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The trends in the elastic constants of the simple and transition elemental cubic metals are explained in
terms of a uniform electron-gas theory. Recently, the bonding energetics of elemental metals were sys-
tematized using a new uniform electron-gas model. Dubbed the “ideal metal,” this model stems from a
physical interpretation of the process of cleaving the positive background, and posits that no forces act
on the background in the uniform state. Previously, this new model was used to show that the cohesive
energies of the elemental transition metals depend primarily on the bonding valence and the average
electron density at the boundary of the unit cell. Here, we use a slight modification of the same model to
show that the elastic constants of the elemental cubic metals depend primarily on the bonding valence,
the density at the cell boundary, and the symmetry of the lattice.

I. INTRODUCTION

The last two decades have seen a great advance in our
ability to compute the energetics and ground-state struc-
tures of the elemental metals. The digital computer com-
bined with density-functional theory and the local-
density approximation now allow not only the computa-
tion of the cohesive energy of the elemental metals, but
also the very small differences in energies that determine
the particular symmetry of the ground-state lattice. Our
ability to compute such detailed properties continues to
expand rapidly and is paying great dividends. However,
as remarked by Wigner and Seitz! in their famous quote
concerning a great calculating machine, “It would be
preferable instead to have a vivid picture of the behavior
of the wave functions, a simple description of the essence
of the factors which determine cohesion and an under-
standing of the origins of variation in properties from
metal to metal.” It is the purpose of this paper to con-
tribute to the qualitative picture envisioned in the quote.
Previously it has been shown that a model based on the
electron gas explains the trends in the cohesive energies
of the elemental metals.” In this paper we show that a
simple extension of this uniform electron-gas model also
explains the trends in the elastic constants of the simple
and transition metals.

The jellium model of the electron gas has long been
used to understand the qualitative trends in the plasmon®
and electron-hole excitation spectra of elemental metals.
The calculated spectra agree semiquantitatively with ex-
periment for simple metals, and are qualitatively useful
for the transition metals. One is used to thinking that the
excitations of quantum systems are harder to predict than
ground-state properties. From this point of view, it is
surprising that the jellium model has not provided a simi-
larly simple explanation for the trends in the ground-state
energetics (e.g., the cohesive and surface energies) of the
elemental metals. Recently, this conundrum has been
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cleared up and two closely related uniform-electron-gas
models have been introduced that explain the systematics
of the ground-state energetics of the elemental metals.
These models were dubbed the ‘“ideal metal” by the
present authors,>*> and “pressure stabilized jellium” by
Perdew, Tran, and Smith.® Both models modify jellium
so zero force acts on the positive background in the uni-
form state. Trends for the ground-state energetics of the
elemental metals then follow. For example, the theory of
ideal metals reproduces, semiquantitatively, the cohesive
energies, work functions, and chemical potentials of both
the transition and simple metals.” It also explains the
trends in the surface energies and bulk moduli of the sim-
ple metals.*>

The theory of ideal metals was constructed by consid-
ering the cleavage of the electron gas and insisting that
no forces act on the positive background in the uniform
state. Cleavage is defined as splitting the positive back-
ground into pieces that can be separated or overlapped,
each piece having the original constant density. The
condition of zero force is not satisfied when the conven-
tional electron gas is cleaved. For r;<4.0, the back-
ground pieces would spontaneously move apart, since
the electrons in jellium are under pressure. Here,
4ma’r}/3=1/7, where a is the radius of the Bohr orbit
and 7 is the uniform equilibrium electron density. The
theory of ideal metals introduces an ad hoc interaction
between the electrons and the background, in addition to
the conventional electrostatic interaction. The strength
of this interaction is chosen so that the condition of zero
force is satisfied. The ad hoc interaction is described by
an additional electron potential, which is proportional to
the background density, n,(r). In the uniform state, the
background density is constant and so, consequently, is
the ad hoc interaction potential. For nonuniform (inho-
mogeneous) systems the background density varies with
position and the new potential gives rise to forces. The
total external electron potential v, (r) is given explicitly
by
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Ve D) =8(r) Fvony (1) /7, (1)

where ¢(r) is the usual electrostatic potential. The
strength of the ad hoc interaction v, is uniquely fixed by
the condition of zero forces for the uniform state, and is
given explicitly (below) in terms of the energy of bulk jel-
lium. The additional potential can be interpreted in
terms of an electrostatic model that associates a 8-
function dipole barrier of uniform strength with the
cleaved surface of the background.>*

The ideal metal has a simple, known, many-body Ham-
iltonian, since all interactions between the electrons and
the positive background are specified by the external po-
tential of Eq. (1). Consequently, many-body calculations
for adsorbate line shapes, surface plasmons, etc., can be
defined in terms of this Hamiltonian. For example, Ains-
worth and Krotscheck’ have recently used this model
Hamiltonian to estimate the surface energies of the sim-
ple metals beyond the local-density approximation, using
the Fermi hypernetted-chain method.

