massless Gold-
stone modes and one massive longitudinal mode, leading
to different low-frequency and low-wave-number behav-
ior of these modes. This is readily demonstrated by the
harmonic response functions (3.5) and (3.6) in a heuris-
tic way: For fixed T < T (m, finite), the longitudinal
response function attains a finite value as frequency and
the wave number tends to zero. However, the transverse
functions exhibit a divergence in this limit. The distinct
behavior of longitudinal and transverse modes in the co-
existence limit (k,w — 0), can also be simulated through
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FIG.2. One-loop diagrams for the cumulants contributing
to the ®2 correlation function.

an artificial limit, where the mass is taken to infinity
(m2 — o0) at finite k and w. The procedure has been
discussed in detail for static!® as well as time-dependent
models.!* Deferring the details to Appendix A, we men-
tion that after a nonlinear transformation of the fields
To,00,To,0, the dynamic functional in the coexistence
limit J|cr becomes a Gaussian theory, permitting an
exact solution. Because the transformation is nonlinear,
the exact treatment of the cumulants amounts to a non-
trivial loop order with respect to the fields #,, 6., 7o, 0.
Even though our later treatment will be perturbative, it
includes an exact limit.

We illustrate this by considering the ®2 correlation
function. For the limiting model, the cumulants of (3.11)
can be obtained exactly (see Appendix A) yielding

2n ﬁ(k,w)l :i .

CcL Uo

(3.17)

We would like to remark that the expectation value
(w2 (1r°1"'r°))| o1 given by the infrared divergent trans-
verse bubble (Appendix B), which appears at intermedi-
ate steps (Appendix A), has dropped out due to a nonob-
vious cancellation. This nontrivial observation has been
also made in the treatment within the spherical model.'®

IV. RENORMALIZATION OF CRITICAL
AND GOLDSTONE SINGULARITIES

A. Renormalization scheme

The critical behavior in a field theoretical formula-
tion can be obtained by use of the minimal subtraction
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procedure,?®2° where renormalization is carried out in

such a way that after the cutoff in momentum space is
sent to infinity, the renormalized theory is free of poles
at € = 0, where ¢ = 4 — d and d is the number of spatial
dimensions. These poles are removed by means of Z fac-
tors just designed for this purpose. In the framework of
minimal subtraction, the Z factors contain only the poles
but no contributions that are finite in the limit € — 0.

In the phase of broken symmetry, transverse and lon-
gitudinal modes are different in that the first ones have a
divergent correlation length along the whole coexistence
line, while the longitudinal fluctuations freeze out as the
mass parameter of the theory is taken to infinity. The e-
pole structure of the theory might be affected too, which
can be taken into account, by allowing the renormaliza-
tion scheme to be extended by temperature-dependent
contributions. Such a scheme was proposed by Lawrie for
an investigation of Goldstone anomalies in the context of
statics.!®> The renormalization prescription is analogous
to that introduced by Amit and Goldschmidt3° for the
study of crossover phenomena at bicritical points. An-
other variant of this renormalization scheme was used
for a field theoretical description for the static crossover
in dipolar ferromagnets.3! Recently, Lawries ideas were
adapted to the study of coexistence behavior within time-

dependent models by Tauber and Schwabl.!*
- In terms of vertex functions, the renormalization
scheme is characterized by two requirements: Firstly,
the renormalized vertex functions contain no poles at
€ = 0. Secondly, after extraction of an overall power
of the renormalized temperature variable m, the vertex
functions remain finite in the limit m — oo at fixed,
nonzero wave vector and frequency. This has to be sat-
isfied order by order in an expansion in powers of the
renormalized coupling constant.

The Z factors for the renormalization of the temper-
ature variable, the coupling constant and the relaxation
rate are introduced as follows:

=Z'm2u7?, u=Z; Aqu " u,, A= Z7),
(4.1)

The index o serves to distinguish the unrenormalized
quantities, which have been used up to now, from the
renormalized ones, without label. A wave-number scale
renders renormalized quantities dimensionless, and Ay is
a geometric constant (Appendix B). Through field renor-
malization

= 2?72, o0 =22, ,
(4.2)

- 1/2~a = 1/2
“=Zi/ g, o’:Z&/ 0o ,

the renormalized vertex functions are related to their un-
renormalized counterparts by

o (M,M)

MM _ _

FzN N)) Zq@M Zs:™(2Z5) N/Z(Z )N/ L'w,~)
—ALIM) (4.3)

(N,N) ’
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with

A(MIM)

"Ny 8y,3101,M8, 500, v

o (M, M)
X Z‘I>‘i> Zq,z Re F(N,N) . (4.4)
sing

Hereby, composite order-parameter fields are multiplica-

tively renormalizable,!® requiring two more Z factors
o (1,1)
Z44 and Zg2. The real part Re {T'(g )} requires the ad-

ditional subtractive renormalization (4.4), which is only
a technical point.

Because of Ward identities and other relations, the
above Z factors are not independent.'* The definition
(3.1) of the order-parameter expectation value yields
Zy = ZmZ, and the composite fields #,®, and
(<I>o Ao <I>°) are renormalized by the same Z factor, as

well as Z3/? = ZY/? 7" and 237 = 2}/ %21
B. Renormalization in perturbation theory
In one-loop order, there is no field renormalization, nor
does the kinetic coefficient renormalize'* Z, = Zz =

s = Zz = Zx = 1. Within model A, we are left only
with the following Z factors

Zu(ummg) = Zm (o, mg)

n—1 _ 3 U Agu™c

S T AT T mz e

(4.5)
Zss (o, ‘mg) = Zg2(Uo, mg)
n-—1 _ 1 U Agpu™c
=1 A € -

+ UoAgHU + % (1__+-m__———2//,¢2)=/2

(4.6)

The explicit form of the Z factors demonstrates the
above-mentioned features of our renormalization scheme.
There are contributions from (n—1) Goldstone modes, in-
dependent of temperature in the whole low-temperature
phase. On the contrary, the weight factor of the longi-
tudinal mode decreases as the mass increases and finally
vanishes in the coexistence limit.

From the analytic expression for the cumulants de-
picted in Fig. 2, we obtain unrenormalized one-loop
vertex functions according to (3.12)-(3.15). These are
renormalized by the Z factors given above and combining
them according to (3.16) yields the renormalized result of
perturbation theory for the &2 correlation function. Sep-
arating into real and imaginary parts (N Ny + zNz)
we obtain

Aqp~® N(k2/p?, w/Ap?,m?, u)
w D0/ it m, )
(4.7)

2n I(k,w,m? u, A\, u) =

with real functions
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. (k2 w 2 -1 o 9 k2 w _ 2 w
NI(P /\ 2,m,u>—6(1+ ) u|:(2—:z —y)Tl ;2—,/\—;1,2 —'2yTg E,W
@+ a2 -4z - 14)L L m? ) + 6gL LA 4.8
Y 1 /112’ Auza YL ﬂz’ ,\”Zam ) ( . )
k2 2 _ k2w 2 k2w
Nz( 2 32" u) U|i2yT1(;ﬁ’m§) (z+7 )Tz( SV )
u _ k2 w 2 _ _2 _2 k2 w 2
+;|:6yL1 (F’/\—uz’m ) — (4—4$+(D +y )Lz ;5,‘/\—“1’—2,77’1 , (49)
. (k2 w 2 2 —1lu _ k2 w _ k2 w
D(;ﬁuuz’"‘ ’“) = (149 44 =3 (1+$)T1(F’A—;ﬁ)—yT2(E’:\-u§)
N B K w 2 _ k2 w 2
+; [3(1 +$)L1 (‘#—z',mz‘,m ) —3yL2 (—2,/\—“12-,777. ) ) (410)

and z = k%/(u?m?), § = w/(Au®m?).

