PHYSICAL REVIEW B

VOLUME 49, NUMBER 17

Theoretical study of the stabilization of cubic-phase ZrO, by impurities

E. V. Stefanovich and A. L. Shluger
The Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS, United Kingdom

and Department of Chemical Physics of Condensed Matter, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 Latvia

C. R. A. Catlow
The Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS, United Kingdom
(Received 13 December 1993)

We have performed a thermodynamical analysis of the phase diagrams for ZrO,-CaO and ZrO,-MgO
solid solutions which has demonstrated that differential heats of mixing are important parameters deter-
mining the stabilization of the cubic phase of ZrO, by impurities. It is shown that the differential heats
of mixing in the cubic phase of these systems should be lower than in the tetragonal phase. To under-
stand this effect we have studied the electronic and geometrical structures of the pure and doped ZrO,
crystals. Three computational techniques were employed: the ab initio Hartree-Fock pseudopotential
method is used to study the atomic and electronic structures of the three phases of pure ZrO, crystals;
the defect energies and the differential heats of mixing values are calculated by means of the atomistic
simulation technique using the shell model and the pair-potential approximation; the self-consistent sem-
iempirical intermediate neglect of differential overlap method is used to study changes in the electronic
structure imposed by the defects. From the results of various calculations, we are able to identify the
key factors contributing to the mechanism of stabilization of cubic ZrO, by impurities. These include
the lattice distortion around vacancies, the lowering of the dielectric constant in the cubic phase, the
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impurity-stimulated increase of ionicity, and the removal of the Zr orbital degeneracy.

I. INTRODUCTION

Zirconia (ZrQO,) is an important technological material.
It has broad applications in oxygen sensors, high-
temperature fuel cells, as a refractory material in metal-
lurgy, and as a thermal barrier coating in engines.! Zir-
conia has three low-pressure structural modifications
which have different physical and thermomechanical
properties. At low temperatures ZrO, has a monoclinic
(m) structure (space group P2,/c).? At temperatures of
T,,..~1400 K the first-order displacive martensitic phase
transition to the tetragonal (¢) phase (space group
P4,/nmc) occurs."® At temperatures higher than
T,.=2650 K tetragonal ZrO, transforms into the cubic
(¢) fluorite lattice (space group Fm3m).* Both m and ¢
structures can be considered as distorted cubic structures
(see Fig. 1). Geometrically, the atomic structure of the ¢
phase can be obtained from that of the ¢ phase by a dis-
placement of oxygen ions along the c axis as shown in
Fig. 1, accompanied by a change of lattice parameters.
This displacement, which drives the phase transition be-
tween the two phases, is referred to as the X, mode.
This notation corresponds to the symmetry analysis of
phonon modes in the ¢ phase performed in Ref. 5.

Addition of impurities like Ca?*, Mg?*, or Y3* im-
proves substantially the thermomechanical properties of
Zr0,, allowing the production of materials with extreme-
ly high strength, toughness, and thermal-shock resis-
tance.! It is known that these properties are closely re-
lated to the stabilizing effect of impurities on the cubic
phase. The stabilization is manifested by the lowering of
the temperature of the cubic solid-solution field in the ex-
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perimental phase diagram (see Fig. 2). Similar stabiliza-
tion of the ¢ phase with respect to the m phase also
occurs.

In spite of extensive experimental studies there is no
clear understanding of the role played by impurities in
the cubic-phase stabilization. Several factors which can
influence the stabilization have been proposed, but no de-
tailed mechanism has been developed thus far.

Dwivedi and Cormack® suggested that the cubic phase
is stabilized by doping with cations such as Ca?" due to
the larger size of the Ca®* ion, which imposes a local cu-
bic symmetry on the anion sublattice. Cormack and
Parker’ calculated the phonon spectra of pure and doped
¢-ZrO, crystals. They obtained an imaginary frequency
for the X, mode in the pure crystal and concluded that
the ¢ phase does not correspond to a local minimum of
the adiabatic free-energy surface (AFES). On adding the
impurity they calculated that the frequency of this mode
becomes positive, which was interpreted as a creation of a
local minimum of the AFES corresponding to the ¢
phase. This was identified with the “stabilization” of the
¢ phase by dopants. Indeed these calculations clearly re-
veal an important effect of dopants on the lattice dynam-
ics and hence the free energy of the solid. However, the
existence of the total-energy minimum does not necessari-
ly imply that the ¢ phase has a lower free energy than the
t phase, and, therefore, does not prove its relative ther-
modynamic stability.

