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Interface transfer coe5cient in second-phase-growth models
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In order to derive an atomistic expression for the transfer coefficient across an interface, we extend the
Gibbs dividing-surface scheme to kinetic problems. In equilibrium thermodynamics, this scheme con-
sists in replacing the continuous concentration profile between two coherent phases by a stepped profile
with a discontinuity at the dividing surface: the Gibbsian excess free energy (interfacial energy) is the
difference between the free energies associated with the true continuous profile and with the artificial

stepped one. Close to equilibrium, the diffusion flux along the actual continuous concentration profile is

equal to minus the gradient of the chemical potential multiplied by a mobility: the latter is a continuous
function of the local equilibrium concentration, which can be evaluated in a mean-field approximation.
Gibbs dividing-surface scheme introduces a transfer coefficient across the (artificial) dividing interface.
Equating the exact expression of the fiux along the actual concentration profile to that predicted in

Gibbs' scheme for the same difference in chemical potential across the system yields the expression for
the transfer coefficient. In the simplest mean-field description of chemical diffusion, the transfer
coefficient is found to be negatiue. The reason for that is that the mobility increases as the concentration

goes to ~, at least in the simplest case. Assuming the concentration to be uniform up to the interface un-

derestimates the flux and must be compensated by a negative "contact resistance" between the two

phases. Neglecting the transfer coefficient results in underestimating the flux: the error can be large for
small samples, in particular in the case of the nucleation and growth of a phase with low diffusivity, in-

side a high-diffusivity matrix. The range of validity of the model is shown to coincide with that of linear

diffusion theory. In this range, the transfer coefficient at the interface does not depend on the velocity of
the interface.

I. INTRODUCTION

In the classical theory of second-phase growth (a pre-
cipitate in a matrix, ' intermetallic layers between two
solid solutions, ) it is usually claimed that solute atoms
first diffuse through the Inatrix toward the precipitate
and then cross the precipitate-matrix interface. The
solute flux arriving by diffusion is equal to a mobility M
multiplied by chemical potential gradient (J=—MVa),
while the flux crossing the interface is proportional to the
difference in chemical potential between the two phases
(J=—@ha): the proportionality factor E is the interfa-
cial transfer coefficient. Under steady-state conditions,
both fluxes must be equal. The flux, and as a conse-
quence the growth rate of the second phase, is either
diffusion controlled or interface-reaction controlled.

As discussed in Ref. 4, the mobility coefficient M can
be given by an atomistically based expression fully com-
patible with a mean-field description of the equilibrium
thermodynamics of the alloy. This expression was de-
rived explicitly in the simplest approximation, the kinetic
analog of the Bragg-Williams approximation of the equi-
librium thermodynamics of the alloy. To our
knowledge, no such model exists for the solute transfer
coefficient across the interface. It is the purpose of this
work to propose such a model in the simple but inspiring
case of the coherent interface in inhomogeneous binary

soluti. ons. The model rests on the kinetic analog of a
technique used by Cahn and Hilliard to derive the Gibbs
interfacial free energy from the thermodynamics of an in-
homogeneous coherent system.

In the following, we first recall the model introduced in
Ref. 4 and deduce an expression for the interfacial
transfer coefficient. We then make typical quantitative
estimates of the latter and discuss some important conse-
quences. Finally, we use the kinetic equations introduced
in this paper to address the problem of moving interfaces.

II. THE MODEL

In their illuminating treatment of interfacial free ener-

gy in a coherent two-phase system, Cahn and Hilliard
first computed the free energy of the continuous equilibri-
um concentration profile in the two-phase field in the
simplest mean-field model, the Bragg-Williams approxi-
mation. They then approximate this profile by a stepped
one: the free energy of the idealized profile dimers from
that of the equilibrium profile by a quantity which, ac-
cording to Gibbs' definition, is the interfacial excess free
energy.