As shown in Appendix B, the integration of the transverse-order parameter bubble can be performed analytically
and expressed by the hypergeometric function F.32 The following abbreviations are used in (4.7):

—e/2
k2w k2w Mk? —dw 1 k2
L) +in =, ) =1 - [ - —e/2,—— | V. 4.11
T1<u2,)‘”2> +2T2(H2’/\ﬂ2> 1 {( RV ) F(l €/2,e/2,2 5/2’2Ak2—iw)} (4.11)
In case of the longitudinal order-parameter bubble, we are left with a parameter integral
k2 w 2 . K w 2 2\ —€/2 ! 2 2?2 —dw k? 2 —</2
L1<E,/\—ﬂz,m>+sz<F,m,m)—[(1+m) —(1—6/2)/(; ds[m +'~2T’L2_S—4—u28] y

which in the case (k = 0) also can be evaluated analyti-
cally (see Appendix B). For completeness, we note that
additive renormalization is achieved by

(1) _
Afo0) =

—(Aap™%/Ae) [n — 14 (1 + m?)~</7] .
Equation (4. 7) is the main result of our perturbation the-
ory for the ®> — correlation function including fluctua-
tion contributions in the low-temperature phase at finite
frequency and wave vector.

&

5+ (24 ) g (e 4 G+ X

The ¢ functions appearing in the coefficients of Eq. (5.1)
and the inhomogeneity B are pu derivatives of the Z fac-
tors

7]

= 8 an' , pE {m,u,/\} , (5.2)
a - 22 x=
le=p 3—1an , ve {0,0’,<I> ,<I)<I>} , (5.3)
d 1 (1,1)
B= ——ZQ&Zqﬁ ;J.E; Z A(O 0) (54)

MC«}&

(4.12)

V. RENORMALIZATION GROUP EQUATION
AND SCALING BEHAVIOR

A. Renormalization-group equation

The renormalization-group differential equation is ob-
tained from the requirement that unrenormalized quan-

tities be independent of the wave number scale ;%8
O(M ’M )
t g Twny =0 Switching to renormalized quantities

yields a first-order partial differential equation

N N (N, M)
—MC*I” + '2_<& + ?Ca F(N N)

=0, yro01,M0y zbon B . (5.1)

here the symbol |, indicates that the derivatives have to
be taken at fixed values of the unrenormalized parameters
Mo, Uo, Ao Dimensional analysis yields26

(M,M) _ pdr AL~ M—M £(M,M)
TR = e )L U (5.5)
where dy, = —(d/2)(N + N -2)+2—- N+ N —2M —

4M denotes the p dimension of the vertex functions, and
quantities with a “hat” are dimensionsless henceforth.

The renormalization-group equation (5.1) can be in-
tegrated by the method of characteristics, yielding for
dimensionless vertex functions (5.5)
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aoran ({k} {w} o _
Fam (T’W”"’“ i

1 '
[la-z-maw) + dﬂ‘j—f]
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" v N dv
X exp [/; (—MC»&(I') — M(ea (') + %C&(l') + —Z—Ca(l')) l_'}
,mz(l),u(l)) + 51,M61,M50,1\760,N Aqar(l), (5.6)

o POTM) ({k} {w}

(N,N)

where the arguments {k} and {w} are sets of wave vec-
tors and frequencies. The two exponentials steming from
the dimensionality of the vertex function and the field
renormalizations, respectively, constitute the exponent
function. The vertex function on the right-hand side,
depending on external frequencies and wave vectors ex-
plicitly is called amplitude function. An arbitrary scale
parameter ! induces linear variation of an effective wave
number scale u(l) = pl. The characteristic functions
u(l),m(l), and A(l) are the solutions of the flow equa-
tions

ldzgl) =u(l) [~e+ Cu(u(l),m(1))],
dm(l) _ m(l)

1= o [F2Hm(®),m@)], (5.7)
dr(l)

1= =20 G (u®),m(b)

with initial conditions u(1) = u, m(1) = m, A(1) = A.
Additive and multiplicative renormalization of composite
order parameter fields generate two more characteristics

] ! [
r0) = [ B mN I E
' e (5.8)
Bgr = —’;d B
l 1
s(l) = exp [— /1 2en (u(l'), m(l' ‘j—f . (5.9)

which alternatively can be defined as solutions of two
further flow equations

1250 — _2 (1) ¢ga (u(l), m(l)), s(1)=1,
(5.10)
1920) — 1= 5(1) Bga(u(l),m(l)), r(1)=0.

The flow equations form a set of coupled, nonlinear differ-
ential equations, for which no complete analytic solution
is available. Therefore we give solutions obtained by nu-
merical integration combined with analytic investigation
of limiting behavior.

B. Asymptotic solution of the flow equations

The essential feature of the flow equations in our ex-
tended renormalization scheme is their dependence on
the initial value m. Because m serves as temperature
variable, it is important to determine this dependence
quantitatively. Since we are interested in the properties

w()’ AOL2(@)

[

near the phase transition, we restrict ourselves in the
following discussion to a temperature range below T7j,
which correponds to values 0 < m < 0.1. Under this as-
sumption, the flow of the coupling constant, starting from
l = 1, reveals for decreasing ! a plateau, i.e., u(l) ~ u},
at the value of the Heisenberg fixed point which is the
solution of the equation (, (u}{, 0) = ¢. In this parameter
range (values of m and [), the ¢ functions acquire their
critical Heisenberg fixed point values

Ce(u(l),m(D) = (o (uyr,0) = ¢
for all z € {u,m,\,0,®}, (5.11)

Bga(u(l), m(l)) ~ Bsa (u},0) = Bja. (5.12)

Setting u(1) = u}, the flow equations can be easily inte-
grated, yielding the initial behavior

u(l) =uy,

m2(l) = m?2]—2te—n , n=- ; ,
Al =2 2=2+(},
s(l) =1e—e/v afv=2C;, +¢,

r(l) =%B.(1-17°") ,  v=1/(2+(a) -

(5.13)

Note that critical exponents are determined in the usual
way by the Heisenberg fixed point values of the { func-
tions. Due to the negative l-power law in the m(l) charac-
teristic, this function increases for decreasing . No mat-
ter how small (but still finite) the initial value of m is, its
flow-dependent counterpart m(l) diverges as ! — 0. Thus
the Heisenberg fixed point is instable, and all flow equa-
tions crossover to the stable coexistence fixed point. In
this limit the coupling constant then acquires a new fixed-
point value u, which is determined by (, (ug, ) = e.
Again, in the coexistence fixed-point regime the { func-
tions are mere constants, which are derived in Appendix
A and lead to the following asymptotic behavior

u(l) =ug =6e/(n—-1),
m2(l) ocI72%=

Cu u;}aw =€,
Cm ub,oo =€,

Al) oI O(ug,00) =0,

s(l) ocl?e (o2 (ul,00) = —¢,

r(l) =const + constl® , Bga2 (u'&, oo) =n—1.
(5.14)