Several works have related the electron gas to the bulk
moduli of the metals. Morruzzi, Janak, and Williams®
computed the electronic ground-state densities of the ele-
mental metals through the 4d series using the local-
density approximation to density-functional theory.
They noted that the bulk modulus of jellium, calculated
for the electron density at the cell boundary, roughly pre-
dicted (within a factor of 2) the bulk moduli of these met-
als (except for the alkali metals). Perdew, Tran, and
Smith® estimated the bulk moduli for “pressure stabilized
jellium” as follows. They retained a uniform positive
background whose density varied as the metal was
compressed, ignored the effects of cleavage, and set the
effective charge per atom equal to one for all metals.
This procedure provided a systematic correlation with
the experimental bulk moduli. Finally, the present au-
thors presented preliminary results for the bulk moduli of
the simple metals.’ We used the ideal metal model, which
systematically incorporates cleavage, and obtained semi-
quantitative agreement with experiment.

In this paper, we use electron-gas theory to calculate
the elastic constants of the elemental cubic metals
through the 5d transition series and compare them to ex-
periment. The theory of ideal metals provides reasonable
agreement for the simple metals. It predicts the overall
size of the elastic constants, the relative ordering of the
elastic constants C;; > C, > Cy,, as well as the depen-
dence of the elastic constants on the electron density and
the bonding valence.

Elastic constants calculated from the theory of ideal
metals, as presently formulated, are too small for transi-
tion metals by up to a factor of 5. However, it is possible
to modify the theory in such a way that semiquantitative
agreement is obtained for the transition metals, as well as
the simple metals. This modification redefines the ad hoc
additional potential, so that it depends on the electron
density, as well as the background density. On the one
hand, this change has the following costs. First, the
modification to the theory of ideal metals is not forced by
any internal considerations of the model. Consequently,
it requires an undetermined parameter B (a single num-
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ber), which is chosen to provide the best overall fit be-
tween the model and experiment. Second, the new model
is defined in terms of an energy-density functional, and
the corresponding many-body Hamiltonian is unavail-
able. On the other hand, the new model has the follow-
ing benefits. The revised model provides semiquantitative
estimates for the elastic constants of the cubic elemental
metals, and provides an elementary method for under-
standing the trends in these quantities.

The structure of this paper is as follows. In Sec. II, we
do the following: Review the theory of ideal metals;
modify it for transition metals, and detail the calculation
of the elastic constants. In Sec. III, we present and dis-
cuss the results. The paper is concluded with a summary.

II. IDEAL METAL AND ELASTIC CONSTANTS

We review the theory of ideal metals and calculate the
elastic constants of cubic elemental metals. In Sec. IT A,
we first describe the many-body Hamiltonian appropriate
to the unmodified theory of ideal metals, in the Born-
Oppenheimer approximation. Next, we describe the
theory of ideal metals in terms of an energy-density func-
tional, which we modify to improve agreement for the
transition metals. In Sec. II B, we calculate the energy
change due to a specified lattice strain using second-order
perturbation theory and the electronic potential-density
response function of the uniform system. The energy
evaluation is similar to the widely used pseudopotential
perturbation method. Finally, in Sec. II C, we describe
the extraction of the elastic constants from the change in
the energy.

A. Hamiltonian, energy functional and response function

The theory of ideal metals can be understood by start-
ing with an electron gas that has a uniform electron and
background density 7, cleaving the background into
pieces with density 7, and requiring that no net forces act
on the pieces of positive background in the uniform state.
The zero-force condition is achieved by introducing an
additional ad hoc “‘electron-ion” potential, which at a
point r is proportional to the background density at that
point, and is defined in Eq. (1). The strength of the addi-
tional potential is determined by the zero-force condition,
and is given by>*

_Bejey
Vo n an - . (2)
Here, ey, is the energy per electron in uniform jellium of
density n.

The Born-Oppenheimer approximation yields the fol-
lowing many-body Hamiltonian for the unmodified
theory of ideal metals:
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Here, m and e and r; are the mass, charge and coordi-
nates of the electrons. From here on, we will use Ryd-
berg units with e2=2, #i= 1,and m =1.