In Ref. 4, one of us proposed a mean-field description
of diffusion fully compatible with Cahn's and Hilliard's
thermodynamics of inhomogeneous systems. It is as-
sumed that diffusion proceeds by direct exchange be-
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tween neighboring atoms, and that the activation energy
for the process is a saddle-point energy plus the amount
of energy required to extract the pair of exchanging
atoms from their environment. The latter energy is eval-
uated by counting the broken bounds in the simplest
mean-field approximation, i.e., taking into account only
the concentrations on neighboring sites, and not higher-
order correlators (such as pair correlation functions, etc.).
It is found that, close to equilibrium (i.e., when the chemi-
cal potential, as defined in Ref. 6, does not strongly
depart from a constant along the concentration profile),
the diffusion flux J„„+1between planes n and n+1 is
given by

~f/', n+r Mn(aif+r an )

where a„ is the chemical potential in plane n, divided by
ks T (a„=PP„with P= 1 /krr T):
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In Eqs. (2a}—(2c), Z is the total number of nearest neigh-
bors (e.g., 12 in the fcc structure), z the number of bonds
between one site in plane n and sites in plane n+1 (e.g.,
z =3 for diffusion in the ( 111) direction in the fcc struc-
ture), c„ is the 8 atom concentration in plane n,
c;=czz —c;;, where c;J is the contribution of a pair of
atoms of type i and j to the internal energy of the system,
or is the ordering energy: ro=s„s —(s„„+errs)/2, v is
an attempt frequency, and E is the saddle-point energy
for the exchange of atoms.

Two points must be stressed:
(i) All terms entering the mobility M„are given their

equilibrium urrlue: a is the value of the chemical potential
along the equilibrium concentration profile (a=con-
stant}, and c„ is the concentration in plane n of the equi-
librium concentration profile. As a consequence, Eq. (1)
is a diffusion equation linear in the gradient of the actual
chemical potential, although the mobility M„ includes
concentrations at two neighboring points: indeed the
concentrations entering the mobility are equilibrium con-
centrations, the gradient of which is not a driving force
for diffusion (there is no diffusion along the equilibrium
profile, despite its nonuniformity at the transition region
between the two coexisting phases).

(ii) The kinetic problem involves two terms (sz —Es)
and (e„+as =2'), while equilibrium problems only in-
volve the latter.

At equilibrium, J„„+,=0 for any n; this implies
a„+r=a„=a, which, according to Eq. (2a) is nothing
but the condition of minimum free energy for the concen-
tration profile as found by Cahn and Hilliard. Figure

1(a} shows such a profile computed by solving Eq. (2a)
close to the critical temperature T, ( T=0.9T, ).

If the profile is slightly perturbed, an interdiffusion Aux
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FIG. 1. Equilibrium concentration profile at 0.9T, (a) and
the corresponding Gibbs dividing-surface scheme (b). The con-
centration is the dimensionless 8 atomic fraction.

will develop according to Eq. (1). Provided we allow for
exchange of matter at both ends of the profile, we can
manage to maintain a flux along a static concentration
profile very close to the unperturbed equilibrium concen-
tration profile. Indeed Eq. (1) can be rewritten

an+1 (3)

+—N+1
k = —N+1

Mk
' (4)

and the difference in chemical potential between the two
ends is

N —1 N —1

(a„+] a„)=a+~ a —N+r= J g M„
—N+1 —N+1

In other words, maintaining a small chemical-potential

Under steady-state conditions, J„„+1is independent of n

(no solute accumulation) and is written J. Let the system
be large enough compared to the width of the interface so
that, at equilibrium, the concentrations have reached
their asymptotic values at both ends of the sample. Then,
for a total 2N planes (labeled from N+1 to N), o—ne
may impose the chemical potential a N on the left end,
and the steady flux J: the chemical-potential distribution

[a„]which insures the imposed steady fiux is

n —1
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difference 5m=a+~ —a ~+& between the two ends of
the sample generates a flux J:

and the flux is given by

J=[vz exp( —PE )][(1—6 )/4][5a/(N +Np —1)] .
J= —E6o. , (6)

N —1

—%+1

The concentration-dependent prefactor in k is then

(7a)

&o '= X Mo.'.
—%+1

(7b)

In the following, it should be remembered that k and
M„are deduced from Eo and Mo„by a multiplicative
factor which only depends on the temperature and the
(uniform) chemical potential a. Notice that M corre-
sponds to a conductivity, M ' (and k ') to a resistivity,
and 5a to a difference in potential in a homogeneous
electrical-current problem.