The l-power laws of the characteristics are determined
by the coexistence fixed point. The coefficients of pro-
portionality, left out in (5.14), are functions of m, which
in the range m < 0.1 follow power laws with Heisenberg
exponents.
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TABLE III. Asymptotic behavior of the homogeneous
parts of the characteristic functions, with constants
M,A, S R.

ls =+ o0 ls,—0

Ul,) = uy ue
MZ(L!) — l—2+z—n M l,_2+z

A(l,) = 1 Al2*

S(l,) = 1 §,etely

R(l,) = YB3, R+ 222810+ )

C. Universal crossover

So far, we investigated the asymptotic behavior of the
characteristics at the instable Heisenberg fixed point and
the stable coexistence fixed point. In the crossover regime
between both limits, the coupled flow equations in gen-
eral cannot be solved analytically due to the nonlinear-
ities. Following an obvious intuition, the characteristics
stick to their Heisenberg asymptotics the longer the closer
the temperature to the transition point. More precisely,
the crossover of the characteristic functions, which takes
place at smaller values of [ for decreasing m, coalesces
on a unique functional flow when we use the scaled flow
parameter
_ l
T m2/(2—e+n)
instead of ! itself. Thus, in the investigated parameter
range (m < 0.1), the characteristic functions, which de-
pend on [ and m are homogeneous functions

wl)=U(l,) , m2(l) = M?(,),
A = NFT2A(L,)

l, (5.15)

(5.16)

s()=1"2/*S(l,) and r(l) = 2Bh —I"*/*R(l,).
a
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For convenience we summarize the asymptotic behavior
of these homogeneous functions in the T limit (I, — o)
and in the coexistence limit (I, — 0) in Table III .

We close this section by giving explicit expression for
the ¢ functions. In one-loop order the nonvanishing are

Cuu(l),m(B) = G (), m(D) = "2 ull)
3 u(l)
Gon (), m() = =" ) = G
(5.18)
1

B (u(l),m(B) =n ~ 1+ s

From our discussion in Appendix A, we know that the
one-loop order already provides an exact description of
the coexistence limit. However, in the critical region a
one-loop theory might be too crude. For example the
specific-heat exponent a = :—:_—'8‘% would be positive for
n = 2 and d = 3, leading to a divergent specific heat.
This is in contrast with higher loop calculations and ex-
perimental findings, indicating a small but negative value
of a. The description of the critical region can be im-
proved by using { functions obtained by Borel resum-
mation directly for ¢ = 1.3% Originally, these resummed
functions do not take into account the crossover to the
coexistence limit. In order to achieve the extrapolation
between the resummed critical limit on the one side, and
the coexistence limit exactly contained in an one-loop
order on the other side, one can be led by the follow-
ing notion. All contributions beyond the one-loop order
have to disappear in the coexistence limit. Generalizing
the structure of the vanishing contributions of the one-
loop terms to the higher-order terms, we arrive at the
following expressions

(5.17)
J
Gulull),m0) = g () + 32 RS

Coult),m(D) = "2

n—1 1

<[1+$fiz>]1-s)2+a%<mw)3 ’

a4 — as ( u(l) )2
T+ G/ + w2 O\ me@pe)

u(l) (5.19)

Coz(u(l),m()) = ——6——u(l) T2+ m2())te

u(l)

u(l) +5n7—';2 ([ u(l)

1+ mz(U]”‘)2

- () + i ()

The constants 4; = a;/24 (j =1,...,5), where the a;
are given in Table 2 of Ref. 33. In Fig. 3, we compare
the scaled flow of the coupling constant obtained from
the one loop and the resummed ¢ functions, respectively.

An obvious alteration in the latter one is its increased
Heisenberg fixed-point value, leading, e.g., to improved
values of critical exponents compared with their one-loop
values.



49 THEORY OF ULTRASONIC ATTENUATION AT ...

0 F e ~— e
10 10™* 10® 10° 10
ls
FIG. 3. Flow of the coupling constant U(l,), for an (n =
2)-component system and space dimension d = 3. The lower
and upper curve correspond to the one-loop and resummed (
functions, respectively.

VI. SCALING LAWS OF
CRITICAL ULTRASOUND
A. Scaling behavior

The generalized scaling transformation of the ®* cor-
relation function reads

2n ~(k w 2
Z;H(;,/\uz,m,u)

—1es(p) 22 n( LI

S ™ 0)) =10,

(6.1)

P(a,) = L/ (2,9) [R(L(e0) + 5(L(e) T 1

d

Equations (6.5) and (6.6) are central results of our in-
vestigation of the scaling behavior within the extended
renormalization scheme. In the following we discuss these
results in more detail.

B. Scaling functions

First we turn to the coexistence limit, where we know
the flows of all characteristics and the leading terms of
the amplitude function. Inserting all these informations
into Eq. (6.6) we obtain for z,y — 0

P(z,y)—)f{+in_l s

oy + O(z?,y?7/?) . 6.7
N (z*,y ) (6.7)

The imaginary part of P(z,y) vanishes with a linear
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where 11 is the renormalized and dimensionless counter-
part of I1. The scale parameter [, introduced by the inte-
gration of the renormalization-group equation is related
to physical quantities by means of a matching condition

(A(’):’(l))z " (ul:(zt))z =b

which also prevents the right-hand side of the generalized
scaling law (6.1) from being infrared singular. Inversion
of (6.2) renders the flow parameter ! a function of fre-
quency and wave number [(w, k).

To reveal scaling behavior within our theory, one has
to prove that quantities as the &2 correlation function
are homogeneous functions of their arguments. Inserting
A(l) from Eq. (5.16) and using the definitions of the
correlation length and the characteristic frequency

(6.2)

1 —2/(2—e+11),

&= g im 2z/(2—e+n) ,

wch = A“Z m (6.3)

Eq. (6.2) turns into an equation for the scaled flow pa-
rameter [, with the result

1, = L(k&,w/we) - (6.4)

Thus the scaled flow parameter is a function L of the
scaling variables k¢ and w/wep, only. With the help of the
functions defined in (5.16), we are now ready to obtain
from Eq. (6.1) the scaling law for the renormalized ®2
correlation function

2n~(k w 2
z“(;’mﬁ’""“)
=__§B$2+m—a/‘6 P(k&,w/wch)a (65)

with the scaling function P(z,y) given by

T y 2
o Fe ey P EEN.UEE)|.

(6.6)

f
power of y, which will have important consequences for
the sound attenuation. In case of the real part the con-
stant R is left and we retrieve the asymptotic scaling law
of the specific heat

2n .-
A—’:n(o, 0,m?u) = = Bja + Rm™*/".