In this work we use a more general approach to the
study of the relative stability of different phases, which is
based on a comparison of their free energies as a function
of dopant concentration and temperature. First, we per-
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FIG. 1. Schematics of the three ZrO, polymorph structures.
Small circles represent the oxygen atoms; large shaded circles
represent the zirconium atoms. a, b, and c indicate the crystal-
line axes. (a) c-ZrO,. The arrows show the directions of dis-
placements of the oxygen atoms corresponding to the X; dis-
tortion which transforms the c structure into the ¢ structure. (b)
t-ZrO,. Note the deformation of the oxygen sublattice (dashed
lines) with respect to that in the ¢ structure. (c) m-ZrO,. In
contrast to the ¢ and c structures Zr atoms are seven coordinat-
ed and O’ atoms are three coordinated: the Zr-O’ bond which is
shown by a dashed line is broken. Note that the unit cell is ro-
tated with respect to that in (b).
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form a simple phenomenological analysis of the low-
concentration high-temperature parts of the experimental
ZrO,-CaO and ZrO,-MgO phase diagrams, which
demonstrates that the differential heats of mixing
(DHM’s) of impurities in different phases are the key
qualitative parameters which determine the ¢-c phase sep-
aration boundaries in the corresponding phase diagrams.
Moreover, the differential heats of mixing F, for the cu-
bic phase are found to be lower than those for the tetrag-
onal phase. To understand the latter fact at a microscop-
ic level, the values of F, for Ca and Mg impurities are
calculated. For this purpose the atomic and electronic
structure of the three phases of ZrO,, MgO, and CaO
perfect crystals are studied first. Then, in accordance
with the existing models, two possible structures of
Zr 875Cag12501 875 and Zrg g7sMgg 1250y 475 solid solu-
tions are considered which correspond to the nearest-
neighbor (NN) and next-nearest-neighbor (NNN) ar-
rangements of the impurity ions and compensating oxy-
gen vacancies. We show that the inequality F§ < F} be-
tween the DHM’s for the ¢ and ¢ phases holds for these
representative defect configurations. We are able to iden-
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FIG. 2. Phase diagrams of concentration of impurities vs
temperature. Full lines represent the experimental data, while
dashed lines are the results of calculations using the expressions
(1) and (2) for the free energy of the solid solution, Eq. (3) for
the solubility lines, and the fitted DHM values from Table 1. (a)
Zr0,-CaO system, experimental data from Ref. 14; (b) ZrO,-
MgO system, experimental data from Ref. 15.
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tify several factors at the microscopic level, which can
cause the lowering of the ¢-c phase transition temperature
in the presence of the Ca and Mg dopants.

The calculation techniques used in the present study
are based on the supercell model for pure and defective
crystals. The ab initio Hartree-Fock pseudopotential
method® (the CRYSTAL code’) is employed to study the
atomic and electronic structures of the three phases of
pure ZrO, crystals. The defect energies and the DHM
values are calculated by means of the atomistic simula-
tion technique (the GULP code'®) using the shell model
and the pair-potential approximation. The self-consistent
semiempirical intermediate neglect of differential overlap
(INDO) method and the CLUSTER computer code!!"!? are
used to study changes in the electronic structure imposed
by the defects.

A brief outline of the calculation techniques is given in
Sec. III; comparison of the properties of the three phases
of zirconia calculated by different methods is presented in
Sec. IV A. Detailed comparison of the CLUSTER and
GULP calculated defect properties is given in Sec. IV B.
Several possible mechanisms of the stabilization of the
cubic phase by impurities are proposed and discussed in
Sec. V.

II. THERMODYNAMIC ASSESSMENT
OF THE EXPERIMENTAL PHASE DIAGRAMS

The thermodynamic analysis of the phase diagrams'? is

the most direct way to find out the key parameters which
determine the relative stability of different phases. In this
section we aim to fit the experimental phase diagrams (see
Refs. 14 and 15 and references therein) using the general
procedure described in Ref. 13 and the simplest possible
phenomenological expression for the free energy as a
function of impurity concentration x and temperature.