We now idealize the equilibrium smooth concentration
profile using the Gibbs scheme, i.e., assuming that the
two contiguous phases have a uniform concentration up
to a sharp dividing interface where the concentration ex-
hibits a discontinuity [Fig. 1(b)]: the 8-poor phase
(planes with a negative label) has a concentration
(1—6)/2, and the B-rich phase (positive coordinates) has
a concentration (1+6)/2. 5 is the width of the two-
phase field at the chosen temperature. In the Bragg-
Williams approximation we use here, b is a solution of
the implicit equation

h=tanh(ET, /T),

where T, is the critical temperature: T, /T=PoiZ/2.
Notice that the interface has been arbitrarily located be-
tween planes 0 and 1. The consequence of this particular
choice will be discussed later.

For the abrupt interface depicted in Fig. 1(b), it is easi-
ly found from Eq. (7b) that the overall resistivity Ko [Eq.
(6)] is given by

Ko '=Ko '+K(~'+4/(I —b, )

with Eo ' and Ez&' given by

K '=4N /[(1 —b, ) (I+5) " ],
K()~' =4'/[( I+6 ) (1—b )

" ],

(9a)

(9b)

(9c)

K' '=[vz exp( PE )] '4(X +N& 1)/(1—b, ), — —

(10)

where X and X& are the number of planes in the 8-poor
and 8-rich phases, respectively. In Eq. (9a), the first term
(Ko ') corresponds to the resistance of the left-hand
phase, the second one (Kz&') to that of the right-hand
phase, and the third term to the contact resistance across
the abrupt interface, as depicted in Fig 1(b). Th. is last
term is obtained from Eq. (2c) with n =0, i.e.,
co=(1—6)/2 and c, =(1+6,)/2.

In the particular case where c,„=Es(s„„=ass but
s~sAO), Eqs. (9) get a very simple meaning:

The above flux is the flux one would find across a single
phase, X +Np planes thick, with a chemical-potential
gradient 5a/(N +N& 1), a—nd an average concentration
(1+b, )/2 [or equivalently (1—b, )/2]. Obviously, k' ' is
not a good estimate of the total resistance of the sample.

The value of Eo for the actual concentration profile
[Fig. 1(a)] is given by

(12)

As a consequence, the value which must be attributed to
the contact resistance Ko; in Gibbs scheme [Fig. 1(b)] if
we want the same flux in both schemes [Figs. 1(a) and
1(b)] is such that

Ko; =Ko ' —[Ko '+K()p'],

Ko; =So ' —[Ko ' —4/(1 —6 )] . (13b)

Equation (13a) together with Eqs. (9b) and (9c) yield the
value of the transfer coefficient Eo; across the coherent
interface, at every temperature, for the kinetic model we
introduce in Ref. 4: this model is the kinetic counterpart
of the regular-solution model in equilibrium thermo-
dynamics.

Before turning to quantitative estimates in a specific
diffusion problem, we notice the following relations
which are obvious from the electrical analog of the
diffusion problem. The flux across the two-phase sample
in the Gibbs scheme is given by

J= (K. '+K —+K,--')-'5a . (14)

The mobility prefactors in the left-hand and right-hand
phases are respectively

M =
—,'[(1—5) (I+6) " ], (15a)

Mop= —,'[(I+6, ) (1—b. )
"

] . (15b)

The chemical-potential drops across the left-hand and the
right-hand phases and across the interface are, respec-
tively,

5a =5aXE/K, 5a&=5 XaE/K~, 5a;=5aXE/K; .