(6.8)

Next we turn to the critical point limit m — 0. Since
now l, — oo, the characteristics are in the Heisenberg
fixed-point regime. For further applications, the asymp-
totic behavior of the ®2 correlation function is of special
interest for £k = 0

2n -~ w 2 Vo, w \ ")

Z;H(O’ 2™ —’01")4';34»:«(/\#2) ,
(6.9)
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2.02 1 ) 3 ]"‘:
10 A(k,w,m) = C(—""v")_
232 c2(k, k) Ap?
2
5 2.0 2n~fk w
z 2 x[1+242 =~ —, —,m%u
B - F107 MRy (u Au? )
"> 200 E ;> (6.12)
; % depends on the nonuniversal coupling constant ;.
e 107° =
& 1.99
1. Hydrodynamic asymptotics
and coezistence singularity
O 0E 108 1o 1ot 108 10’5 * Inserting Egs. (6.5) into (6.1.1), the scaling factor of
y the coefficient of sound attenuation reads
2
FIG. 4. Scaling functions Im{P(0,y)}y*/* and & E’ —w—z,m B m~(atzv)/B g(ki,w/wch) ,
Re{P(0,y)}y*/*"zv/a for n = 2. The imaginary part is KA Au?
shown in a double logarithmic plot (right ordinate) and the
real part with linear ordinate. (6-13)
where the scaling function g(z,y) is given by
satisfying a universal power law in frequency. g(:c, y) = y_llm{P(:l:, y)} (6.14)

We now want to illustrate the afore-mentioned features
of our results. Since our treatment strongly emphasizes
the scaling properties, we offer a graphical representation
of the scaling functions. Removing the T7 asymptotics of
P(0,y) through multiplication of a factor y*/#*, we ob-
tain scaling functions for the real and imaginary part,
which become constant as y — oo. In Fig. 4, we dis-
play the case n = 2, d = 3. The scaling function of the
real part, which has been additionally multiplied by the
factor v/a displays a weak minimum and a logarithmic
divergence for small y (note the linear scale on the left
ordinate). The scaling function of the imaginary part
displays a clear maximum, the amplitude of which has
about double value compared to the critical asymptotic
amplitude. The power-law behavior for small y according
to Eq. (6.7) is also evidenced in the double logarithmic
plot of Fig. 4 (note the logarithmic scale on the right
ordinate).

C. Scaling law of sound attenuation and velocity

Our primary goal is the coefficient of critical sound
attenuation, which according to Eq. (2.19) takes the form
(without background D)

d(k/u,w/)\uz,m)
A(k,w,m)

a(k,w,k) = (6.10)

The frequency and temperature dependence is dominated
by the factor

al® )= L ml Ak
/L, Aﬂz? - A/,Lz Ad #’ A/Lz’ bl )

(6.11)

and the nominator of Eq. (6.10)

Most important is the asymptotic behavior of the scal-
ing function. Obeying Eq. (6.7) we immediately recog-
nize that ¢(0,0) is finite, confirming the hydrodynamic
w? law. This is a remarkable result because individual
cumulants as discussed in Appendix A contain divergent
contributions of the Goldstone modes, which, however,
cancel each other in the final result for II. This is in ac-
cord with low-order perturbation theory!? and with the
exact solution of the spherical model.'®

The coexistence anomalies that can be attributed to
the Goldstone modes lead to a cusp singularity of the

scaling function. At fixed ’\Tkz the asymptotic behavior
of the scaling function g becomes

1-¢/2

g(ké,w/wen) = ap — ai(n — 1) (w/wen) </

(1—e/2)e/2

—as (w/wch) , (6.15)

where ag to a; are positive constants. There is a sin-
gularity induced by the transverse modes in their direct
fluctuation contribution « (n — 1) (w/wch)lﬂ/ 2, leading
to a cusp singularity at small scaling arguments. This
is in accordance with the spherical model.'® In addition,
there is an even more singular contribution of the lon-
gitudinal fluctuations o [(w/wch)(l_‘/z)]‘/z, where the
(1 — &/2)-power law just mentioned is raised by a factor
€/2. This observation is not entirely surprising, because
the longitudinal order parameter response function (sus-
ceptibility) becomes infrared divergent in the coexistence
limit, due to its coupling to the Goldstone modes.* In
Fig. 5, the cusp singularity of g(0,y) is displayed as a
function of y only, producing a significant effect.

2. Critical region

The characteristic behavior in this region is exhibited
by an alternative scaling function
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0 2 4 8
10 %y
FIG. 5. Scaling function g(0,y) at small scaling argu-

ments y = w/wen for n = 2, exhibiting the Goldstone cusp
singularity, the top of which is marked by the arrow.

G(ké,w/wep) = (w/wen) /) g(ké, w/wen) , (6.16)

which is finite on approaching T;. Hence, the attenuation
becomes temperature independent in this limit, whereas
the frequency dependence satisfies a universal power law.
The scaling law can then be written in the equivalent
form

_ k w w 1—-a/(zv)
a(;, Eg,m) = (W) G(kf,w/wch) . (6.17)

The scaling function G(0,y) displays a characteristic
maximum whose height decreases with increasing com-
ponent number n and finally is absent in the spheri-
cal model limit.*® Since G(0,y) = y*/**Im{P(0,y)} this
scaling function is identical to one of those displayed in
Fig. 4 for n = 2 and d = 3. Since no analytic expres-

n—1

0Y(k,w) = /

| WA a=1

sions are available for the scaling functions, we list the
numerical values of the scaling function G(0,y) in Table
Iv.

The scaling behavior of the sound velocity is more in-
tricate to analyze. As can be seen from (2.15), the critical
behavior of the sound velocity is dominated by the real
part of the @2 correlation function, whose scaling law
contains a constant term as well. In Fig. 4, the ensuing
scaling function is displayed for a two-component order
parameter revealing only a slightly modulated structure.
We prefer to describe the sound velocity as a function of
temperature at fixed frequency. The sound velocity then
reveals a minimum, which occurs at a lower temperature
than the maximum attenuation at the same frequency.

For completeness we offer a representation of the scal-
ing variables employing a more familiar temperature vari-
able T = (T — T7)/T, which is frequently used in experi-
ments. The relation to our temperature variable m, the
expectation value of the order parameter, can be deduced
from definition (3.1), which is expressed by means of a
critical exponent 3, i.e., m = m(1) = Ap | 7[°. Analo-
gously, a critical exponent v is defined for the correlation
length € | 7 |~¥, and the dynamical exponent z appears
in the order parameter rate wc, | 7 |*¥. Together with
(6.3), the scaling relation 28 = v (2—&+7) is recovered.?*

3. Anisotropic coupling of sound
and order parameter modes

Whereas isotropic coupling of sound modes and or-
der parameter modes led to the investigation of the
®2correlation function, our discussion in Sec. II showed
that there is also an anisotropic coupling, which is of infe-
rior importance for longitudinal sound modes. However,
for transverse sound modes it represents the dominant
interaction, involving the lowest number of order param-
eter and sound modes. The critical behavior is comprised
in the following order-parameter correlation function

%, (k,w):%(@l(k,w) 02(~k,—w)) ,  (6.18)

where the composite order parameter fields are given in
Eq. (2.9) and

(2k; - k"/),L Z{éoa(khwl)Qon(k - klyw - ‘-'Jl) - ‘i’on(kl,wl)Qm(k - kl,w - wl)} . (619)

TABLE IV. Values of the scaling function G(0,y) for n = 2 and d = 3, for logarithmically
equidistant values of y.

y x 10F = 1.0 1.4678 2.1544 3.1623 4.6416 6.8129
k=3 0.0052 0.0075 0.0108 0.0156 0.0225 0.0325
k=2 0.0468 0.0674 0.0969 0.1392 0.1991 0.2838
k= 0.4020 0.5646 0.7835 1.0695 1.4270 1.8458
k= 2.2905 2.6979 2.9925 3.1235 3.0929 2.9483

k=-1 2.7504 2.5462 2.3622 2.2086 2.0868 1.9936
k=-2 1.9247 1.8755 1.8419 1.8204 1.8083 1.8032
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Through the same procedure, which has been applied in
case of the ® correlation function, the scaling law for
this new order parameter function can be inferred

neg [k w 2 v - k w

— - — ___B(G) = =, 2

Adz’(#’Auz’m ’u> a* w ™
+m~*"/P p, (kg,w/wd,).