The ad hoc potential v, has the following electrostatic
interpretation. We assume that cleavage not only splits
the positive background into pieces of uniform positive
charge, but also causes an ad hoc 6-function dipole bar-
rier of uniform strength at the surface. The 8-function
dipole causes a constant potential change v, for electrons
inside an isolated piece of background, and zero potential
change for electrons outside. Now, imagine overlapping
or separating the pieces of background charge. The
background density n,(r) is obtained by summing the
background density of the pieces that overlap at r. Some
consideration shows that the total potential change at a
point r due to the dipole barriers is proportional to n,(r)
in this electrostatic model. Finally, the strength of the di-
pole barrier is determined by the zero-force condition,
Eq. (2).

A density functional for the energy can also be used to
describe the theory of ideal metals in the Born-
J

nb(r)

n

Eei[ne,”b]zfd3r”e(f){"o 2 72

Here, B is an ad hoc parameter that is chosen once to give
agreement with experiment for all metals. The approxi-
mate energy functional was obtained by considering
infinitesimal strains about the uniform state, and by as-
suming that the additional interaction depended linearly
on the background density n, and nonlinearly but locally
on the electron density. We expanded the resulting func-
tion in a Taylor series and set the linear term equal to
zero so that no additional force would be generated on
the background. Equation (6) is the general result of this
procedure.

Solutions for the energy can be obtained from the
energy-density functional by following the procedure of
Kohn and Sham. The energy functional is minimized
with respect to a set of single-particle orbitals of a fixed
number of noninteracting electrons in a fixed external po-
tential. The result is the standard set of Kohn-Sham’
self-consistent equations with an effective potential that is
given by

8E, . [n,] OF
+

ei[ne’nb]
on )

n

Vel 1) = )

e e

Density-functional theory can also be used to compute
the response of the electron gas to a perturbation. The
screened potential-density linear response function can be
obtained in the random-phase approximation following
Shore et al.'° One finds

P(q)
1—(87/q*+8%E, . /6n2| +8%E; /8n2|.)

—SC (

q)= .
%(q)

(8)
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Oppenheimer approximation. Formally,
(r)p(r’)
E[n,,n,1=T,[n,]+ d’r'd’t L_P_
[n,,n,]=T,(n,1+ [ [ g
+Exc[ne]+Eei[ne’nb] . @)
Here, p=n,—n, denotes the net charge. E,  denotes the

exchange-correlation energy, while T, denotes the kinetic
energy of noninteracting electrons. The second term on
the right-hand-side denotes the classical electrostatic en-
ergy and is the only contribution to the electron-ion in-
teraction in jellium. Finally, the last term on the right-
hand side models electron-ion interactions beyond the
classical electrostatic interaction. It is given, for the
unmodified ideal metal by

E [n,,n,] ——— fd rn,(r)n,(r) . (5)
We modify the theory of ideal metals by introducing the
following, more general form for the electron-ion interac-

tion

I

Here, )?0 is the Lindhard function. In the above equation,
the functional derivative of the exchange-correlation en-
ergy can be evaluated in the local-density approximation,
and is given by

f

8’E, d?
—gn% =3 2<n exe(n, )l 9)
e n
Here, e, denotes the exchange-correlation energy of jelli-

um per unit volume. The functional derivative for the
electron-ion interaction can be evaluated from (6)

8%E, _; n, 42 1 . (n,—a)? }
e—1 =y — ne 1__62
Snez i 0 n dnez 2 2 7
2
=y B (10)
n

B. Perturbation calculation of the elastic constants

The energy-density functional, Eq. (4), provides the
basis for modeling the energy changes of metals via the
theory of ideal metals and its extension for transition
metals. We model a uniform single crystal of an elemen-
tal metal in equilibrium at zero temperature, introduce
infinitesimal uniform strains, evaluate the changes in the
energy, and infer the elastic constants. The procedure is
general. However, we restrict ourselves to fcc and bcc
lattices for simplicity.

The elastic constant calculation requires three inputs.
These are the density of the uniform state 7, the bonding
valence, and the symmetry of the lattice being modeled.
The definition of the appropriate valences (and electron
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densities) for the transition metals has been an important
output of our earlier work. In principle, we define the
electron density of the ideal metal # to be equal to the
average electron density at the boundary of the unit cell
in the elemental metal. We have used the muffin-tin,
local-density-functional calculations of Moruzzi, Janak,
and Williams® and Sigalas, Papaconstantopolous, and Ba-
calis,!! for the elemental metals to approximate the aver-
age density at the cell boundary.!? These authors report-
ed the number of interstitial electrons between the sur-
face of the muffin-tin sphere and the cell boundary of an
fcc and/or bec unit cell. We divided the number of inter-
stitial electrons by the actual interstitial volume to esti-
mate 7.