(16)

The above expressions will be used later in this work.

III. QUANTITATIVE KSTIMATKS

As an example, we study the diffusion across a one-
dimensional bcc coherent two-phase alloy in the [100]
direction. The prefactor of the interfacial transfer
coefficient Ko; is given by Eq. (13a); it can be computed
knowing ko for the actual equilibrium concentration
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profile [Eq. (12)]. The equilibrium concentration profile
is a function of the reduced temperature only, while Eo is
a function of both the reduced temperature and the ratio
e„/ss =r.

For computing ko one must perform the summation of
the right-hand side of Eq. (12) along the equilibrium con-
centration profile, linking phase a to phase P [Fig. (1}].
Provided the total number of lattice planes (2N) is large
enough, the concentration starts on the left end with a
value c =(1—6)/2 equal to the solubility limit of B in
the a phase, stays very close to this value up to the inter-
facial region, then increases smoothly up to a value close
to c&=(1+6)/2, the solubility limit of B in the P phase;

c& is reached at the right end of the sample. The transi-
tion region extends over a thickness of 7 planes:
V'= 6/(c I

—co ), since (c I
—co ) is the maximum value of

the concentration gradient at the interface. The interface
is one plane thick at 0 K and diverges with an exponent—

—,
' at the critical temperature: 7 ~ (1—T/T, )

Far from the interfacial region, the concentration is al-
most constant, so that the prefactor of the mobility can
be written as

Mo=[(c' ~(1—c}I'], (17}

with c =c or c&, respectively, on the left or on the right
side, and

p=1/(1+r)=e&/2ai .

The variation of MII in a homogeneous phase as a func-
tion of the concentration c is shown in Fig. 2 for three
distinct values of s„/ss (r =3, 1, —5). It is easily shown
(see the Appendix) that Mo is maximum in the phase
which is richer in the component with less cohesion. As
an example, for r & 1, the maximum in Mo occurs in the
B-rich phase: co&0 and I &1 imply c» &cz~ &0, i.e.,
pure B is less stable than pure A (the less negative the en-

ergy per bond, the less stable the constituent).
Along the equilibrium concentration profile linking

phase a to phase P [Fig. (1)], the mobility prefactor is a
two-point function [Eq. (2c)] which significantly differs
from Eq. (17) only in the transition region between phases
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a and P. Suinming the right-hand side of Eq. (12}and ap-
plying Eq. (13a) yields the transfer coefficient across the
Gibbs dividing surface Eo, This depends a priori on the
choice we make for the location of Gibbs dividing sur-
face. For the sake of simplicity, we chose the dividing
surface with zero excess concentration, i.e., between
planes 0 and 1 in Fig. 1 [at this interface,
(c„+c„+I)/2=—,']. In view of the strong temperature
dependence of Eo;, it is useful to scale it to the transfer
coefficient across an abrupt interface, (1—5 )/4, times
the thickness of the interface 'T. Typical results are
shown in Fig. 3.

The most striking feature is that the transfer coeScient
is found to be negative in all cases. Its absolute value in-
creases with T/T, and with p, when p& —,'. The case

p) —,
' is symmetrical since changing p into (1—p) is

equivalent to changing c into (1—c ), as seen in Eq. (17).
For a given value of p, Eo; goes asymptotically to infinity
as T/T, approaches 1. This is consistent with the analyt-
ical approximation Eo; ~(1—T/T, )

' ~'7, obtained
by linearization of the concentration profile around the
interface.

The fact that Eo, is negative does not violate the
second principle of thermodynamics: indeed, Eo; is a
contact resistivity introduced as a correcting term in an
approximation of the actual concentration profile across
the two-phase system. That this correction must be nega-
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FIG. 2. Dimensionless mobility prefactor in homogeneous
phase [Eq. (17)] as a function of the (dimensionless) concentra-
tion for three distinct values of r =c„/c&. For r = —5, M0 goes
to in6nity as c reaches 1.