(6.20)

The value of the exponent a*/v = —2 + ¢ + O(e?) is
found from low-order perturbation theory. The asymp-
totic behavior of the scaling function in the coexistence
limit can be determined for different orientations of the
wave vector. If k is oriented along the direction selected
by index v we obtain

(k7€)
k262 — (i/N)w/wen
If k stands perpendicular to the v direction (k” = 0),

we take advantage of the simplification that occurs by
setting k€ =0

P, lcLx (6.21)

(k| e) -

Im {P7 |CL} x (w/we)® ™", (kLey). (6.22)

The scaling behavior of the sound attenuation steming
from the anisotropic coupling can be investigated by a
scaling factor &., defined in an analogous way as & has
been defined in case of isotropic coupling. Here we have
to consider the different orientations of the wave vector
separately. For k 1 e, we find the following scaling law

J

(ke)®
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a (X m
a'y /14’ A;U'z’

3—e¢
w —la®+zv(2—¢ =
- (/\_u_?) m et @m/E g, (ke w/wan)

(6.23)

with an asymptotic frequency power law depending on
dimension. Observing that the scaling function

1

G~ (k£1 ‘U/wch) = W

Im{ P, (ké,w/wen) }

for (kle,) (6.24)

is finite for vanishing scaling arguments, we retrieve an
w? law for d = 3.

Next we consider the case where the wave vector k is
parallel to e,. The scaling law then reads

& (5,52

' /\#z,m) - ( w )2 m— (e +zv)/B gw(kf,w/wch) ’

Apu?
(6.25)

and the scaling function is given by

g.,(k{,w/wch) = (T/clu_d,—)lm{P‘Y(kg’w/wCh)}
for (k| ey). (6.26)

The limiting behavior in the coexistence limit can be read
off from the following expression:

Ty (k{,w/wch) - Im

where we have used that | k |= k& = k7 for this orientation
of the wave vector. Evidently, the asymptotic behavior
depends on the dispersion relation w(k) and for linear
dispersion g, (0, 0) is finite.

Finally, we give an alternative formulation of the scal-
ing law by extracting the critical asymptotics, which
takes the same form for both orientations of the wave
vector

Gy (;lj_’ /\—‘:L_z’m) - (/\Lﬂz)l—a‘/“’ Gy (ké,w/wen)
(6.28)

Concerning the anisotropic coupling, the determination
of the asymptotic behavior of the ensuing coefficient of
attenuation already is a noteworthy achievement, which
has been made possible by the utilization of the extended
renormalization scheme. However, a reliable result for
the crossover scaling functions only can be obtained from
a two-loop perturbation theory, which presently is not
available.

N R

: (6.27)

VII. APPLICATION OF THE THEORY
TO EXPERIMENTS

This section is devoted to the application of our the-
ory to ultrasonic measurements. The energy functional
(2.2) is appropriate within the plane-wave region of the
incommensurate phase. On entering the soliton regime
it might be supplemented by anharmonics higher than
quartic, which then are required for a description of the
incommensurate modulation. Note also that the incom-
mensurability parameter is temperature-independent in
our model. These facts should be kept in mind when
dealing with substances where the lock-in-transition at
T1 is quite close to the incommensurate transition. In
several substances, the incommensurate phase extends
over a wide temperature range; therefore critical sound
attenuation should be observed entirely within the plane-
wave regime, and our theory is fully applicable.

Concerning the sound attenuation, the main result of
our study, besides the determination of the asymptotic
behavior in the critical and the hydrodynamic regime,
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is the computation of the scaling functions connecting
both limits. To recover the scaling functions from ex-
perimental data aexpt on sound attenuation, one has to
remove the nonscaling function denoted as A(k,w,m) in
(6.10). The importance of taking a nonscaling part into
account was pointed out by Ferrell and Bhattacharjee,3®
who analyzed sound attenuation in superfluid helium-4.
The scaling function G(k€,w/wch) is obtained in the fol-
lowing way:

Gexpt(’“ﬁv w/wc}l) =

aexpt

(@ pr)i-aln Al w,m) 3

(7.1)
it then can be compared with our theoretical result
(6.16).

This procedure will be applied to RbyZnCly, which is
a well-studied member of the A; BX, family.? Its incom-
mensurate phase extends over more than 100 K, and the
constancy of its incommensurability parameter within
the plane-wave regime is remarkable.3¢ Therefore the
possible objections mentioned above do not apply for
this substance. We analyze experiments of Hirotsu et
al.,}%37 who measured ultrasonic velocities and attenua-
tion in RbsZnCly. One experiment3” was done at a sin-
gle frequency of 10 MHz for all three longitudinal modes
Cu (I = 1,2,3); according to this experiment, the Cs3
mode shows the strongest acoustic anomaly. In a sec-
ond experiment,'® the attenuation of the C33 mode was
measured at several frequencies. Sample preparation and
changing experimental conditions influence ultrasonic re-
sults. For the frequency w = 30 MHz, there exists an
independent measurement performed by Lemanov and
Esayan,®® revealing quantitative discrepancies between
the two experiments, which otherwise show the same
qualitative behavior. The experimental origin of this dis-
crepancy has not been commented on in Ref. 38. In view
of these uncertainties, we restrict ourselves to the mea-
surements of Hirotsu et al.1%:37

In determining the experimental scaling function, a
simplification occurs: Because the wave numbers accessi-
ble to ultrasonics are small,3® we can set the scaling vari-
able k€ = 0 to good approximation within the tempera-
ture range covered by present experiments. The scaling
function thus depends only on w/we,. After application
of the procedure implied by (7.1), we obtain the exper-
imental scaling function, depicted by the points in the
insert of Fig. 6. As a first success of our theory, we
recognize that the measurements at different frequencies
coalesce fairly well onto a single curve. At this point we
emphasize that the experimental data points have not
been normalized to their asymptotic value a(T = T7).