The ideal metal’s second key input is the bonding
valence, i.e., the number of electrons that each atom con-
tributes to the ideal metal. It is defined as the product of
the electron density 7 and the volume per atom at zero
temperature in the metal. The bonding valence Z; and
the density parameter r; are repeated for convenience in
Table I. Note that the bonding valences of the transition
metals range from somewhat less than 3 to nearly 5.
Bonding valences of simple metals are reasonably close to
the nominal valences, with the striking exception of nom-
inally tetravalent lead, which has a bonding valence of
only 2.35.

Figure 1 shows schematically how the electron gas is
partitioned to simulate a metal’s ground state. The posi-
tive background is divided into Wigner-Seitz cells cen-
tered about the position of each atom. The positive back-
ground is assumed to be rigid and uniform within each
cell and to be equal to the equilibrium electron density 7.
At equilibrium, the result is a uniform electron gas. If
the metal is compressed (or expanded), the rigid positive
backgrounds of the various Wigner-Seitz cells overlap (or
separate) and the background becomes inhomogeneous.
Consider an isolated Wigner-Seitz cell centered about the
origin of coordinates and define the characteristic func-
tion y(r) as follows:

y(r)=1 r&Wigner-Seitz cell

(11)
and

y(r)=0 r& Wigner-Seitz cell .
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FIG. 1. Schematic representation of the division of the elec-
tron gas into Wigner-Seitz cells. The background density is as-
sumed to remain uniform within each cell. However, as the
metal is strained the cells of positive background can be over-
lapped (with twice the background density) or separated.

In the following, we will consider background densities
that can be formed as follows:

ny(r)=n Y y(r—R;), (12)
(R;}

where {R;} denotes the set of vectors that define the
centers of the “atoms” in the uniformly strained system.
The lattice vectors used to model the metal’s uniform
ground state are denoted by {R, ],

The elastic constants are computed from second-order
changes in the energy due to infinitesimal strains. This
computation requires (1) the specification of the changes
in the background density due to the imposed strain (and
the overlap or separation of the various Wigner-Seitz
cells); (2) the change in the potential seen by the elec-
trons; (3) the change in the electrons density computed
using Y*° and (4) the resulting change in the energy. The
strains are introduced by specifying the lattice vectors
{R;}. For example, a uniform expansion or contraction
of the lattice is given by {R;} =(1+a){R;}¢,.

The change in energy to second order E ? is obtained
by comparing three states. The first state is defined to be
the uniform ideal metal at the equilibrium density; its en-
ergy is given by

TABLE 1. Bonding valences and density parameters recommended for the theory of ideal metals.
Most values are taken from Ref. (11); those in parentheses are taken from Ref. (8), while the value for

Cs was extrapolated from K and Rb.

Li Be ELEMENT

(1.09) | 1.99 BONDING VALENCE

(3.15) 1.88 DENSITY PARAMETER

Na Mg Al

(1.11) | 2.08 (2.76)

(3.80) | 2.65 (2.12)

K Ca Sc Ti \" Cr Mn Fe Co Ni Cu Zn Ga Ge
(1.21) 2.22 2.85 3.20 3.45 3.53 3.4 3.32 3.09 2.83 2.57 2.40 (2.43)

(4.57) 3.16 2.37 2.07 1.86 1.76 1.79 1.79 1.80 1.84 1.95 217 (2.35)

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn
(1.24) 2.32 3.21 3.75 4.14 4.42 4.24 4.05 3.67 3.15 2.70 2.48 (2.51)

(4.87) 3.39 2.55 2.16 1.91 1.79 1.76 1.76 1.82 1.96 217 2.4 (2.57)

Cs Ba La Hf Ta w Re Os Ir Pt Au Hg T Pb
(1.28) 2.51 3.50 3.97 4.51 4.79 4.79 4.72 4.36 3.90 3.26 2.53 2.38 2.35
(5.18) 3.42 2.58 2.08 1.86 1.75 1.70 1.69 1.74 1.84 2.03 2.46 2.68 2.75
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E(R)=Nlej(7)+v] , (13)

where N is the total number of electrons. The second
state is defined to account for the overall change in the
system’s volume (and average electron density). In this
hypothetical state the electron and background densities
are uniform with density 77’. The difference in the energy
E2} of the second state and the first state follows by
evaluating Eq. (4) for uniform densities and is

_
n

_ 2
BZ(" 7) ] (14)

E%{ =N [ejd](ﬁ')—ejeu(ﬁ)—*‘vo

The third and final state is obtained by allowing the elec-
trons to relax to the nonuniform background induced by
the overlapping Wigner- Seltz cells The change in energy
due to electron relaxation, E'2), , is calculated via pertur-
bation theory (and is called the band-structure energy in
pseudopotential perturbation theory). The difference in
energy E'? between energy state three and state one is

given by the sum of E'2), +E2).

