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Complementary molecular-dynamics and Metropolis Monte Carlo algorithms for the atomistic simu-

lation of crystals with imposed laboratory conditions of temperature and tensorial pressure are present-

ed. Inclusion of the nonlinear expression for the elastic energy of a crystal yields simulations that con-
serve the Gibbs potential of the crystal despite finite deformations. The molecular-dynamics equations
of motion contain an explicit expression of the virial theorem for nonlinear elastic media; the dynamical
balance of the "internal" and "external" pressures includes the elastic response of the system to the ap-

plied stress. Thus the "internal" and "external" pressures remain in dynamical equilibrium even when

the microscopic dynamics generate a phase transformation and the initial isotropy of the macroscopic
stress field is broken. Deterministic molecular-dynamics trajectories for a simple pair-potential model of
a pressure-induced martensitic transformation are presented; manifestly nonlinear behavior is observed
while satisfying the tensorial virial theorem for nonlinear elastic media. Stochastic Monte Carlo trajec-
tories yield comparable results, and independently verify the nonlinear extension of the virial theorem.

This is despite the fact that the Monte Carlo algorithm contains no explicit driving terms that insure the

theorem be satisfied.

I. INTRODUCTION

The standard definitions of enthalpy and Gibbs free en-

ergy of an elastic medium differ from those of a liquid
(which are more familiar, perhaps, to the atomistic com-
munity) in that a reference lattice is required from which
the strain is measured. The modern continuum literature
has been concerned with what happens during a phase
transition —e.g., a martensitic transition —since the
reference lattice clearly imparts a history dependence to
the system. Continuum practitioners consider issues such
as daughter phases imbedded in parent phases. The
atomistic community, on the other hand, has largely con-
cerned itself with describing phase transitions in which
the entire periodic system converts simultaneously to the
new phase. The true state of afFairs in a given system lies
somewhere between these two extremes. As the compu-
tational volume in an atomistic simulation undergoes its
transition (the daughter phase) stress develops which will
and must relax at some rate. The limit of injfnitely slow
stress relaxation (on an atomic time scale) is the subject of
the present paper. We seek to bring atomistic and con-
tinuum descriptions rigorously into line. History depen-
dence is therefore incurred by necessity. In a subsequent
paper, we describe how to effect stress relaxation on a
finite time scale, thereby relating the linear and nonlinear
methods. The former is closer to that which prevails in
phase transitions of liquids, for example, in which relaxa-
tion times are fast; but even here, a method incorporating
an albeit fast but finite time relaxation is more realistic.

When incorporated into atomistic simulations in a
rigorous manner, linear and nonlinear elastic reservoirs
interact with the atomic system in qualitatively different
manners. In both cases, the elastic reservoirs can affect
the behavior of the atoms; however, only in the nonlinear

case can the atoms affect the behavior of the reservoir as
well. It is this quality that will allow us to simulate the
change in stress imposed on the daughter phase as it
transforms, and which serves as a signature for the sym-
metry breaking inherent in such processes. The internal
and efFective external stresses on the daughter phase
remain in dynamic equilibrium even though the change
in symmetry can lift degeneracies, etc., in the tensorial
values of these quantities. If stress relaxation is allowed
over some finite time interval, then the system loses all
memory of the original reference lattice and of the sym-
metry breaking during the transition. These efFects can
have a profound infiuence on the development of the
phase transition. For example, the strain induced by the
parent crystal on the daughter phase is thought to be cru-
cial to the subsequent microscopic structure. In this pa-
per we consider only nonlinear methods in the limit of a
long relaxation time.

The use of deterministic molecular-dynamics (MD) tra-
jectories to simulate an isobaric ensemble originated with
Andersen. ' In his method the simulation volume became
a dynamical variable. The rigor of the method arises
from the demonstration that the trajectories sample the
correct distribution function, assuming ergodicity. Par-
rinello and Rahman quickly generalized this approach
to include deformations of the simulation volume; the lat-
tice vectors describing the shape of the simulation
volume became dynamical variables. First the scalar
pressure, ' and later the tensorial pressure, was con-
trolled in this manner. Shortly thereafter, Nose
demonstrated how to control temperature deterministi-
cally by using a time scale as a dynamical variable. Ho-
over simplified this approach through the introduction
of a generalized friction, that could either add to or sub-
tract from the atomic velocities. He also noted that the
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dynamics of the time scale became decoupled from those
of the remaining degrees of freedom, and wrote the equa-
tions governing the atomic motion in the physical rather
than the virtual time. We have chosen to formulate our
equations in physical time using Hoover's friction, but
with the atomic coordinates and momenta scaled by the
lattice vectors. A brief discussion of other possibilities
will be given later.

Modifications of the original Parrinello-Rahrnan dy-
namics were suggested by Ray and Rahman ' and
Ray. " Their main point was to change the definition of
the strain energy used in the derivation of Parrinello and
Rahman' to the nonlinear expression' used in continu-
um theory. We have reconsidered the incorporation of
nonlinear elastic effects into atomistic simulations and
have obtained qualitatively different results from the
linear theory of Parrinello and Rahman, and the origi-
nal nonlinear analysis of Ray and Rahman. ' A prelim-
inary report of this work has appeared we here present
the results in more detail. Algorithmic details may be
found elsewhere. '

The principle mathematical result of this work is a set
of dynamical equations governing the shape of the simu-
lation cell; the main physical result is an interpretation of
these dynamical equations in terms of the tensorial virial
theorem' as applied to nonlinear elastic media. We also
present a dynamical constraint to eliminate rigid rota-
tions of the simulation cell, that is distinct from the origi-
nal geometrical constraint of Nose and Klein. ' Further,
we guarantee that our equations of motion are formally
invariant to the arbitrary choice of lattice vectors, as dis-
cussed by Cleveland' and by Wentzcovitch. ' Finally,
we have referred the dynamics of the simulation volume
to a set of vectors used to span the volume.