FIG. 3. (a) Dimensionless scaled interface transfer coefBcient
ICO; X4/[(1 —I} )V] as a function of the reduced temperature
for three values of r, in linear scale. (b) Decimal logarithm of
K0;.
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tive can be easily understood in the particular case where
c.„=c.z. As seen in Fig. 2, the mobility is, in this case, a
maximum at c =

—,': the mobility increases toward the in-

terface. The region near the interface thus shows a lower
resistivity than the homogeneous phases. Gibbs' scheme
therefore underestimates the mobility close to the divid-
ing surface. This error must be compensated by a nega-
tive contact resistance. This conclusion depends neither
on the particular lattice nor on the particular plane orien-
tation, as long as nearest-neighbor atoms are located in
contiguous planes. In fact, lattice and plane geometrical
characteristics then reduce to the paranmter z alone, as a
multiplying factor, in the mobility function [cf. Eq. (3a)],
thus not modifying the fact that the mobility increases to-
ward the interface.

IV. CONSEQUENCES

In the metallurgical literature dealing with precipitate
coarsening and layered-compound growth, the transfer
coefficient across the interface is usually neglected (the
diffusion-limited case). This amounts to neglecting Ko;
in the expression Ep +Epp +Ko when computing the
total resistance of the real system. Under a given
chemical-potential difference between the two ends of the
sample, the real system experiences a larger flux than the
idealized one. The relative error in the flux so computed,
5J/J, is

transfer coefficient results in underestimating the flux,
leading to an error of 5%, 20%%uo, or more, depending on
the particular geometry of the sample.

As a further remark, we notice that the chemical po-
tential on each plane, in the presence of a constant flux,
can be calculated from Eq. (4), since the mobility along
the actual profile is known. The concentration profile for
an imposed 5a can thus be deduced using Eq. (2a). Simi-

larly, one would like to draw the concentration profile
corresponding to Gibbs' scheme. As the mobilities are
constant in each phase, the potential profile is linear and
readily deduced from Eqs. (16). The transfer coefficient
introduces a discontinuity at the interface, positive or
negative according to the sign of Ko;. For small depar-
ture from equilibrium, the concentration profile deduced
from Eq. (2a) will generally be linear and reach at the in-

terface a value different from the solubility limit in the
phase. In the alloy model studied here, the chemical po-
tential a(c ) is an increasing function of c. As Kc; is nega-
tive, the concentrations at the interface are pulled into
the interior of the miscibility gap, leading to a scheme at
variance with what is usually assumed (Fig. 4).

Until now, we have written the flux across the interface
in terms of the chemical-potential difference

(J;= —K;5a; ): it is more common to write it as a func-

tion of concentration departure from equilibrium. Near
equilibrium, the chemical potential in a homogeneous
system is given by

5J/J=K() j(Kc '+K()p' ), (19) a(c )=a+ (c„—c~ )(da/dc ) (21)

where 5J is the difference between the true J and the ap-
proxirnated J; 5J/J is a function of T/T„of s„/ez, and
of the geometry of the sample:

where y means the a or the P phase and the overbar indi-

cates a value at equilibrium. The drop of the chemical
potential at the interface is then

Eo, '

5J/J =
2N (N /2N)Mc '+(Nfi/2N)Mqp'

(20)

TABLE I. Relative error in the Aux 5J/J {%)when the in-

terface resistance is neglected, at three typical reduced tempera-
tures and for three distinct values of the factor r =e„/e~ [Eq.
(20)]. The computation was performed with 100 planes
{N =NB =50).

5J/J is inversely proportional to the total number of
planes 2N and depends on the proportions of a and P
phases.