Different expressions for the free energy have been
used to fit the experimental data with high accuracy for
all values of T and x in (ZrO,),_,-(Ca0O), and
(Zr0,),_ ,-(MgO), systems.'*!S> We are interested in a
restricted region of the phase diagram which is important
for the study of the mechanism of stabilization of the cu-
bic phase [small concentrations (x <0.25) and high tem-
peratures (7> 1500 K)]. We have used the following
general expression for the free energy of the ZrO,-CaO
solid solution per mole of cation:!'>16

Fi(x,T)=(1=x)F 0 (T)+xFcyo(T)
+ Figeat (X, T)+FL(x,T) . (1)

A similar expression is valid for the ZrO,-MgO solid
solution. The index i(=m,t,c) corresponds to the three
polymorphs of zirconia. The standard representation!’
was taken for the free energies of the pure oxides F,o(T)
and Fy,o(T). For the free energy of pure ¢- and c-ZrO,
the experimental data from Ref. 18 were fitted as follows:

Flo, (T)=—92167—54.57(T —2650)

+ HY; (cal/mol) ,
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Fir0,(T)=—92167—55.07(T —2650)

+H(2)93 (Cal/mol) ’

where HYg is the enthalpy of formation in the standard
state. Fiy.,(x,T) represents the “ideal” part of the free
energy of mixing.!® If we assume that the number of im-
purity ions is equal to that of the compensating vacancies
(see next section), the term Fy.,(x, T) can be easily calcu-
lated from the number of permutations of the n Ca (Mg)
ions and n oxygen vacancies over the available N zirconi-
um and 2N oxygen sites (n /N =x):

Figea(x, T)=RT[x In(x)+(1—x)In(1—x)
+(2—x)In(1—x/2)+x In(x /2)] .

In the simplest zeroth approximation of the molecular
theory of solutions'® the excess free energy of solution
F. (x,T) does not depend on temperature, and its con-
centration dependence may be expressed as

Fl (x)=Fix(1—x) . )

Here F} are the differential heats of mixing which should
be fitted to reproduce the experimental phase diagram.

The tetragonal and cubic solubility lines [x,(T) and
x.(T) respectively] determine the boundaries of the t-c
two-phase region, where both ¢ and ¢ solid solutions coex-
ist. The solubility lines satisfy the following set of non-
linear equations:

Fi(x,(T),T)+F(x,(T),T)x(T)—x,(T)]
=F%(x/(T),T), ()
F'(x,(T), T)=Fx/(T),T),

where primes denote derivatives over x. Solving these
equations, the F§ and F{ were optimized to achieve the
best fit of the experimental x,(7) and x.(7) func-
tions. '*15 Note that the observed stabilization of the cu-
bic phase requires that the DHM for the cubic phase
must be lower than that for the tetragonal phase:

F§<Fj . 4)

The values of the fitted parameters presented in Table I
show the validity of this qualitative conclusion. The cal-
culated c, t +c, and ¢ phase fields are presented in Fig. 2,

TABLE 1. The differential heats of mixing (eV) of Ca-
vacancy and Mg-vacancy dipoles. Fitted values were obtained
by fitting the t —¢ +c¢ and ¢ +c¢ —c phase boundaries on the x-T
phase diagram as described in Sec. II.

Fg F§ Fj
Ca GuLP NNN 1.00 0.36 0.26
Ca guLp NN 1.02 0.06 —0.10
Ca fitted 0.50 0.27
Mg cuLp NNN 2.50 1.55 1.39
Mg GurLr NN 2.66 1.73 1.56
Mg fitted 1.89 1.38
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where they are compared with the experimental data. %1

These results clearly demonstrate that the experimental
phase diagrams can be qualitatively reproduced in the
simple approximation (1) and (2) with a minimal number
of fitting parameters. The DHM’s which determine the
qualitative behavior of the solubility lines do obey the in-
equality (4). In the following sections we present the re-
sults of atomistic calculations which address the question
of the reasons why the DHM for the cubic phase is lower
than that for the tetragonal phase. In this way we hope
to gain a better understanding of the micromechanisms of
stabilization of the cubic phase.

III. CALCULATION TECHNIQUES

The calculation techniques used in this study ( ab initio
Hartree-Fock, semiempirical Hartree-Fock, and atomis-
tic simulation) are based on the periodic supercell model
for both perfect and doped crystals. This allows us to op-
timize not only local structure but also unit-cell parame-
ters for each crystalline phase, defect type, and concen-
tration.