By way of corroboration, we have also constructed a
Metropolis Monte Carlo (MC) algorithm' to sample the
same distribution function as that of the MD algorithm.
There is no special biasing in this MC algorithm which
insures satisfaction of the nonlinear ten sorial virial
theorem, and the algorithm is free from any dynamical
considerations that give rise to the differences between
our MD algorithm and previous linear and nonlinear'
methods. Agreement between our MD and MC results
thus confirms that the nonlinear behavior exhibited is due
to the physics as dictated by the underlying distribution
function. We have found it convenient to extend the
standard Metropolis procedure to include movements"
of atomic momenta. This is analogous to Andersen's hy-
brid MD-MC method to control temperature, but we
"move" all momenta at once, drawing uncorrelated vari-
ates directly from the correct distribution. These kinetic
effects appear in the Boltzrnann factors for deformations
of the simulation cell.

The present analysis is restricted to homogeneous de-
formations, but one must be very careful in defining pre-
cisely what this means. We do not constrain every atom
to follow (on average) the motion of the single set of lat-
tice vectors which span the simulation cell, and formally
the only periodicity imposed is that of the simulation cell
itself. This restriction to a single set of lattice vectors,
and hence to homogeneous deformations, is shared with

previous linear and nonlinear ' MD methods; how-
ever, our nonlinear analysis differs qualitatively from
these through the introduction of memory effects.
Within the homogeneous treatment of structural phase
transformations, memory effects arise from the retention
of a single reference lattice, and model the strain induced
in the parent crystal from the inclusion of islands of the
new structural phase. This physical interpretation is
made clear mathematically through satisfaction of the
nonlinear tensorial virial theorem. Stated simply, this in-
sures that the internal pressure of the simulation cell, as
dictated by the interatomic potential, balances the exter-
nal pressure, as dictated by the imposed laboratory condi-
tions and the elastic response of the crystal to these con-
ditions.

The outline of the paper is as follows: In Sec. II we es-
tablish some necessary notation and discuss differences
between the linear and nonlinear expressions for the
strain energy. In Sec. III we present the MC algorithm;
in Sec. IV we derive the MD equations of motion. Nu-
merical results of MD and MC simulations are compared
in Sec. V. A discussion follows in Sec. VI.

II. DEFORMATIONS AND STRAIN ENERGY

We employ a simple matrix notation with a summation
convention for repeated indices to describe Cartesian ten-
sors. An arbitrary crystal may be described by three lat-
tice vectors arranged in a 3 X 3 matrix where a; is the ith
Cartesian component of the jth crystalline lattice vector.
We use a;J to denote a particular element of the matrix of
crystalline lattice vectors, or the matrix itself:

az] a~2 ax3

a; = a„& a z ay3

a, & a,2 a,3

The first index of any matrix always refers to the row,
and the second index to the column. Thus the row space
of a;J is labeled by the Cartesian coordinates and the
column space of a;~ is labeled by the arbitrary set of lat-
tice vectors used to describe the crystal; the row and
column spaces of other matrices may be determined by
the context in which they appear. a;J is the dynamic lat-
tice; in MD simulations it is time dependent, while in MC
simulations it is subject to stochastic deformations. Simi-
larly, we define the matrix of reference lattice vectors as
b;-, whose elements remain constant during simulations.
The presence of the reference lattice is required by the
nonlinear theory of elasticity. For brevity we say that a;
is the dynamic lattice and b;i is the reference lattice. The
lattice vectors a;. can describe either primitive or unit
cells of an arbitrary crystal, i.e., the smallest cells capable
of spanning the crystal, or those cells possessing all the
symmetries of the crystallographic point group. To
avoid confusion, we use the term "crystalline cell" to in-

clude all possibilities. We need not consider the basis
vectors that specify atomic positions within the crystal-
1ine cell here.

In order to impose thermodynamic conditions of con-
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stant stress, we follow Ray and Rahman ' and define

scaled atomic positions and momenta by

and

r'."'=a""'n' "'n'=a" 'r'"'
i aijqj qi ij j

(n)= -17T(n)~ (n)=a -(n)
l Jl J 1 JiVJ

(2.2)

(2.3)

rQ(qn)q(m))g(q(n)q) (2.4)

where r';"' and p';"' are the positions and momenta of
atom n in the Cartesian coordinates, and q';"' and m';"' are
the corresponding scaled quantities. By a," ' we mean the
element of the ith row and jth column of the inverse of
the matrix of lattice vectors. Interatomic distances may
be computed using the scaled coordinates as

rotated frame. This transformation is seen to be
equivalent to a rigid rotation of the crystal. Another dis-
tinct transformation corresponds to making a different
choice for the lattice vectors used to describe the crystal.
This may be effected through application of the modular
transformation Mk,

a J a kMkJ (2.10)

and where the elements of a,J are the components of the
new lattice vectors. We must similarly transform the
reference lattice vectors as

where MkJ is a matrix of integers with a unit deter-
minant,

(2.11)

where the metric is b,J =b;kMkJ, (2.12)

gij aki akj (2.5)

This equation reads: "The metric equals the transpose of
the matrix of lattice vectors times the matrix of lattice
vectors. "

In the dynamical equations that follow, it will become
apparent that this scaling allows us to treat a;i as describ-
ing a macroscopic crystal. Specifically, the atoms in the
simulation will not be constrained to strictly follow defor-
mation of a," in the homogeneous fashion discussed by
Born and Huang. ~ Strictly speaking, Born and Huang
defined two types of atoms, those whose positions were
specified only by the lattice vectors, and those whose po-
sitions required additional basis vectors. The former
atoms deform homogeneously, while the latter may de-
form nonhomogeneously, thus giving rise to two distinct
terms in the strain energy, the "Born" and "relaxation"
terms. We adopt a more general point of view here
where the atoms are not explicitly constrained, and where
the elastic properties of the material are determined by
the average atomic behavior throughout the entire simu-
lation cell spanned by the vectors a,J.