Sng(r)dng(r')
O(F)V=E 3. 43 B B
EXm)=EQ+ [ [ d’rd*® e

1 3 3.00,5C 5 ot ’
+o [ [ rd’rxene—r)dvnsve) .

(15)
The second term on the right-hand side denotes the elec-
trostatic interaction of the positive background with it-
self. The deviation in the background charge from uni-
formity is written as

ong(r)=ng(r)—n'. (16)

The third term on the right-hand side of (15) describes
the energy change due to the rearrangement of the elec-
trons. Here, x* denotes the screened potential-density
response function of the electron gas, Eq. (8), while &v
denotes the change in the electron’s potential due to the
nonuniformity of the background. The change in the
electron’s potential is given explicitly to second order in
Sn by

= 2
sUr)=v, [1—i321”—2i)~ ](nb(r)—h")
2 i

(ny(r')—m')
- 3¢ . 7
2f d’r P (17)
The bulk moduli of metals that have a high density of
bonding electrons depends primarily on the volume con-
tribution to the energy change, which can be evaluated to
second-order by expanding Eq. (14) to second order in
n—n. Note that the first-order term is zero due to the
choice of v,. Upon expanding E 2} to second order in the
change 6V in the volume per atom V, we find
SV 9%

+7 jell
V n on 2

de; Jell

EG=N g'r

] . (19
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The change in energy due to the change in average
volume is determined from the parameter 3 and the ener-

gy per electron of the uniform electron gas e;;, which is
approximated by
.21 .91
en(n)= 2,3 _ 0916 4, (). (19)

s N

The first term on the right-hand side denotes the kinetic
energy, the second term the exchange energy and the last
term the correlation energy. We use the parametrization
of Gunnarson and Lundquist for the correlation contribu-
tion.!

The evaluation of the relaxation term is more ela-
borate. Since the kernels in (15) are translationally in-
variant, it is convenient to Fourier transform this equa-
tion with respect to r. The numerical evaluation of the
relaxation energy requires a specification of the
potential-density response function, the inhomogeneous
background charge, and the change in the electron’s po-
tential.

Our Fourier transform conventions for L, functions of
r are

f( q )= fall-space

and

fr)=

d’rexpliq-r)f(r), (20)

d*qexp(—iq-1)f(q) . @21
(27)} Yallq qexp(—igr)f(q
For a function g(r) that is periodic on a lattice with
unit-cell volume (), we define

£G)= [ d’rexpliG-rig(r) . (22)

G denotes a reciprocal-lattice vector. The inverse trans-
form for a periodic function is

g(=— S §(Glexp(—iG-1) , 23)
QG

where {G} denotes the sum over the set of reciprocal-
lattice vectors.

The Fourier transform of the background density [Eq.
(12)], which is periodic with respect to the unit cell of the
lattice, is determined by the Fourier transform of the
characteristic function [Eq. (11)] over all space,

Ag(G)=ny(G) . (24)

The analytic Fourier transforms of the characteristic
functions of fcc and bee unit cells were determined as
part of this work. The result for the bcc lattice is report-
ed in the Appendix.

The second-order relaxation energy is

N a2 4
EQ, =—25— ¥ GW(—G)
elax Q Géo Gzy
Ncells
+—— 3 (GG —G), (25)

2Q G+0

where 89(G) is obtained from the Fourier transform of
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(17) and is given by
2
’V - 1
9(G)= [—° 1-p* | =2 ~8—’§|5ﬁB(G).
i i G

(26)

This completes the formal description of the method for
evaluating the energy changes.

C. Extraction of elastic constants

The extraction of the elastic constants is straightfor-
ward once the energy changes have been calculated. The
change in energy is related to the strain €;; and the elastic
constants ¢;;, via

8E=%cijklel'jskl . (27)

We computed the energy changes for the fcc and bee cu-
bic metals using the following strains:

6§00 5§00
00|, |08 0},
000 000
5600 060
0 60, and |0 O O (28)
0056 00O

The axes of the strain tensor are aligned with the set of
(100) directions of the cubic crystal. These strains over-
determine C,;, C,, and C4, since we have three un-
knowns and four equations. The extra equation was used
to check the consistency of the calculation.