A. Ab initio Hartree-Fock method (CRYSTAL code)

The ab initio calculations were performed using the
periodic Hartree-Fock linear combination of atomic or-
bitals (LCAO) method described in detail in Refs. 8 and
9. Effective core potentials (ECP’s) were used for oxygen
and zirconium. The so-called small-core version of the
Hay-Wadt ECP!® was employed for the Zr atoms. This
pseudopotential corresponds to 12 explicitly treated
valence electrons. The ECP from Ref. 20 was used to
represent the cores of the oxygen atoms. The detailed
description of the method and the Gaussian basis set will
be published elsewhere.?! In what follows we shall refer
to this technique as the CRYSTAL method.

B. Semiempirical INDO method (CLUSTER code)

The modification of a self-consistent semiempirical
Hartree-Fock method employed in this work has been de-
scribed elsewhere'"!? and realized in the CLUSTER com-
puter code. We use the periodic large unit cell (LUC)
model?? and the INDO approximation of the restricted
Hartree-Fock-Roothaan method.? It allows us to deter-
mine the electronic structure of a quantum-mechanically
described periodic cell that contains several tens of ions.
It employs a minimal valence Slater basis set and uses a
single-determinantal approximation for the wave func-
tion.
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The study of the structural modifications of the ZrO,
crystal and defects therein requires definition of the one-
and two-center parameters describing Zr, O, Mg, and Ca
ions and their interaction. In this study we used the pa-
rameters for the O and Mg ions from Ref. 12, and those
for the Ca ions from Ref. 24. They are summarized in
Tables II and III. The parameters for the Zr ions were
obtained in this work following the general procedure de-
scribed in Ref. 12. In optimizing their values the results
of the ab initio calculations for the ZrO (Ref. 25) and
ZrO, molecules, as well as those for the ¢ and ¢ phases of
ZrO, crystal, were taken into account.

The ZrO, molecule was computed in this work using
the Moller-Plesset perturbation (MP2) method and the
CAD-PAC5 computer code?® with the MPP pseudopoten-
tial for Zr atoms developed in Ref. 27. The standard 6-
311G* basis set on oxygen atoms?® and the valence 311G
basis set on Zr atoms®’ were used in these calculations.
The bent conformation of the molecule (C,, symmetry,
dz.0=3.45 bohr, £0-Zr-O=109.5°) was found to be
more stable than the linear conformation by about 2.7
eV. Good agreement between the ab initio data and
CLUSTER results was achieved for the equilibrium
geometry and the electronic charge distribution in the
ZrO and ZrO, molecules.

The calculated atomization energies and the charac-
teristic parameters of the electronic structure of the per-
fect crystals, such as valence bandwidths and band gaps
(computed at optimized geometries) are presented in
Table IV. The lattice constants calculated for the CaO
and MgO crystals (4.79 and 4.07 A, respectively) are in
good agreement with the experimental data. The unit-
cell parameters for the three structural modifications of
ZrO, are presented in Table V.

It is well known that the one-electron band gaps found
in the Hartree-Fock band-structure calculations consider-
ably overestimate the experimental values.’® The so-
called long-range correlation corrections are usually used
for more correct comparisons of the theoretical and ex-
perimental gap values. The correlation corrections for
the CaO and MgO crystals were calculated to be 3.25 and
5.21 eV, respectively.*? The corresponding values for the
ZrO, polymorphs have not been calculated thus far. In
this paper we used the same correction for all three po-
lymorphs of ZrO,. It was estimated by averaging the ex-
isting data for other ionic crystals®’ as 3.8 eV.

MgO and CaO crystals are highly ionic; the effective
charges of the oxygen ions were computed to be
—1.84|e| and —1.87|e|, respectively. The orbital popu-
lations for the three ZrO, polymorphs are discussed in
Sec. IV.

TABLE II. One-center INDO parameters. The conventional definition of the parameters is used, as

described in Refs. 12 and 23.

(0} Zr Ca Mg
£ (spd) (a.u.™") 2.27; 1.86 1.90; 1.90; 1.83 1.48 1.40
Eneg (spd) (eV) 4.5; —12.6 8.0; —8.0; 4.6 12.0 16.0
—pB (spd) (eV) 16.0; 16.0 0.5; 0.5; 11.0 0.4 1.1
P, (spd) (a.u.) 1.974; 1.96 1.0; 0.0; 0.6 0.15 0.15
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TABLE III. Two-center INDO parameters for the interactions between electrons (A) and cores (B)
(a.u.”!). See Ref. 12 for more details. n.o. means that the parameter was not optimized.