The transformation connecting the reference lattice to
the dynamic lattice is the deformation gradient J;J,

etc. Note that the deformation gradient is invariant to
modular transformations. We will make our MD equa-
tions formally invariant to the choice of lattice vectors
through use of the elements of the deformation gradient
as the independent variables. This is the nonlinear exten-
sion of the original linear proposal of Wentzcovitch. '

The nonlinear expression for the strain energy is given
b 12

4„„;„=lbl(~; vy; ) = lal(o;Jp;J ), (2.13)

where the stress o; and the thermodynamic tension r;
are related by

(2.14)

This expression is invariant to both coordinate rotations
and to modular transformations. The expressions in
(2.13) are seen to represent the trace of the product of
two symmetric matrices. It is o;J, the stress that would
occur in the crystal in the absence of any deformation,
that will be specified in the simulations to follow.

Connection with the linear theory is obtained through
consideration of an infinitesimal deformation (s; ) of the
reference lattice

—1
J;J =aikbkj (2.6) J;, =(5J+s;, ) .

We consider homogeneous deformations of a; in the
macroscopic sense, i.e., the deformation gradient is as-
sumed to have translational invariance throughout. Suit-
ably invariant measures of the strain dating back to Cau-
chy are then

The linear approximation for the strain energy is then

(2.15)

where the symmetrized infinitesimal strain,

(2.16)
ri;J= —,)(Jk;Jq —5; ), (2.7)

or

PJ 2( iJ k kJ (2.8)

where 5;- is the Kronecker symbol.
Coordinate rotations may be effected through applica-

tion of the Euler rotation matrix E;- as

ij Rim mn jn (2 9)

for example. Here J'," is the deformation gradient in the

insures that rigid rotations of the crystal are eliminated
from its thermodynamic description. ' The elimination
of the energy associated with rigid rotations of a crystal
from its thermodynamical potential —or more generally,
from its constitutive equation —is in accordance with the
principle of material-frame indifference 'We will insu. re
that rigid rotations of our crystal are eliminated from the
MD simu1ation through adherence to this condition
dynamically at each instant of time.

It is seen that the linear and nonlinear expressions for
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the strain energy can yield different results when finite de-
formations of the reference lattice are considered. In ac-
cordance with the principle offading memory, ' the entire
history of a solid need not be known to describe its
current condition. Thus, in a macroscopic phenomeno-
logical sense, experience dictates that the reference lattice
relaxes to some equilibrium given sufBcient time. This
distinction gives rise to differences in the standard expres-
sions for the Gibbs potential of an elastic crystal and that
of a fiuid. ' These definitions are based on the different
idealized constitutive assumptions that the crystal
possesses a complete memory of its initial shape and a
fiuid possesses no such memory at all.

There are situations where each idealized assumption
appears valid. Consider the following possibilities: If the
entire macroscopic crystal undergoes a homogeneous
phase transformation at once, the crystal simply becomes
a new material having no memory of its initial shape.
Such conditions are often realized when a small crystal is
suspended in a fluid in a diamond anvil cell. The sur-
rounding fluid relaxes immediately upon the crystal un-
dergoing a phase transformation, and atomistic simula-
tions based on linear elastic theory seem adequate. Con-
versely, if only a small portion of the crystal deforms,
then the inclusion of the new phase in the parent crystal
experiences the strain field of the original crystal; i.e., the
new phase has some memory of its initial shape. Perfor-
mance of atomistic simulations using the nonlinear
methods presented here is then necessitated.

The inclusion of a new structural phase in the parent
crystal and the relaxation of the resulting strain has been

the subject of continuum models. The atomistic
methods to be presented here are similar in spirit but dis-
tinct from the continuum models based on what Khacha-
turyan calls the "homogeneous moduli approximation, "
as outlined in the diagram on p. 202 of Ref. 22. In partic-
ular, we do not make any suppositions concerning the
elastic moduli of the parent and daughter phases; these
are completely dictated by the interatomic potential and
geometry of each phase. What is lacking in present
methods (including that presented here} is any atomistic
description of the boundary between the two phases, and
any explicit method for relaxation of the strain induced
in the parent crystal by inclusion of the new phase.
Within the homogeneous approximation used here, any
boundary effects are modeled by the retention of a single
reference lattice and the resulting strain induced by the
phase transformation. We now consider the specific en-
semble to be sampled and a corresponding MC algo-
rithm.

III. MONTE CARLO SIMULATIONS IN THE
ISOTHERMAL-ISOSTRESS ENSEMBLE

Ray and Rahman ' used the definition of the Gibbs
potential of Thurston' to derive an expression for the
partition function appropriate for the isothermal-isostress
ensemble. Our expression differs from theirs only in the
use of the deformation gradient instead of the matrix of
lattice vectors and in the explicit expression of the con-
straints to exclude center-of-mass motion and rigid rota-
tions:

fdqf d~f dJexp [hIqI"', ~I"',J;, )
—(iU,.», /bled, ~, }]

N!Qp cM NR k~T
(3.1)

X is the number of atoms in the crystal, h~ is Planck's
constant, k~ is Boltzmann's constant, and the atomic
Hamiltonian is written as

N

h {q';"',n';"', J;~I = g (m,'"'g,i'm 'Jt/2p„)+C&Ir„j, (3.2)

where p„ is the mass of atom n 4Ir„ I .denotes the in-
teratomic potential energy, and is dependent on all the in-
teratomic distances such as (2.4}. We include the defor-
mation gradient in (3.2) to indicate the dependence of the
atomic Hamiltonian on the lattice vectors through the
metric, both explicitly in (3.2) and implicitly through
(2.4}. The notation in (3.1) implies integration over each
matrix element of the deformation gradient, and over all
the atomic coordinates and momenta. We have chosen
the elements of the deformation gradient as "coordi-
nates" to describe the deformation of the computational
cell, assuming that X„&&, such fluctuating crystalline cells
span the simulation volume as

Ncells ~
a

~ simulation (3.3)

The N„&&, cells are assumed to contain a total of N atoms.
We have also indicated the presence of dynamical con-
straints; the subscript "CM" implies that the atomistic
system is constrained to have no center-of-mass momen-
tum, and the subscript "NR" implies that the trajectories
of the deformation gradient do not sample any phase
space corresponding to a rigid rotation of the crystal. We
consider three types of transitions between states labeled
by k' and k, and having probability densities p(k) and
p(k'). The entire MC algorithm is summarized in Table
I.