III. CALCULATED ELASTIC CONSTANTS:
THEORY OF IDEAL METALS

The elastic constants were calculated from the theory
of ideal metals, our extension of the electron gas, and are
reported and discussed in this section. We briefly discuss
the heuristics of our model in Sec. IIIA. We point out
the weakness in the unmodified theory of ideal metals
(B=0) that makes it unsuited for the calculation of
transition-metal elastic constants. We then discuss the
choice of B and relate its size to certain questions con-
cerning the stability of the lattice in our model. In Sec.
III B, we report good agreement with experiment for the
elastic constants of the simple metals for =0, and show
that calculations of the elastic constants of the transition
metals result in small unphysical values. In Sec. III C, we
report the calculated elastic constants of the simple and
transition metals for S=1. Finally, in Sec. III D, we ex-
plain the trends in the elastic constants that have been
uncovered by our calculation.

We remind the reader that it is not our intention to
provide precise results for the elastic properties of the
metals. Rather, we wish to show that simple considera-
tions of stability, combined with the electron-gas model,
lead to an understanding of the trends in the elastic prop-
erties of metals. Further, these simple considerations
lead to reasonable estimates for the velocity of sound in
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metals. We chose the name “ideal metal” for the new
model, since one of the major triumphs of the theory of
ideal gases was the prediction of the velocity of sound.

We carried out the calculations described in Sec. II us-
ing lattices of Wigner-Seitz cells with bcc and fcc symme-
try. Bulk moduli of metals that have other lattice sym-
metries were computed for a hypothetical fcc lattice.
The calculated results are compared with experimental
values taken from the tabulations in Refs. (3, 14, and 15).
The lowest-temperature elastic constants in Simmons
and Wang'* were preferred, if available; the room-
temperature elastic constants reported by Landolt and
Borstein'> were secondarily preferred. Finally, if no re-
sults were available in the other compendia, we used the
room-temperature experimental bulk moduli reported by
Kittel.?

A. Heuristics

The energy calculation is divided into two terms, the
relaxation (or band-structure) energy and the volume en-
ergy. For the moment we focus on the volume-energy
contribution to the bulk modulus, which dominates for
transition metals and can be calculated from Eq. (18).
This volume energy makes the following contribution to
the bulk modulus

2
_3a €iell

Bvol =n 3 2 (29)
n

This can be compared with the bulk modulus of jellium
(under a fixed external pressure), which, as found by
Moruzzi, Janak, and Williams,? reproduces the trends for
the bulk moduli of the polyvalent metals;

2
3 a ejell
an?

de;
+ 2_2 jell
L on

(30)

Bj =n B

n

If B=V"2, the volume contribution B, would equal the
bulk modulus predicted for jellium under external pres-
sure. However, it turns out that such a large value of 8
would lead to substantial overestimates of the bulk modu-
li of metals, since the band-structure term makes a sub-
stantial positive contribution to the bulk modulus. Con-
sequently, we expect that B will be less than V2.

Further insight into the appropriate value of B can be
obtained by considering the stability of the ideal metal.
The original motivation for constructing the theory of
ideal metals was to insure that the uniform electron gas is
mechanically stable. As a first step we required the con-
dition of equilibrium for the uniform state, i.e., zero
forces act on the positive background. This led to the
theory with S=0. However, for =0, the uniform state
is not the global ground state,”!6 and for sufficiently high
electron densities the equilibrium is unstable.!® This in-
stability is removed for B>V'3/3 as we discuss immedi-
ately below. One can roughly analyze the high-density
instability by neglecting the correlation energy of jellium.
The energy per electron in jellium is then approximated
by

2.21 0.916

ey~
jeln= 2
rg s

(31
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The volume contribution to the bulk modulus can be
roughly evaluated by substituting (31) in (29). This
volume contribution to the bulk modulus becomes nega-
tive for sufficiently high electron densities if B<V'3/3,
and it becomes negative for sufficiently low-electron den-
sities if B> V'2/3. The lower bound, V'3/3, is the more
important since the volume term makes the largest con-
tribution to the bulk moduli of the transition metals.
Probably, V'2/3 does not serve as an upper bound on
since the band-structure term dominates at low densities
and the behavior of the volume term is relatively
insignificant. Consequently, we propose that 3 should be
chosen to be greater than V'3/3, i.e., 0.577. The exact
value will be determined by fitting the calculation to the
data.