The determination of the experimental scaling func-
tion requires the knowledge of several quantities. Firstly,
there are the universal critical exponents, which are given
by the Heisenberg fixed point values of the previously in-
troduced ¢ functions

B =0.3485, v =0.667, z=2, a/v=—0.0025.
(7.2)

We mention that the value of the exponent 3 and the
negative but almost zero value of the specific-heat expo-
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FIG. 6. Experimental attenuation in Rb2ZnCly as func-

tion of temperature for three different frequencies o: 30 MHz,
o: 50 MHz, A: 70 MHz in comparison with the theoretical
result represented by the solid lines. The inset shows the the-
oretical scaling function G(0,y) in the incommensurate phase
for n = 2 (solid) vs the scaling variable ¥y = w/wch.

nent « are confirmed by experimental investigations.04!

Additionally, there are the nonuniversal, substance spe-
cific quantities. From the asymptotic critical amplitude
of the attenuation, the phonon order-parameter coupling
(43)2 = 0.022 and the bare sound velocity along the c
direction ¢, (c,l) = 2470 m/sec can be inferred. The re-
maining parameters are the amplitude of the order pa-
rameter A,, and the frequency scale Au?, a combination
of which yields the amplitude W = Ap?(4,,)**/? of the
order parameter frequency we, = W | 7 |*¥. Our analysis
yields the value W = 7.853 x 10! Hz. For a proper the-
oretical description, the transition temperature must be
known very accurately. In the presentation of the data
we use T = 302.65 K, which is 0.03 K higher than the
value obtained in a mean-field analysis performed in Ref.
10.

The theoretical scaling function is also indicated by
the solid curve in the inset of Fig. 6. The success of
our theory is evident from the observation that there is
coincidence with experimental data over almost four or-
ders of magnitude of the scaling variable. Complemen-
tary to this scaling analysis, in Fig. 6 we also show the
complete coefficient of sound attenuation as a function of
temperature for the above frequencies including the high-
temperature phase. The result of the theory developed
in this work is represented by the solid lines for each fre-
quency separately. Since the theoretical treatment of the
normal phase is much easier than for the incommensurate
phase, we defer it to Appendix C.

The final question concerns the observability of the
coexistence singularity (6.15) in experiments. The small-
est values of y obtained experimentally are in the range
y ~ 1072 (Fig. 6). From Fig. 5, it appears that values of
y smaller by one to two orders of magnitude are required
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to reveal the cusp singularity in RbyZnCl,.

Next we turn to the sound velocity, where for the Cs3
mode there exists a single measurement at 10 MHz (Ref.
37) for RbyZnCly. Because the nonuniversal parameters
are fixed for that substance by the attenuation data, our
theory is now challenged to give a description without
any further adjustments. In Fig. 7, the crosses show the
experimental data. The solid curve represents our the-
oretical result, and the overall coincidence is gratifying.
The minimum of the velocity actually occurs at a lower
temperature than the maximum attenuation. A shift of
0.2 ~ 0.3 K has been reported in the experiments, in
agreement with our prediction.

In Brillouin scattering experiments, the elastic proper-
ties of incommensurate systems are probed in the range of
frequencies higher than in ultrasonic experiments. From
a measurement of the shift Awp and the width I of the
Brillouin line, the sound velocity and damping can be
deduced in the following way

Awp = c(k,w,k)k and T = D(k,w,s)k? . (7.3)
In a recent Brillouin experiment on K;SeO, (Ref. 11)
longitudinal sound modes along the c direction have
been investigated at two different scattering angles, cor-
responding to two acoustic frequencies. The experimen-
tal data for the line width are shown in Fig. 8 as a
function of temperature together with the theoretical re-
sult represented by the solid lines. The acoustic anoma-
lies in K;SeO4 are quantitatively more pronounced than
in RbsZnCly, which is reflected by the larger value of
the phonon order-parameter coupling whose magnitude
is found to be (§3)?2 = 0.0475. The amplitude of the
characteristic order parameter frequency, being another
quantity of interest, is markedly higher in this A;BX4
compound. The value of W = 9.567 x 10!3 Hz is two
orders of magnitude larger than in Rb2ZnCl,.

As a final remark, we draw attention to the fact that
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FIG. 7. Experimental (symbols) and theoretical (solid
line) ultrasonic velocity at the normal-incommensurate tran-
sition of Rb2ZnCl4 for 10 MHz.
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FIG. 8. Brillouin line width for longitudinal sound modes
in K2SeO4 along the c direction as function of temperature.
Experimental data at two scattering angles [90°(0), 180°(¢)]
are shown together with the theoretical result indicated by
the solid lines.

experimental findings of acoustic properties in Rb,ZnCl,
and K3SeO, could be explained without the ad hoc in-
troduction of a gap in the energy spectrum of the pha-
son modes at zero wave number, as introduced in pre-
vious studies. First we mention the paper of Zeyher,®?
who investigated ultrasonic attenuation in incommensu-
rate solids due to order parameter fluctuations by means
of a 1/n expansion. Due to a subtle error a spurious non-
hydrodynamic w?/? law of the attenuation coefficient was
predicted, which was attributed to the Goldstone modes.
Since experiments reveal a w? law in the hydrodynamic
regime,'? the divergence of the viscosities responsible for
the nonhydrodynamic behavior is cured by hand through
introduction of a phason gap. The frequently cited*3°
w3/2 prediction may have been a source of confusion in
data analysis seeking a measurable signature of the Gold-
stone modes.

In the work of Li et al.,!! the complex elastic constants
were derived, including anharmonic fluctuation contribu-
tions, which, however, are not treated consistently within
a certain order of perturbation theory of critical phe-
nomena. In consequence, no scaling behavior was de-
rived, and infrared divergencies remain in the final result.
These are removed through inclusion of a phason gap, but
the authors stress that this an additional assumption not
predicted by their theory.

Recently Hu et al.? presented an analysis of acous-
tic attenuation in RbsZnCl, based on phenomenological
scaling arguments. In the incommensurate phase, the
fluctuation contribution is not determined by direct com-
putation as in our work, but rather it is eliminated by
a subtraction method. The procedure is very sensitive
to the choice of auxiliary parameters, as stated by the
authors. It cannot be applied to experimental data close
to the transition temperature and offers no insight into
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the special features of the fluctuation spectrum in the
incommensurate phase.

In our theory, there is no need to introduce a phason
gap in order to eliminate infrared divergences of certain
perturbative contributions. As stated at the end of Sec.
111, a nontrivial cancellation of these divergences occurs,
which is a special feature of O(n) symmetric expecta-
tion values!? such as that required for the ® correlation
function.

VIII. SUMMARY AND DISCUSSION

In this work, we have elaborated a theory of ultrasonic
attenuation and velocity at normal-incommensurate
phase transitions. The description is based on a dy-
namic model for a nonconserved, multicomponent order
parameter and a phonon variable representing longitudi-
nal and transverse sound wave propagating along high-
symmetry directions. The coupling between the two de-
grees of freedom is quadratic in the former and linear in
the latter. From this model, acoustic anomalies could
be derived. The coefficient of critical sound attenuation
and the sound velocity are related to a ®2 correlation
function, which is a purely critical dynamical quantity;
in the present theory, the critical dynamics belongs to the
universality class of the time-dependent model A. Due to
the continuous symmetry of this model, Goldstone modes
appear in the phase of broken symmetry, i.e., the phason
modes of the incommensurate phase.