(1) First let k' and k denote points in phase space cor-
responding to states in which the scaled coordinates of
one atom have been changed, leaving all the other atomic
coordinates, momenta, and the strain of the cell unal-
tered. The symmetric underlying transition probability
density matrix, A(q""'= qj"') is a uniform distribution
centered on zero, with a maximum allowed scaled atomic
displacement of 5(q),„. The trial components of the
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coordinates of atom n are then obtained by drawing a
variate from this distribution, as denoted by

y[ A(q""'= q'") }j. The cost function then takes the sim-

ple form displayed in Table I, and the Boltzmann factors
are computed as usual. Here all the interatomic distances
a8'ected by the change of the atom coordinates of atom n

must be computed to obtain the change in the total po-
tential energy due to the trial atomic translation.

(2} Next consider an infinitesimal stochastic deforma-
tion of the dynamic lattice. Again, the symmetric under-
lying transition probability density matrix is chosen to be
a uniform density A(q,'"n—rl; ), this time in strain space.
A stochastic infinitesimal strain is the 3X3 matrix of
variates drawn from this density as in Table I. The sto-
chastic infinitesimal strain is then symmetrized to remove

rotations from the thermodynamic descriptiom of the
crystal: the trial deformation gradient and corresponding
trial values for all the geometrical tensors are denoted
with primes in Table I. The resulting cost function then
includes contributions from all the possible terms, and in-
cludes e6ects of the kinetic energy of the atoms because
of the charge in the metric. Trial deformations are com-
putationally costly, as the total atomic potential (rather
than just the change in the total atomic potential) must
be computed. We therefore perform many (e.g., several
thousand} trial atomic translations between trial deforma-
tions.

(3) Typically, isothermal-isobaric MC simulations 3 are
conducted exclusively in configuration space. This
suppresses all physical fluctuations in the kinetic temper-

TABLE I. The MC algorithm.

Transition probability density matrix:

A(k'~k), p(k') ~p(k)
A(k'n —k)exp[8(k'+ —k)], )()(k') &p(k)

Cost function for k to k' transition:

N

8(k'~k) = g (n';"'g,, 'n "'/2)M, „)+4[r„j—(N„», ))b))~;,q;, )
n=1 k'

N

g (n';"'g,, 'n', "'/2p„)+4[r j n(N„», ~b)(~„—q,, )
n=1

Case 1, single atomic moves:

A( '"' '"')= ' — &t)(q g(q

q~(n) —q(n)++[ A(q'(n)~(n) ) j

8(qj'"'~J'"')=[@[r. j]a —[@[r. ]l)

Case 2, deformation of crystal:

1
(

max

e;, =y[A(q,', ~g;J.)j, e;, =2(e;,.+e,;)

J'j ~5'k+~'k ~Jkj g'j 2 ~~'j+ Jk'Jkj ~

r. =+(q';"'—q'; ')g,', (q,'"'—
q,

' ')

} &(g),„

N

8(g';, n—g;, )= g (m';")g';, 'm', ")/2)()',„)+4[r„' j
—(N„», ~(b~(~';, g'J)

n=1 k'

N

g (n'(")g, m'J(" /2p), „)+4[r„j (N» ~b~r;, g,j )
n=1

Case 3, generation of new atomic momenta:

1A(p';"') = exp[ —[pq"'pI,"'/2(((, „k» T] j2& )Mnk» T

p
( n ) y [ A (p ( n ) ) j 7g

( n ) aJ p
( n )
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ature. In principle, such fluctuations can be integrated
out of equilibrium ensemble averages, but we have found
it convenient to include such fluctuations by specifying
trial sets of "thermalized" atomic momenta every time a
stochastic deformation is attempted. We employ mass-
norrnalized Gaussian probability densities for each atom-
ic species, compute the Cartesian trial components of the
atomic momenta by drawing variates from these densi-
ties, and then compute the scaled atomic momenta using
the current (not the trial} matrix of lattice vectors. The
new scaled momenta can then be substituted into the cost
function. This is essentially the same procedure used to
initialize the atomic momenta for a MD simulation, and
is rapid because no forces must be computed. We can
generate new sets of thermalized atomic mornenta, draw-
ing variates directly from the appropriate Gaussian dis-
tributions and eliminating center-of-mass momentum,
with no need for any Markov chain per se to find the ap-
propriately distributed points in momentum space. We
can move all the atomic rnomenta at once by drawing the
variates directly from the Gaussian distributions for each
type of atom, and no such move is ever rejected.

These methods are distinct from previous MC algo-
rithrns used to simulate uniaxial loading through our in-
corporation of the nonlinear theory and appropriate in-
variance principles, and in the generality of the stresses
and geometries that can be considered. We now proceed
to derive MD equations of motion to sample the same
distribution.