B. Elastic constants, =0

The trends for the elastic constants of the cubic simple
metals are well reproduced by the theory of ideal metals
with =0 despite the instability of the theory at high
densities. This is not too surprising since the electron
densities of the simple metals are relatively low. The cal-
culated elastic constants of the transition metals, on the
other hand, are up to five times smaller than experiment.
We associate this discrepancy with the high-density insta-
bility mentioned above, since the transition metals typi-
cally have high electron densities.

The calculated bulk moduli of the alkali metals (3=0)
are shown in Fig. 2; the bulk moduli of the other simple
metals are shown in Fig. 3. The bulk moduli of the al-
kali metals are in good quantitative agreement with ex-
periment. This is satisfying since the alkalis are often
used as examples of “free-electron” metals. The trends in
the bulk moduli of the other simple metals are surprising-
ly well reproduced, considering that the theory has no
content beyond the electron gas and the ‘‘zero-force”
condition. The largest discrepancies, roughly 50%, occur
for Al, Be, and Pb. On the average, the theory of ideal
metals (8=0) underestimates the bulk moduli slightly,
with the largest discrepancies (30-50 %) occurring for
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metals with high electron densities. We believe that the
discrepancies for Al and Be are related to the negative
volume energy contribution to the bulk modulus for
B=0, as discussed above.

The bulk moduli of the 5d transition metals were cal-
culated for $=0, and are compared with experiment in
Fig. 4. The bulk moduli increase as one crosses the
series, with the maximum value occurring for a half-filled
d shell. This trend is reproduced by the =0 calculation.
However, the calculated bulk moduli are too small by a
factor of 3-5. The elements with the largest electron
densities have the largest discrepancies, in agreement
with the negative contribution of the volume term to the
bulk modulus.

Calculated values of C,;, C,,, and C,4 for the alkali
metals are shown in Fig. 5 and compared with experi-
ment. The results are in semiquantitative agreement with
experiment. Typically, the calculated values for C,, are
somewhat (10-30 %) too large, while the values for Cg,
are somewhat (10-15 %) too small.

The elastic constants were also calculated for the
polyvalent cubic metals Sr, Ba, Ca, Al, and Pb. Experi-
mental elastic constants are not available for Sr, Ba, and
Ca. The agreement for Al and Pb is less good than for
the alkali metals. Nonetheless, reasonable results are ob-
tained from this simple model, whose only inputs are the
electron gas and the zero-force condition.

C. Transition-metal elastic constants, S=1.

The calculated bulk moduli of the elemental metals
through the S5d series are shown in Figs. 6(a)-6(d) for
B=1. This choice for B was made to obtain the best
agreement between the calculations and experiment and
because it is a round number. Since B is larger than
V'3 /3 mechanical stability at high electron density is as-
sured. Very importantly the calculated bulk moduli of
the alkali metals remain in good agreement with experi-
ment despite the several-fold changes in the calculated
bulk moduli of the transition metals. The trends in the
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FIG. 2. Calculated bulk moduli of the alkali
metals, B=0, compared with experiment.
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FIG. 3. Calculated bulk
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ment.

1‘ FIG. 4. Calculated bulk moduli of the 5d
series elements, $=0, compared with experi-
ment.
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bulk moduli of the elemental metals are well reproduced.
Note that the bulk modulus of the stiffest transition met-
als and the softest alkali metals differ by more than a fac-
tor of 200. The modified theory of ideal metals with =1
spans this entire range.

The elastic constants of the elemental cubic metals
were computed from the modified theory of ideal metals
with f=1. The calculated constants are compared with
experiment as follows: fcc metals, Figs. 7(a)-7(c), bce
transition metals, Figs. 8(a)-8(c), and alkali metals, Fig.
9. For the alkali metals, Na, K, Rb, and Cs, agreement
between theory and experiment is good for all three elas-
tic constants. C,;; is substantially overestimated for Li.
For the fcc metals the agreement for C;; and C;, is
surprisingly good with the largest errors occurring for
Al. The agreement is also good for C,, except that the
values for Rh and Ir are substantially underestimated.
For the bcc metals the agreement is quite good for C,;.
However, C,, is underestimated for all the elements. C,,
is in good agreement except for V and Nb. In sum, the
trends in the elastic constants of the elemental cubic met-
als are surprisingly well reproduced by calculations based
on a simple electron-gas picture.