The perturbation theory for the &2 correlation func-
tion is plagued by severe infrared divergences induced
by the Goldstone modes, leading to coexistence anoma-
lies. Their proper treatment is one of the principal goals
of our theory. Moreover, as it turns out, in our the-
ory the coexistence limit is exactly tractable, from which
important information can be deduced: To begin with,
the Goldstone mode divergences of perturbative contri-
butions to the ®2 correlation function exactly cancel. In
consequence, the hydrodynamic frequency dependence of
the coefficient of sound attenuation is maintained, and
an asymptotic w? law is recovered. Concerning the pres-
ence of coexistence anomalies, the corrections to asymp-
totics have to be considered. Indeed, the scaling func-
tion g(z,y) exhibits a cusp singularity at small scaling
variables, which is the manifest signature of the unique
Goldstone modes [Eq. (6.15)]. By means of an extended
renormalization scheme, it was possible for the first time
to determine this coexistence anomaly of the coefficient
of sound attenuation at a finite number n of components
of the order parameter. Our previous studies within the
spherical model led to analagous results; however, in this
case one has effectively n = oo.

The coexistence anomaly of the scaling function g(z,y)
is its outstanding feature, predicting a measurable ef-
fect. Another important property of the scaling func-
tion is that it describes the universal crossover from the
hydrodynamic to the critical limit, covering several or-
ders of magnitude of the scaling variables. In the critical
limit, the attenuation becomes independent of tempera-
ture, but it satisfies a power law in frequency. This allows
one to introduce a new scaling function G, differing from
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the previous one g only by a power law [Eq. (6.16)]; G
acquires a finite amplitude in the critical limit. Thus the
scaling law for the coefficient of sound attenuation can be
stated in two equivalent ways [Eqgs. (6.13) and (6.17)], ei-
ther by separation of the hydrodynamic asymptotics and
a scaling function g with a coexistence singularity, or by
separation of the critical point asymptotics. The scal-
ing function G in the latter case displays a characteristic
maximum.

To obtain this detailed theoretical description of criti-
cal ultrasound at incommensurate phase transitions, it is
indispensable to take order parameter fluctuations into
account. Occasionally the acoustic anomalies have been
separated into a relaxational part, as contained in the
Landau-Khalatnikov theory, and an anharmonic contri-
bution yielding fluctuation processes. Within our theory,
both mechanisms are incorporated on an equal footing;
the loop expansion avoids the need for artificially split-
ting the two processes. Moreover, consideration of fluc-
tuation effects must be performed carefully because of
the peculiarities induced by the Goldstone modes. Our
theory allows an exact treatment of the coexistence limit.
Higher-order effects appear in the crossover regime and
in the critical-point limit. Utilization of the resummed
¢ functions proved to be a successful attempt to incor-
porate the higher loop-order effects within our one-loop
calculation of amplitude functions.

Proper interpretation of experiments is possible on the
basis of our theory. According to the concept of uni-
versality of critical phenomena, a description of a large
number of substances is possible, e.g., the members of
the A;BX, family. Our goal of determining the scal-
ing functions of ultrasonic attenuation has been achieved.
Application to ultrasonic experiments of Rb,ZnCl, and
Brillouin-scattering experiments of K;SeO4 convincingly
demonstrates the success of our theory. Although the
scaling functions g and G are equivalent, it is expedi-
ent to analyze present experiments in terms of the scal-
ing function G. The crossover behavior predicted by our
theory causes a nontrivial structure of this scaling func-
tion, i.e., the characteristic maximum of G. It would
be rewarding to apply our theory to other substances
as well; however, to perform a reliable analysis, experi-
mental data with an accurate temperature resolution are
required. The ultimate goal would be to reveal the coex-
istence anomaly in experiments. Turning our attention
to the scaling function g, we must recognize that in ex-
isting experiments, the range of scaling arguments small
enough for the cusp singularity to appear has unfortu-
nately not yet been reached. To detect this Goldstone
anomaly, further experimental work will be necessary.
The influence of the Goldstone modes is present already
in the crossover regime, but confirmation of the coexis-
tence anomaly would be even more convincing.

Our theory allows application to other experimental
probes as well, e.g., the integrated intensity of Raman
scattering is related to the energy correlation function,
which also can be derived from the ®2 correlation func-
tion within the static limit. The energy correlation func-
tion and several other dynamic correlation functions of
composite order parameter fields already have been inves-
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tigated theoretically by the present authors.'®43 Finally,
based on the present work, the treatment of the coex-
istence anomalies of more complicated systems, such as
superfluid helium-4, charge-density-wave systems or lig-
uid crystals may be possible.
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The crucial point is that J |c consists only of bi-
linear terms discribing a Gaussian theory of the fields
Mo, Po, Mo, Po- As a consequence the coexistence limit of
our model is exactly soluble. For instance, from J |cL
the exact response functions are given by

0a,p - 1
my (tpo <po>k,u |CL— :\—O

(mS 7Yk o=
(A3)

The cumulants required for the phonon self-energy ac-

cording to (3.11) reduce to certain “s,,m,” expectation
values in the coexistence limit
o (L) .
Ggo,og’CL = (mg (7"07"0»'0[, )
e Cgglos= oo (mRMer g
Mo Gé}),ggk‘L = ("g §°>‘c[, ’
o ’
m3 G(1,1)|CL = (80 %)l

From J |cL these expectation values are easily obtained.
For (w2 (woio))l oL there is only a one-loop contribution
because the asymptotic functional has no vertices. Using
the definition of the fields ¢o, ¢ (A1) together with (A3)
yields the longitudinal response function

1

(s08o)lor = N %i 7"5("0*0))‘0L (A5)
Analogously we find
(w2 §°>|CL + 2 (80 (Wo®o))|cr,
= -2\/% (72 (wofo))| oy - (AS)

Inserting these expectation values into (3.11) leads to
result (3.17) of Sec. III for the 2 correlation function. In
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APPENDIX A: THEORY
WITHIN THE COEXISTENCE LIMIT

In the investigation of the coexistence limit one has to
take care of the fact that m, not only appears as mass of
the longitudinal modes (3.6), but also is part of the cou-
pling constant of third-order vertices (3.7). Employing
the substitution §, = m,6, and s, = m.0,, the dynam-
ical functional is severely reduced in its complexity after
performing the limit m, — 00.1* The true nature of the
coexistence limit is revealed by a final transformation

(A1)

(A2)

this derivation an important feature of O(n)-symmetric
functions becomes obvious. It is the cancellation of the
multiple contribution of the infrared divergent transverse
order parameter bubble appearing in the cumulants of
(A4).