IV. MOLECULAR-DYNAMICS SIMULATIONS IN THE
ISOTHERMAL-ISOSTRESS ENSEMBLE

+N„)» Q,' Q;'. js —~b~~;.g,"zw
(4.1)

Here t is the physical time and t is the virtual time; this
notation is reversed from that used by Nose. These
times are related through the time scale s by

a i a dt'=s dt .
Bt' s Bt

(4.2)

The momentum canonically conjugate to s is 0. We have
chosen not to scale this momentum with s for conveni-
ence. However, we have chosen to so scale both the
atomic momenta m',-"' and cell mornenta Q,j, i.e.,

and

()ys —()
I

(4.3)

The procedure employed here to generate MD equa-
tions of motion appropriate for the isothermal-isostress
ensemble differs only slightly from that of previous analy-
ses. ' " We begin with the extended virtual Hamiltoni-
an' '" including scaling variables

N
h'= g (m-", "'g,"'n"'"'l2IJ, „s )+&Ir„)

n=1

g2+ +(fkz T)ln(s)
2

Q,'"/s=Q, " . (4.4)

This is motivated by our interest in large and rapid defor-
mations. Nose demonstrated that degrees of freedom
having disparate time scales could be thermostated at
different temperatures; here we consider the opposite case
and employ a single time scale to describe rapid deforma-
tions. Equations (4.3) and (4.4) then imply that the defor-
mation of the crystal can occur on the same time scale as
the atomic motion. We specify the matrix elements of
the deformation gradient, J;, as the independent coordi-
nates to describe the lattice dynamics; the matrix ele-
ments of [N„&»Q'; j are then the scaled canonically conju-
gate momenta. The use of the deformation gradient in-

sures that the extended virtual Hamiltonian is formally
invariant to modular transformations, and the inclusion
of the factor X„&&, refers all strain energies, etc., to the
volume of the crystalline cell. The effective masses Q and
8' in (4.1) describe fluctuations of the temperature and
the pressure of the system, respectively. Finally, f is the
number of degrees of freedom and must be determined
after all constraints have been imposed.

Following Nose, the equations of motion in physical
time are displayed in Table II. Although noncanonical in

form, these equations rigorously conserve the extended
Hamiltonian h', (4.1). The transformation to physical
time introduces a friction into the atomic and lattice dy-
namics. Equation (T7) is the principle new result of this
analysis. Pkq is the typical internal virial pressure, and
H kq is a tensor we call the effective external pressure.

Because one can derive thermostated molecular dy-
namics using either Hamiltonian or Lagrangian formal-
isrns, and write the results in either scaled or Cartesian
coordinates, the resulting equations of motion can as-
sume a number of seemingly different forms. This is par-
ticularly true for the equations governing atomic motion
when the computational cell can deform. In particular,
Ciccotti and Ryckaert have presented MD equations
for molecular systems using Cartesian atomic coordinates
and accelerations, while Melchionna, Ciccotti, and Holi-
an extended Hoover's original work to derive linear
isothermal-isobaric equations using Cartesian atomic
coordinates and momenta (see Ref. 28 for a recent re-
view}. For comparison, apparently different atomic equa-
tions of motion which are in fact equivalent to those
presented here and earlier' are summarized in Table III;
these are all related through straightforward transforma-
tions. More recently, Kusnezov and co-workers have
presented more general equations of motion that include
two independent frictional variables. ' The resulting
atomic equations are distinct from those presented here.
As noted by Bylander and Kleinman, ' the center-of-
mass motion must be removed from the dynamics for a
meaningful application of the Nose temperature control.
While all the atomic equations of motion in Table III are
equivalent, the nonlinearity in the equations governing
the pressure in Table II are unique to our method.

Use of either Lagrangian or Hamiltonian formalisms is
a matter of taste; Ciccotti and Ryckaert discuss the ad-
vantages of the use of Cartesian coordinates in formulat-

ing constraint algorithms for the simulation of molecular
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TABLE II. The MD algorithm.

$=

g (m', ")g J
'n j'")Ip„)+ Q;JQ;, (fk—s T) (T2)

f=3N+3 (physical time averages, no center-of-mass motion, no rigid rotations)

~ (n) —i (n) (T4)

N;mAn

g (q(ll) q(m) ) g&(n)

m = ) Pnm Bum
(Ts)

~ 1J"=—0"
lJ ~ lJ (T6)

&», = (&», —ll», ) I a I
J„'—g&», (T7)

(l~(J 2 [&(pJp» +&»p Jp( ]J»j

n=1

n=1 m=1

N N;mAn l ay„ (r'"' —r' ')(r'n' —rJm')( Vgimulation )
fnm Pnm

(T9)

ll;, = —IJI '[5;,(~»,n», )+(J»; r», J,, )]

[5;;(o—»pp»p)+(J»; J»p'(rpj )] (T10)

systems, while elsewhere we discuss some advantages of
scaled coordinates for the simulation of crystalline ma-
terials. ' All of the equations in Table III have been writ-
ten in physical rather than virtual time. Nose and Evans
and Holian have discussed the computation of statisti-
cal averages using either physical time or virtual time,
and Nose has emphasized that realistic particle dynam-
ics occurs only in physical time, and that a consistent
dynamical interpretation only results from consideration
of s as a time scale and not a mass scale. ' While the dy-
namics of the time scale (Tl) does indeed decouple from
the remaining equations of motion, ' ' we have re-
tained it for completeness. In addition to the numerical
test provided by the conservation of (4.1), Branka and
Parrinello have used moments of the time scale to corn-
pute di8'erences in free energy.

The numerical value of f can be determined following
the standard interpretation of s as a time scale. ' In-
tegration of trajectories in physical time electively re-
moves one degree of freedom. Imposition of the con-
straints that there be no center-of-mass motion of the
atoms eliminates three additional degrees of freedom; im-

position of the dynamical constraint to suppress rigid ro-
tations of the crystal described below removes three more
degrees of freedom. We therefore set f=3N+3. The re-
sults in the equipartition of thermal energy over all de-
grees of freedom. The time scale can vary greatly from
unity when initializing the simulation; we reset the time
scale s to unity after such initialization. Also, we rescale
the virtual time to the physical time every time a new
condition is imposed on the simulation, e.g., every time
the pressure is increased.

We now describe the dynamical constraint to eliminate
rigid rotations of the crystal. Nose and Klein' analyzed
the lack of rotational invariance of Parrinello-Rahman
dynamics in detail, and demonstrated that the phase
space sampled by the equations of motion was too large
in that rigid rotations were included. They imposed a
geometrical constraint that required the matrix of lattice
vectors to remain symmetric. Another geometric con-
straint to restrict the matrix of lattice vectors to upper
triangular form was suggested by Ciccotti and
Ryckaert. By contrast, we present a dynamical con-
straint on the momenta associated with the cell degrees
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TABLE III. Alternative atomic equations of motion. It is
understood that the center-of-mass motion has been removed
from all equations, and that all the equations have been written
in physical time.