In the case where the two phases are in equal propor-
tion, we found that for a total of 100 planes, 5J/J varies
from —2% to —5% for various T/T, and e„jsz (see
Table I). In a nucleation problem, where a thin phase is
interfaced with a thicker one, if the mobility in the thick
phase is much larger than in the thinner one, 5JjJ is like-

ly to be large. For example, with N =10, N&=90,
T/T, =0.4, and c.~/c, ~= —S, we find 5J/J= —20%.
As a conclusion, neglecting the contribution of the

5a; =a(c&)—a(c )

=(c&—c&)(da/dc), —(c —c )(da/dc),

and the flux is

J=k (c —c )
—k&(c&—c&),
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FIG. 4. Typical concentration profiles expected in the
dividing-surface scheme, under a steady Aux. Notice the effect
of the sign of the interfacial transfer coe%cient.
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with

k =E;(d a/dc ), (23b)

4T,a(c}=— c+ ln
T 1 —c

(24)

so that (da/dc) =(da/dc) &0. As a consequence,
C Cp

k, and k& are equal and both negative:

4TC
k =kp=k=it. ', — + +

C~ Cp
(25)

From Eqs. (23) and (24), the flux across the interface is

J=—k[6;—Z], (26)

where 6, is the value of the concentration difference at
the interface and Z is its equilibrium value [Eq. (8)].

Equation (23a) is identical to that used for example, by
Gosele and Tu. The above discussion proves that, in the
model discussed here, the two coefficients k and k& are
equal and negative. Notice that complicating factors
may arise at incoherent interfaces. An atomistic model
of the transfer coefBcient at such interfaces remains to be
established.

In the Bragg-Wi11iams approximation used here, for a
homogeneous phase

5a;/5a=5c;/5c =E/E; = —4%, (28)

atom concentrations which depart respectively by—5c/2 and +5c/2 from the equilibrium concentrations
c and ctt. A flux of B atoms results, from phase P to
phase a; because of the symmetry of the problem, no
movement of the concentration profile with respect to the
sample is generated. A similar procedure was used in
Ref. 9 for a different diffusion model. The flux is comput-
ed from Eq. (27), and compared to the value predicted by
Eqs. (1)—(7), which again should hold only in the limit of
small chemical-potential gradients across the sample,
5a/N«1. The result is shown in Fig. 5. As can be
seen, the linear diffusion equation [Eq. (1)] well describes
the flux up to 5a =0.04, i.e., to a gradient of the chemical
potential of 5a/N=0. 001 units per plane. Beyond this
limit, the linear theory slightly overestimates the flux,
typically by 15%%uo for 5a/N =0.01.

In the linear regime, the chemical potential increases
almost linearly from the left to the right [Fig. 6(a)] with a
slight decrease of slope in the interfacial region where the
mobility is larger. It is then easily checked that Eq. (16}
correctly predicts 5a, , the value of the jump in chemical

potential at the dividing interface: 5a, can be measured

graphically on Fig. 6(a). We find for the conditions stud-

ied here

V. NUMERICAL ASSESSMENT OF THE MODEL

The results presented so far all rest on Eqs. (1) and (2}.
As shown in Ref. 4, these equations are valid close to
equilibrium only (i.e., at constant chemical potential
along the concentration profile): indeed, Eqs. (1), (2b),
and (2c) result from a first-order expansion in the inho-
mogeneity in chemical potential of the general expression
of the flux from plane n to n + 1:

n, n+1 Pn+1, n ~n, n+1 (27}

A. Stationary interface

For the sake of simplicity, we restrict ourselves to the
case where e.„=cz, i.e., where the two phases are
symmetrical from the kinetic point of view. We choose a
sample with %=40 planes, with average concentration —,',
at 0.8T, : the equilibrium concentration profile is similar
to that of Fig. 1. We then impose at both ends fixed 8

where p„+ i „(q„„+i) is the number of exchanges per
unit time of B atoms in plane n+1 (n ) with A atoms in
plane n (n+1). The detailed expressions for p and q as
functions of the actual local concentrations and of the en-

ergy parameters s; =e„n —s,, (t = A or B) are given by
Eqs. (6)-(8}in Ref. 4. The purpose of this section is to
assess the validity of Eqs. (1}and (2) in two cases: that of
the stationary-interface problem discussed above, and
that of a moving interface, more appropriate to precipi-
tate growth. The latter problem was treated in a continu-
um model by Langer and Sekerka: their model can thus
be compared to the present one, which rests on a well-

defined mean-field treatment of an atomistic model.