From (A4) we learn that in the limit m, — oo the cu-
mulants can be determined exactly. Deriving a sufficient
set of cumulants and obeying the structure of the asymp-
totic functional (A2), the renormalization constants of
the theory can be obtained. Thus we recognize that
there is no renormalization of order parameter fields and
the relaxation comstant;* Z, |cr= Zs |cr1= Zr |cL=
Zz lcL= Zx |cr= 1. The pontrivial Z factors are iden-
tical, namely,

Zy lcL= Zm locL = Zs2 |cL= Zs3 |cL

n—1

=1+ U Agp™* (AT)

and coincide with the one-loop expressions of Sec. IV,
when taking the limit m, — oo in the latter ones. In

terms of the renormalized coupling constant the Z factors
read!?

n-—1
be

Z,;_l |CL= 1-— u. (A8)

By inserting these Z factors into the definitions of the
vertex functions one easily reassures that these are indeed
free of € poles provided the additive renormalization

, Aap”*
Alye =~ Zulor (n - 1)

(A9)
is taken into account. The { functions can be performed
in closed form. Several ones are zero (, |cL= (s |lcL=
¢r lor= C& |c= ¢ |cL= 0, and the nonvanishing ones
are
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n—1

6

u,

(A10)

Culer=Cm lcr= —Cs3 lcL= —(33 lcL=

B{)ﬂ lcL=n—-1.

With u}, = 6¢/(n—1) the fixed point values of the ¢ func-
tions are determined to be those denoted in (5.14). Note
that, while the coupling constant acquires its finite fixed-
point value, the flow-dependent counterpart of the renor-
malized temperature variable diverges as m(l) oc [=%+¢
for I =& 0. Thus we are in agreement with the assumed
(mo — o0) limit underlying the discussion of this ap-
pendix. Within the renormalized theory we retrieve an
asymptotic behavior corresponding in a self-consistent
fashion to the limiting structure of the bare theory.
Finally we remark that an interesting connection can
be established between the coexistence limit of our model
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and the spherical model (n — 00), investigated in Ref.
16. Namely, the same expectation values of transverse
and longitudinal fields appear in both limits (compare
Egs. (3.11) and (A4) of the present work to Eq. (3.20)
of Ref. 16). Indeed, if we send n — 0o in our present re-
sults we recover the analogous expression of the spherical
model, when we consider the coexistence limit (k,w —
0). Especially the cusp singularity of the scaling function
is found in both cases.

APPENDIX B: INTEGRATION
OF ORDER-PARAMETER BUBBLES

The transverse and longitudinal order-parameter bub-
bles appearing in Fig. 2 read

(B1)

(B2)

where the bare correlation propagators are given by a fluctuation-dissipation theorem. The frequency integration is
performed by residue calculus. The remaining wave vector integration can be reduced with the help of a Feynman

parametrization
s(a_l) (1 — s)(b_l)
[sA+ (1 - s)B] ™

1 T(a+b) [*
A2Bb T T(a)T'(b) Jo

(B3)

to a prototype integral, which can be performed according to the procedure of dimensional regularization?®

_ Sal(p—d/2)T'(d/2)

1

/ d%k; 1
(2)? (M? + 2kk; + K2)® 2 T'(p)

2 _ 1,2)\(P—d/2)
(M? - k%)

, (B4)

where Sy = 2'797~9/2/T'(d/2) is related to the surface of the d-dimensional unit sphere. Due to the Feynman
parametrization (B3) of our integrals we are left with a parameter integration

o _ 1 2 _ . 2\ —€/2
oy = ST [y (g St o)

—s (B5)

The expression for ;,, (k,w) is obtained by setting m, = 0 in (B5) and the parameter integral can be performed with

the help of the hypergeometric function F' (Ref. 32)

;,.. (k,w) =

2X, € 2\,

1 Ag [ Ak? —iw —e/2 € € € 1  Ak®
Ad (Aok” — 1w _EEf g £ Z_MF ) B6
< ) Fl1 2’2’ 2°2X (B6)

ok? —iw

and A4 = SaT'(¢/2)T(1 — €/2)e/2 is an abbreviation.3? The parameter integral of (B5) can be evaluated numerically

if necessary, in case of k = 0 it can be done analytically

1 ﬂ_%_o[(

I (k=0,0) = 2\, € —iw

° 72X,

2 iw \1—¢/2

)™

(B7)

APPENDIX C: HIGH-TEMPERATURE PHASE

The treatment of the theory in the high-temperature phase has to observe that there is a nonvanishing shift of the

transition temperature33

Toc(Uo,d) = ug/e S(e)

(C1)
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where obviously .. does not have an expansion in integer powers of u,. In the low-temperature phase, the variable
m, related to the expectation value of the order parameter, naturally included that shift. Above T, instead of

T-T.

To —Toe = QT Wwith 7= and a, >0 , (C2)
the correlation length is an appropriate choice £ = £(ro — 7o, Uo,d), whose asymptotic temperature dependence is
well known, i.e., { = A7V,

The subsequent treatment of the symmetric theory follows the same route as elaborated in the low-temperature
phase. The definition of Z factors is formally identical, however, as long as we are not interested in describing crossover
phenomena, these are functions of the coupling constant only. Their explicit form is well known in literature and here
we immediately give the result of a two-loop calculation of the renormalized ®2 correlation function

n k2w u k2w

= e —_ — — 2y —1. -
2n H(k,w,ﬁ,u,)\,,u) Ad)u EIq’(,LLZ’ /\Mzafﬂ) [1 (TL+ )65 q)(ﬂz, )\Hzaﬁﬂ)] (C3)

with the parameter integral of the order parameter bubble
—e/2
K w ! 2 Ak —dw K2

Is| =, = =(1- 5~ —=4? -1 . C4
(u mf“) -2 | ‘“[“*‘) o (©

Next we turn to the renormalization-group equation for the 2 correlation function, whose solution reads

on. k w ! , dl'| 2n-( k w
A—dH(;» /\—#2,5#,“) = exp [[ (—2C<1>2 [u(l)] - f)l—, A—dn<m» Wv@(”v“(”)

- [ Basfutt) exo [ [ (e —) ff’—} a (c3)

with p(l) = pl. In the range of the Heisenberg fixed point, where u(l) = u};, the asymptotic flow equations can be
easily integrated yielding A(l) = Al*~2, and

exp [/:(—2(@2 [u(l)] - s) (i—f’} ="V (C6)

with critical exponents «, z and v.
A matching condition again prevents the right-hand side of the generalized scaling law (C5) from being infrared
singular, but now includes the temperature variable as well

(m)m + ([gu(z)]_z + ;;%)2 =1. (C7)

Inserting A(l) from above and using the definition of the characteristic frequency we, = Ap? (u€)™*, inversion of (C7)
yields

, 1/4
l= (p{)'lF(ké,w/wch) with F(z,y) = [(1 + z2)2 + y4/z] . (C8)
Now we are ready to obtain from Eq. (C5) the scaling law for the renormalized &2 correlation function

2n~ (k w V - a/v
2npfk w W) = VB 4 (60 P(kEw/wa) | C9
1dn( ,A 21&“7 ) P ({ ) (k£7 / h) ( )

with the scaling function P(z,y) given by

P(z,y> - F—a/u(m,y)[égzg + % H(F—(-;”--‘75 —z-(ya:y—),F(z,y),u;,)] . (C10)

Inserting the two-loop amplitude function one obtains an explicit expression for the scaling function, which for k = 0
takes the form

PO.9) = (1+04) 7 [B3 L+ ) (1 - 2w w) | (c11)
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with the auxiliary function

1 z—2+4e 1 1-¢/2
f(y) — %(l + y4/z)( 2+ )/4[(1 _ %(1 + y4/z)(2—z)/4) _ 1:| -1
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(C12)
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