(1) Scaled coordinates and momenta:

~ " —I (n)
q =g 'm'"'/p„

(4.8)

The effect of this dynamical constraint is to restrict
shearing deformations of the simulation cell to include
only pure shears.

One immediate point of concern is the formal lack of
symmetry of the effective external pressure,

.(n) -(n) (n)ir =gF II, -XII; . (4.9)

(2) Scaled coordinates and accelerations:

q =F /p, „—(co+g)q

co=g '[a i+(a a) ]

(3) Cartesian coordinates and momenta:

r =p(")/p„+{aa ~)r(")

p =F —[(aa ')T+gl](p'"')

(4) Cartesian coordinates and accelerations:

r' =F /p„+[[aa ' —(ia ') ]—gljr

+ f(aa )
—f[ia ' —(aa ') ]—g'1]ia ]r'"'

The scaled force is

N m&n & QkF~(n), ~ I, ~nm
( (n) (m)

)q —q
m = ) ~nm ~~nm

and the Cartesian force is:

N;mWnF" =
m=1

—1 Bb„nm
(

(n) (n)
)

fnm Bfnm

(4.5)

The infinitesimal strain may then be identified through
the relation

J, (t +A, )=[ ;5k+E(t)] J(t), (4.6)

where e;i(t) is the infinitesimal strain as computed at time
t. The rigid rotations are eliminated through symmetri-
zation of the infinitesimal strain,

(4.7)

This is perfectly general as infinitesimal rotations corn-
mute, and implies we use the following transformed
momentum matrix:

of freedom; this allows one a wider choice of lattice vec-
tors, and imposes no symmetries other than those re-
quired by elastic theory.

To lowest order, and for a sufficiently small time step
A,, the deformation gradient can be integrated as

Typically, a lack of symmetry of a pressure or stress ma-
trix is associated with rigid rotations of the crystal' due
to unbalanced torques. At first (4.9) seems counterintui-
tive because it implies rotation of the crystal even if we
specify the stress 0.

;J =0; to be symmetric. However, the
effective external pressure must be asymmetric because
the unrestricted phase space of the deformation gradient
includes rigid rotations of the crystal. This naturally
gives rise to dynamics that include rigid rotations of the
crystal, and emphasizes the dynamical nature of the con-
straint that must be imposed. The algorithm (4.5)—(4.8)
is more involved than simply symmetrizing II,". Howev-
er, we have noted that a numerical consequence of
suppressing rigid rotations of the crystal as described
above is that the effective external pressure is indeed ren-
dered symmetric.

The dynamical balance of P; and II,", implied by Table
II, Eq. (T7), expresses the nonlinear tensorial uirial
theorem for elastic media:

(4.10)

These equations state that at equilibrium, the internal
virial pressure P;., dynamically balances the efFective
external pressure II; . In contradistinction, the internal
virial pressure P;. balances the negative of the stress o;J.
only in the limit of infinitesimal deformations,

—o;1 = lim [II,.~ ],
tj tJ

which leads to the linearized virial theorem:

(4.11)

(4.12)

Here, as the cell deforms, the external pressure remains
constant and balances the internal virial pressure dynami-
cally. There is thus no material response of the system
(i.e., there is no change in the pressure of the elastic reser-
voir upon deformation of the simulation cell} nor any
memory of the reference lattice when atomistic simula-
tions are formulated using a linear theory.

V. MD AND MC SIMULATIONS OF A
MARTENSITIC TRANSFORMATION

MD and MC simulations of a structural phase trans-
formation induced by applied hydrostatic pressure have
been performed in order to verify the nonlinear theory
presented in the previous sections. An infinite relaxation
time is imposed, such as would be the case if relaxation
occurred due to the migration of extended defects, etc.,
whose motion is slow on an atomic time scale. The
specific numerical values for cohesive energies, densities,
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etc., are of little interest; rather, we seek answers to
several qualitative questions: Is the nonlinear tensorial
virial theorem in fact obeyed by the MD simulations? Do
the MC simulations agree with the MD calculations?
How are any geometric differences in the choice of crys-
talline cells manifested in the results? Is there a signature
for the change in symmetry which occurs upon transfor-
mation? What new physics do these nonlinear simula-
tions include? Are any deficiencies in the physical
description present?

We can compare our MD and MC simulations with
previous MD simulations that used the same potential
and employed an essentially linear theory. There the
equations of motion for the cell dynamics implied that
the internal virial pressure dynamically balanced the
external pressure as in (4.12) and not the effective exter-
nal pressure as described by (4.10). A hcp final structure
was reported, whereas our results indicate that the fcc
structure is favored via the classic Bain strain. The in-
clusion of nonlinear effects —and in particular, the
dependence on history in the formulation —may thus
lead to qualitatively different results.

The interatomic interaction used in these simulations is
a smooth two-parameter pair potential whose energy
and length scales have been chosen to yield the cohesive
energy and bcc lattice constant of Fe. We refer to this
structure as the bcc ground state, although the close-
packed structures possess a lower minimum cohesive en-

ergy at higher density. In Fig. 1 are shown graphs of the
cohesive energy in eV (i.e., the potential energy per atom)
versus the dimensionless density (relative to the bcc
ground state) for the bcc, fcc, and hcp structures at zero
temperature. That the fcc and hcp structures are nearly
degenerate until a high density is reached is a conse-
quence of the potential having a short range and the
cohesive energy being dominated by the contributions
from the nearest neighbors. The fcc and hcp curves cross
the bcc curve only slightly above its minimum; the choice
of the energy scale requires that a low absolute tempera-
ture be maintained in order for the bcc ground state to
remain stable when no pressure is applied. In the
(%To, )sim"ulations that follow, the temperature of the
thermal reservoir is T=100 K. It goes without saying
that this material on the computer bears little resem-
blance to Fe in the laboratory, but it provides dramatic
numerical confirmation of the theory we have presented.