610

510 J= -K.5a

410

310
4

2 10

110

010
0.1 0.2 0.3 0.4 0.5

Chemical Potential Difference

FIG. 5. Flux vs the overall reduced-chemical-potential
difference across the sample (the sample is 40 planes thick). No-
tice that the linear diffusion theory fails for too large a driving
force. The flux is in M„/Mo„[Eq. (2b)] units.

where 5c; =b, ; —Z; the value of 5c; also is correctly pre-
dicted by Eq. (26). Notice that the jump of chemical po-
tential across the dividing interface in the case studied
here is about 1.6 times larger than the change of chemical
potential per interplanar distance (5a/N) and has the
opposite sign. Beyond the linear regime [Fig. 6(b}] the
above conclusions do not hold anymore: the chemical
potential profile is curved in each phase even far from the
interface, and the graphical determination of 5a; be-
comes unreliable. As a conclusion, the dividing-surface
scheme we propose is fully consistent with the linear re-
gime of diffusion, but is restricted to this regime.
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FIG. 6. Concentration and reduced chemical potential along
a two-phase coherent stationary system in the presence of a
diffusion fiux at 0.8T, . For a small driving force (a) the chemi-
cal potential varies linearly with distance and exhibits a small

negative inflexion in the interfacial region, resulting in a nega-
tive sign for the interfacial transfer coefficient; for a larger driv-

ing force (b) the linearity is lost.

B. Moving interface

For triggering a migration of the interface it suffices to
fix the right-hand side of the sample at concentration c
slightly larger than c&, the equilibrium concentration in

the P phase, and to impose zero flux at the left-hand side
of the a phase. Solving the continuity equation deduced
from Eq. (27),

Bc„/Bt=—(J„„+,—J„,„), (29)

with the boundary conditions just described, yields the
time evolution of the concentration profile. After a tran-
sient, the chemical potential becomes uniform in phase a,
while it decreases linearly in phase p from the imposed
value at the right-hand side down to its value in the a
phase. A typical example is shown in Fig. 7, obtained at
0.8T, with 5c=7.9X10 at the right end of the P
phase. The flux through the p phase is uniform and the
interface has reached a steady velocity (2.9X 10 planes
per time unit).

The dividing-surface scheme we introduced before can
be extended to the present situation by arbitrarily attach-
ing the interface to the plane with concentration —,'. Ex-

FIG. 7. Concentration and reduced chemical potential along

a two-phase coherent system with a moving interface (to the

left) under quasi-steady-state conditions. The Aux is constant in

the right-hand (P) phase and zero in the left one (u). Notice
that the chemical potential in the P phase extrapolates to a
value at the interface which is lower than the equilibrium value

in the a phase.

trapolating the chemical-potential profile down to the di-

viding surface, we find, as in the stationary case, that the
chemical potential in the p phase at the interface with the
a phase is below its equilibrium value (cf. Fig. 7): the
transfer coefficient at the moving interface is negative.
The transfer coefficient can be measured from its
definition, K, = —J;/5a;, or computed by applying the
procedure used in this work [Eq. (13a)] to the p phase
only. Both methods give the same result within numeri-
cal uncertainty, which proves that the transfer coefficient
does not depend on the interface velocity in the range of
validity of linear diffusion theory

This last result is at variance with what is predicted by
Langer and Sekerka. Notice that the mobility in Ref. 8
is given an arbitrary value, while in the present treatment
the value used is fully consistent with the model used to
describe the thermodynamics of the system.