A B: O Mg Ca Zr
o 0.15 0.25 0.17 0.0
Mg 0.0 0.25 n.o. 0.0
Ca 0.1 n.o. 0.15 0.0
Zr 0.0 0.0 0.0 0.0

C. Atomistic simulation technique (GULP code)

The binding of ionic solids may be simplistically de-
scribed by the Born model in which formally charged
ions interact via electrostatic forces (evaluated by the
method of Ewald to ensure rapid convergence) supple-
mented by a short-range Buckingham potential

Eii:AijexP(—rij/Pij)"‘Cij/rg .

These short-range parameters may be determined
empirically by fitting to crystal properties or derived
from quantum-chemical energy surfaces obtained by
electron-gas ab initio methods. The model is refined by
inc31;1sion of dipole polarizability through the shell mod-
el.

The shell-model parameters for oxygen ions and the
parameters of O-O, Ca-O, and Mg-O pair potentials em-
ployed in this study were taken from Ref. 39. The pa-
rameters for Zr-Zr and Zr-O interactions were fitted in
Ref. 6. The latter parameters allow us to reproduce qual-
itatively correctly the relative energetic stability of all
three phases of ZrO, (see Table V), and their dielectric
and elastic constants in good agreement with experi-
ment.® Therefore, these potentials seem adequate at least
for a qualitative study of properties of pure and doped
ZrO, in different polymorphs.

The major part of the defect calculations using the
GULP code and all the CLUSTER calculations were per-
formed using the same supercell containing 24 atoms
which is a 2X2X2 extension of the unit cell of cubic
ZrO,. This allows us to compare directly results obtained
by the two techniques. Placing one dopant ion (and one
oxygen vacancy) in each supercell, we obtain an impurity
concentration of 12.5% which is characteristic for cubic
partially stabilized ZrO,.

IV. RESULTS OF CALCULATIONS
A. Perfect crystal
1. Definition of different phases

It is currently believed that both the m -t and ¢-c phase
transitions in ZrO, are first order. 13 (Note, however, that
the experimental results for the ¢-c transition are quite
uncertain and one cannot exclude the possibility of a
second-order t-c transition®’.) Theoretically, a system
which undergoes a first-order transition can be described
in terms of the AFES,***! where both low- and high-
symmetry structures correspond to different local mini-
ma. The low-symmetry phase has higher vibrational fre-
quencies and thus a lower vibrational entropy, which re-
sults in its instability at temperatures higher than the
transition point.** A system which undergoes a second-
order transition can be described in terms of the double-
well structure of the AFES, when both wells converge to
one high-symmetry minimum at temperatures higher
than the critical point.

Some valuable information regarding the main features
of the AFES (location of minima and saddle points be-
tween them, relative energies of different phases, phonon
frequencies, etc.) may be obtained from calculations at
zero temperature. In this case, the AFES coincides with
the adiabatic energy surface (AES) (apart from the zero-
point energy correction). Using results of the AES calcu-
lations one can extrapolate the behavior of the AFES to
nonzero temperatures and speculate regarding the nature
of the phase transition.*> For instance, the temperature
of the second-order transition can be estimated from the
height of the barrier separating two low-symmetry mini-
ma of the AES if one takes into account the thermal ex-

TABLE 1IV. The atomization energies per one formula unit, the electronic energy gaps, and the
widths of the valence bands of crystals (eV) computed using the CLUSTER code. The experimental data

and the results of ab initio calculations are given in parentheses.

Crystal Atomization energy Energy gap Valence bandwidth
m-ZrO, 15.2 (15.7%; 22.7% 5.25 (4.70% 4.519) 10.5 (4.979)

t-Z10, 14.9 (15.7% 3.05 (4.119) 13.2 (7.14%; 5.489)
¢-Zr0, 14.9 (15.5% 2.88 (3.849) 13.6 (7.97%; 5.90%)
CaO 8.1 (10.3% 7.34 (7.73% 7.09% 3.0 (3.43°9

MgO 8.1 (11.0% 6.53 (8.21% 7.83 5.7 (1.64% 6.7%)

#Reference 29.
Calculated from data in Ref. 17.
‘Reference 30.
dReference 31.