D. Trends

The most important result is that the modified theory
of ideal metals reproduces the magnitude of the elastic
constants of metals ranging from cesium to tungsten and
platinum. The magnitude of the calculated elastic con-
stants invariably ordered as C;; > C, > Cy,. This order-
ing is experimentally observed for the cubic metals con-
sidered with the exception of Ir (C4 and C;, are nearly
the same size for Ir). The results of Moruzzi, Janak, and
Williams® suggested that the bulk modulus depends pri-
marily on the electron density; other factors such as the
atomic size are of secondary importance. The calculated
elastic constants also showed this trend. In Fig. 10 we
show the computed elastic constants for a series of hy-
pothetical transition metals with ,=1.85 and valences

Zy ranging from one to five, which corresponds to a
change in the radius of a factor of slightly more than 2.
As can be seen, both C;; and C,,, which together deter-
mine the bulk modulus, are only weakly dependent on the
valence and are primarily determined by r,. Cy, on the
other hand, varies by almost a factor of 2 as Z increases
from one to five.

We were particularly encouraged that reasonably good
agreement between theory and experiment was obtained
for C4, since C,, is calculated from the energy change
due to a pure shear strain. In this case, the change in en-
ergy is solely due to the overlap of Wigner-Seitz cells;
there is no volume contribution. Consequently, C4, de-
pends weakly on the value of B, which primarily controls
the volume contribution to the energy. C,, cannot be ad-
justed easily by varying 8. Wigner-Seitz cells of uniform
charge are far from describing the actual ions, and it is
encouraging, as well as puzzling, that such an idealized
model can reproduce the trends in Cyy.

IV. SUMMARY AND CONCLUSION

The trends in the elastic constants of the elemental
simple and transition metals have been reproduced from
a slightly modified version of the theory of ideal metals.
For this theory, the elastic properties of the elemental
metals depend primarily on two parameters: the average
electron density at the cell boundary and less importantly
the bonding valence.

The average elastic properties have been determined
from a uniform electron-gas model. Deviations from
these properties should be taken as a sign that something
exceptional is occurring in the bonding. The question
remains, “Why is it possible to calculate the elastic prop-
erties of the metals, especially C,,, from a uniform elec-
tron gas model?” We do not have a complete answer.
We assume that the gross features of the bonding energy
is dominated by the interstitial electrons at the cell
boundary. Calculations based on these interstitial bond-
ing electrons do describe the cohesive energies and trends
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FIG. 8. (a) Calculated C,; for
bcc transition metals, B=1,
compared with experiment. (b)
Calculated C,, for bcc transition
metals, B=1, compared with ex-
periment. (c) Calculated C,4 for
bce transition metals, B=1,
compared with experiment.



11 600 JAMES H. ROSE AND HERBERT B. SHORE 49

30 T
25 | ——#——- C11 Theory

- —S—— C11 E i t
E xperimen
(L) 20 \ ~——#— C12 Theory
g \ ———>==~ C12 Experiment
5 \\ -~—4&—— C44 Theory
Q@ 15 | \ - _ FIG. 9. Calculated C,;, Cy,,
o \ = C44 Experiment . _
8 \ IR and C,, for alkali metals, B=1,
1) compared with experiment.
5 10 -
2 |
o | .

5 .

=
| —
o L
Li Na K Ro Cs
ELEMENT

in the elastic constants of the transition metals adequate-
ly. Subtle features of the bonding, such as structural en-
ergies, are not expected to be described by the present ap-
proach.

The electron gas is used to simulate metals for a variety
of important calculations. The ideal metal is no more
complicated than the jellium model. However, the ideal
metal provides a substantially and qualitatively improved
picture of the basic energetics of the inhomogeneous elec-
tron gas. Consequently, we believe that the ideal metal
should be preferred to jellium in all calculations.
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APPENDIX

The Fourier transform of the background density is
determined from the Fourier transform of the charac-
teristic function y(r), which is defined to be unity inside a
Wigner-Seitz cell centered at the origin of coordinates
and zero otherwise. We define

v@=[  d’rexpligriy(r). (A1)

all-space

For the bcc lattice, with conventional cube edge a and
q=(qx,qy,qz) we find

FIG. 10. Shows the depen-
dence of the elastic constants on

—————————————————————— the valence of a hypothetical bcc

element with r,=1.85 and bond-
ing valences ranging from one to
five.
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7(q
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(g2—q})(gi—gq)

(A2)

In the evaluation of the lattice sums it sometimes happens that two of the components of a reciprocal-lattice vector are
the same (G, =G,) and/or are zero. In these cases, the evaluation of (A2) is complicated by a vanishing denominator.
Explicit expressions for the Fourier transform can be obtained as limits of (A2).
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