VI. CONCLUSION

We have proposed an extension to nonequilibrium

problems of the dividing-surface scheme introduced by
Gibbs for equilibrium problems. In equilibrium thermo-
dynamics, the Gibbs scheme consists in representing the
smooth concentration profile between two phases in

coherent equilibrium by a step function, i.e., by two
homogeneous phases in contact along a steep interface:
an excess free energy results.

Close to equilibrium, the interdiffusion Aux across a
two-phase coherent system is given by minus the gradient
of the chemical potential multiplied by a mobility. The
mobility is a continuous function of the local equilibrium
concentration, the expression for which has been estab-
lished for the simplest diffusion mechanism (direct ex-

change) in the simplest mean-field approximation in Ref.
4. Gibbs dividing-surface scheme introduces a transfer
coe+cient across the interface: the flux across the inter-
face is indeed proportional to the difference between the
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chemical potentials in the two phases.
Comparing the exact expression for the Sux along the

actual concentration profile to that predicted in Gibbs'
scheme yields the expression for the transfer coefBcient.
The latter is found to be negatiue. The reason for that is
that the mobility increases as the concentration goes to —,',
at least in the simplest case. Assuming the concentration
uniform up to the interface underestimates the Aux and
must be compensated by a negative contact resistance be-
tween the two phases.

As a consequence, in Gibbs' scheme close to equilibri-
um the concentrations on each side of the interface lie in-
side the miscibility gap. Neglecting the transfer
coef5cient results in underestimating the Aux: the error
can be large for small samples, in particular in the case of
the nucleation and growth of a phase with low diffusivity
inside a high-diffusivity matrix.

Numerical study of the model shows that its range of
validity coincides with that of linear diffusion theory. In
this range, the transfer coefBcient at the interface does
not depend on the velocity of the interface.

This model may be extended to more realistic diffusion
models and higher-order mean-field approximations. '

For the time being, calculations are in progress to extend
this study to cases of compound formation during
interdiffusion.
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APPENDIX

In a homogeneous phase, the mobility is a function of
the concentration [Eq. (17)]: We prove here that Mo is
maximum for a concentration such that the majority ele-
ment is that with the weakest cohesion, i.e., the cohesive
energy (~E;,. &0) with the smallest absolute value. It
should be remembered that we treat here the case
without mixing, i.e., co = ( e „+e~ )/2 & 0, which implies
es(1+r) &0 (since r =sz /ea), and the c is the concen-
tration of 8 atoms.

The sign of the derivative of Mo with respect to c is
given by the sign of (1—c —p}. Three cases are to be
considered.

(1) p &0. Mo is an increasing function of c on the seg-
ment [0,1]: it is a maximum in pure B Th.e condition
p&0 implies r & —1, i.e., (1+r) &0, and ea &0 since
e~(1+r ) &0. Since r &0 and ea &0, one has e„&0and
e~ &e~ whi~h implies e» &ea~ and leg+I & lsqq I, and
8 is the element with the weakest cohesion.

(2) 0&p & 1 (i.e., r &0). Mo goes through a maximum
at c'=1 p=r/(—1+r}, i.e., c'& ( & ) —,

' if r & (&) l.
Since r & 0, one has a„&0 and cz & 0, so that the max-
imum is in a B-rich phase (c' & —,) if r & 1, i.e., e„&es
and e„z & c&~, i.e., if 8 is the element with the weakest
cohesion. Conversely, the maximum is in an A-rich
phase (c' & —,) if r &1, i.e., if A is the element with the
weakest cohesion.

(3) 1 &p (i.e., —1 & r &0. Mo is a decreasing function
of c on the segment [0,1]: it is a maximum in pure A.
The condition 1 &p implies —1 & r & 0, i.e.,
0&(1+r)&1, i.e., so that sa &0 and e„&0. As a conse-
quence, czz & e,zz and A is the element with the weakest
cohesion.
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