After a suitable equilibration period under zero exter-
nal pressure, each nonlinear MD and MC simulation was
subjected to a series of discrete increases in the applied
hydrostatic pressure —

tr;J =P,„„m,&5,". Having chosen
length, time, and energy to be computed in A, ps, and eV,
respectively, the pressure is given in units of eV A; we
have not converted to Pa for these model calculations.
Similarly, the internal mass unit was chosen so that the
expression (mass) X (velocity)2, where velocity has units of
A ps, yields an expression for energy in eV; the multi-
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O
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-4.50

0.400 0.600
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cfcc 8r, facy»
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FIG. 1. Cohesive energy vs relative density for bcc, fcc, and hcp crystals. The three curves show the cohesive energy in eV of the
bcc, fcc, and hcp structures as a function of the dimensionless density, relative to the bcc ground state. Compare this graph with Fig.
10 from Ref. 33; the differences in energy and length scales do not affect the basic physics of the problem. The general functional
form of the pair potential is P[r„]=e[r r]exp[(r ro) ]—, for r &ro, and P[r„—]=0, for r ro, where r=r„ /o'.
The potential and all its derivatives vanish at r =ra. This smoothness, in addition to its Bexibility and simplicity, account for the
computational convenience of the potential. The form is due to Stillinger and Vfeber (Ref. 34). The energy and length scales used in

0
the simulations reported here are ~=2.0657773 eV and o.=2.129786 A, respectively. The other dimensionless parameters are

0@=12,q= —1, and r0=2. The cutoff length used in the simulations is thus r,„,=orp 4.5 A. With these parameters, the bcc
ground state is speci5ed by the lattice constant 2.8665 A and cohesive energy —4.28 eV.
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plicative factor that converts atomic mass units (amu) to
our internal mass units (imu) is 1.0364715X10 . A
range of the eff'ective masses Q and W were examined,
and the results were found to be insensitive as long as the
masses were not so large as to decouple the atomic and
scaling degrees of freedom nor so small as to cause nu-
merical instability in the integration. The MD trajec-
tories were obtained with Q=86170684X10 eV ps,
and 8'= 6.387 376 6 X 10 imu A .

The final atomic configurations of the trajectories were
analyzed in the following manner. A computer-generated
picture of each final atomic configuration was rotated un-

til the hexagonal close-packed planes were superimposed
upon one another; the camera angle of this picture was
then rotated 90', and then further rotated about the nor-
mal to the close-packed planes until the atoms became
superimposed again. The stacking of the close packed
planes could then be observed. The ( ABCABC ABC . . l.
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pattern characteristic of the fcc structure was observed in
every simulation, rather than the ( AB ABAB. . . }pattern
of the hcp structure. The trajectories summarized in
Figs. 2-5 represent simulation volumes having different
initial shapes, a skewed cell having 1728 atoms and a cu-
bic cell having 432. The lattice vectors (b;1) and basis
vectors (P;J. ) used to describe the initial bcc lattice are
given in Table IV.

First, comparisons of the cohesive energy (a) and densi-
ty (b) for Figs. 2-5 reveal the same clear, sharp structural

transformation; the final densities and cohesive energies
are the same, as is the density at which the transforma-
tion commences. Second, comparison of the lengths of
the lattice vectors (c) and the angles between the lattice
vectors (d} for the MD and MC simulations demonstrate
that the MD and MC simulations describe the same
physical mechanisms for the macroscopic deformation of
the cell. Comparison of the geometrical variables (c) and
(d) for trajectories having different initial geometries
show distinct macroscopic pathways for the deforma-
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the nonlinear tensorial virial theorem throughout the
structural transformation in each case. The MD equa-
tions of motion guarantee this dynamical balance, but no
driving term is used in the MC simulations to insure this
result. Further, the symmetry of the effective external
pressure tensor is clearly seen in each case.

Fourth, the diagonal elements of the internal (e) and
effective external (fl pressure tensor and the off'-diagonal
elements of the internal (g) and effective external (h) pres-
sure tensor depart from hydrostatic behavior upon the
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FIG. 4. Trajectories for the
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tions. Figures 4 and 5 represent explicitly the classic
"Bain" deformation.

Third, the trajectories for the diagonal elements of the
internal (e) and effective external (fl pressure tensor and
the off'-diagonal elements of the internal (g) and effective
external (h) pressure tensor for simulations having the
same initial geometries demonstrate that the elements of
the internal virial pressure fluctuate about the corre-
sponding elements of the effective external pressure. The
MD and MC simulations therefore consistently satisfy



in there being a strain energy carried by the elastic field
at the end of the calculation, and this strain depends
upon the shape of the inclusion of new phase. (Similar
simulations not reported here demonstrate an orienta-
tional dependence as well. ) No mechanism for relaxing
this final stress is present in these simulations. Allowance
for stress relaxation on some finite time scale would result
in the eventual coalescence of the diagonal elements of
the stress tensors, and the of-diagonal elements would re-

structural phase transformation, due to the mismatch be-
tween the dynamic lattice and the (static) reference lat-
tice. This is clearly consistent with the interpretation of
the lattice vectors a;J as describing a macroscopic in-
clusion of the new phase within the parent crystal de-
scribed by b,". The mismatch between a;- and 1;. is
modeled at the continuum level; no atomistic description
of any interface between the old and new phases is
present. The mismatch of the old and new lattices results
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TABLE IV. Initial bcc lattice and basis vectors.

(100) face normal to z axis, and one atom per crystalline cell:

2.8665 0.0000 1.4333 0.000

b;1 = 0.0000 2.8665 1.4333, p,j = 0.0000
0.0000 0.0000 1.4333 0.0000

Volume of crystalline cell: ~b~ =11.77676 A

Number of atoms in simulation volume: N = 1728

(100) face normal to z axis, and two atoms per crystalline cell:

2.8665 0.0000 0.0000 0.0000 1.4333

b;J = 0.0000 2. 8665 0.0000, 13'/
= 0.0000 1.4333

0.0000 0.0000 2.8665 0.0000 1.4333

Volume of crystalline cell: ~b~ =23.553 52 A

Number of atoms in simulation volume: %=432

turn to zero. However, even rapid stress relaxation on a
laboratory time scale can sometimes be slow on an atomic
time scale, and the qualitative effects displayed here
would nonetheless be present until the system relaxed.
These transformations are not reversed by decreasing the
applied pressure ( —o; ) to zero; the crystals remain
stuck in the close-packed structure having the lower
cohesive energy when the applied stress 0.

," is reduced to
zero.

In the slow-relaxation limit, the splitting of these pres-
sure fields serves as a dramatic signature of the symmetry
breaking that accompanies a phase transformation; in
this case, the initially isotropic pressure field is rendered
anisotropic. Initially in each simulation, the diagonal ele-
ments of the internal virial and effective external pres-
sures fluctuate about the same values as ( cr,

~
} —is in-

creased; the off-diagonal elements of the pressure ma-
trices 6uctuate about zero. When the structural transfor-
mation occurs, the diagonal elements of the internal virial
and effective external pressure fields split into separate
branches while maintaining the dynamical balance (4.10),
and this splitting becomes more pronounced as ( —o;J } is
increased. Similarly, the ofF-diagonal elements sometimes
split into separate branches while dynamically maintain-
ing symmetry and (4.10). Again, however, the nonlinear
tensorial virial theorem is obeyed throughout the trans-
formation. Further, the imposition of our dynamical
constraint to remove rigid rotations from the simulation
has the numerical effect of rendering the effective exter-
nal pressure Hermitian. Because the pressure before the
transformation is isotropic, which elements of the pres-
sures follow which branches after the transformation is
purely a matter of chance; that is, we can effect a reorder-
ing of the elements of the final pressure matrices by
changing the seed on the random-number generator that
determines the initial thermal velocities in the MD algo-
rithm, or that determines the acceptance or rejection of
Metropolis moves in the MC algonthm. These
differences in ordering can appear in MD and MC trajec-
tories starting from the same initial atomic configuration;
the corresponding simulations describe the same physical

transformation to the same final atomic structure within
inclusions having different shapes and different orienta-
tions with respect to the parent crystal.

VI. DISCUSSION

Vsimulation t I. +kk +(,k'Jph +hk ) lj+ ~kpPpk I'
simulation(~kpI pk ) @strain ' (6.1)

Thus the difFerence between II; and ( —o; ) can be as-
cribed to the atomistic system having done work on the
continuum elastic reservoir and/or vice versa. We em-
phasize that this physically appealing result is guaranteed
by satisfaction of the nonlinear tensorial virial theorem.

The difFerence between II; and ( —o; ) and the split-
ting of the pressure fields arises from certain memory
effects which arise in the present analysis from the in-
clusion of the new phase in the strain field of the parent
crystal. Before the phase transformation, as
( —tTk ) =P,„„„5k is increased, the crystal is subjected
to a series of infinitesimal deformations and the isotropy
of the pressure fields is maintained. The diagonal ele-
ments of the internal virial and effective externa1 pres-
sures all Quctuate about the same values, while the off-
diagonal elements of these matrices fluctuate about zero.
When the crystal undergoes a large and rapid deforma-
tion during the structural transformation, the symmetry
of the lattice changes. However, the elastic reservoir
does not undergo a corresponding transformation; it re-
tains a memory of the crystal's initial shape. The accom-
modation of this deformed crystal within the elastic
reservoir having a complete memory of the original lat-
tice thus gives rise to the anisotropic pressures that are
manifested by the splitting of the pressure fields. This is
a physical effect that occurs when a new structural phase
is incorporated into the parent crystal in the absence of
any rapid mechanism for stress relaxation.

Furthermore, the arbitrary choice of the crystalline cell
whose vectors scale the atomic coordinates and momenta
determines the shape of the inclusion of the new phase.
While the MD equations are formally invariant to modu-
lar transformations, it must be remembered that such
transformations involve both the dynamic and reference
lattices. The simulations involve only a deformation of
the dynamic lattices and, as indicated by the results, the
strain induced in the parent crystal does depend on the

These simulations appear counterintuitive because of
the interpretation of 0.,-. as the stress that would be in the
crystal in the absence of any deformation, yet we are con-
sidering an isothermal-isostress ensemble. One is accus-
tomed to think of the stress that specifies the ensemble as
being imposed throughout the system at equilibrium.
However, the nonlinearity in the problem prevents one
from knowing the equilibrium stress before it is imposed.
Further insight into this problem can be gained from con-
sidering the V(dP)-type work required to change the
pressure in the crystal from the effective external pressure
II;J to ( cr;J ).—A simple calculation yields

~simulation( +kk kk }
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shape of the inclusion as dictated in these simulations by
the choice of initial lattice vectors. This again is ob-
served experimentally, where the effects of such strains
are believed to be important in determining the pattern of
growth of the new phase within the parent crystal. This
history dependence arises naturally within the nonlinear
framework we have presented.

One obvious extension of the present theory would be
to allow the elastic reservoir to relax to the new
configuration. This is in accordance with the principle of
fading memory; ' this simply states that one does not
have to know the entire history of a crystal from the time
of creation in order to describe its current state. The
strain present at the end of the simulations described here
must relax on some time scale, and in particular the diag-
onal elements must collapse to balance the imposed hy-
drostatic pressure eventually. These arguments pertain

to the construction of a constitutive equation for the ma-
terial, in effect an equation of state which explicitly in-
cludes dissipative effects. This implies adopting an ex-
plicitly non equilibrium treatment which will be
developed in a further publication.
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