“Reference 32.
fReference 33.
EReference 34.



49 THEORETICAL STUDY OF THE STABILIZATION OF CUBIC-. ..

pansion of the crystal as suggested in Ref. 35.

In our calculations we adopted the following
definitions for the m, ¢, and c structures of the perfect and
doped crystals. The geometry of the m structure
(comprising the unit-cell dimensions and fractional coor-
dinates of atoms) was optimized subject to the condition
a=PB=90°. The t structure corresponds to the following
restrictions imposed on the lattice parameters: a =b;
a=pB=y=90°. The most severe restrictions on the unit-
cell dimensions were imposed for the c structure:
a=b=c; a=B=y=90°. This representation of the sta-
bilized c¢ structure is consistent with diffuse-neutron-
scattering experiments.*>* Note, however, that other
models have also been suggested in the literature. In par-
ticular, Martin, Boysen, and Frey*® proposed that the cu-
bic solid solution may consist of z-phase microdomains,
whereas Rossell, Sellar, and Wilson*® suggested that it is
constructed from ¢,-phase microdomains.

Little is known about the form of the AES of the ZrO,
crystal. In particular, it is not clear whether the ¢ and ¢
phases correspond to a local minimum of the AES or
whether they are unstable saddle-point
configurations.?*3%47 Although it is clear that the ener-
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gies of the three structures (at 0 K) should be related as
E™<E'<E°‘,

the numerical values of the energy differences have not
yet been computed accurately. In the next subsection we
present the results of our calculations of the AES of the
ZrO, crystal using the CRYSTAL, CLUSTER, and GULP
techniques.

2. The results of the AES calculations

The results of geometry optimization of the three crys-
talline modifications of ZrO, (the unit-cell parameters
and fractional coordinates) using the calculation tech-
niques described above are reported in Table V. The ex-
perimental structures and the results of recent full-
potential linearized augmented-plane-wave (FLAPW) cal-
culations’’ are also included for comparison.

The CRYSTAL calculations give the double-well struc-
ture of the AES for ¢-ZrO, with respect to the X, dis-
placement of the oxygen ions (see also Refs. 29 and 47).
Both the difference between the ¢ and c energies and the
X, shift of the oxygen ions (see Fig. 1) in the ¢ structure

TABLE V. 0-K equilibrium geometries for the three phases of ZrO., The cell parameters a, b, c in
A. In m-ZrQO,, y is in degrees and x;, y;, z; denote the fractional coordinates of the ith symmetry-
independent species. In t-ZrO,, d, is the displacement of oxygen along the X, mode with respect to the
ideal cubic position, in units of c¢. Energies are in eV per one formula unit of ZrO,. Deviations from ex-
perimental values (as a percentage) are given as subscripts.

CRYSTAL CLUSTER GULP FLAPW EXpt.
(this work) (this work) (this work®) (Ref. 35) (Refs. 2, 4)
m-Zr02
a 5.234, ¢ 5.145_,, 5241, , 5.151
b 5272, 5.178 7 4.898 _¢.0 5.212
c 539815 5.003_5'9 5.5784.9 5.317
y 98.25_, ¢ 102.375, 90.0_4 5 99.23
Xz 0.2725_,, 0.2743_, 0.2500_, 0.2754
Vzr 0.0343_,3, 0.0276_3 , 0.0000_ 100, 0.0395
Zz7, 0.20980,7 0212621 0-1899—8.8 0.2083
Xo) 0.0723; 5 0.096257 4 0.0753, 0.0700
You 0.3318, , 0.3717,, 0.2818_ 50 0.3317
Zoa) 0.3497, 0.2930_54 0.3958,4 5 0.3447
Xo) 0.4549, , 0.4584, , 0.4247_, 4 0.4496
You) 0.7579 , 0.7456_, 0.7182_5, 0.7569
Z0(2) 0.48020_2 0.48641‘5 0.3958_ 17.4 0.4792
Em™—E*€ 0.005 —0.299 —0.185 —0.120°
t-Zr02
a=b 5.152, 4.951_,, 5.0744 5 5049, 5.050°
c 5.178_ 4 4.961_, 5.216, 5 5.087_, 5 5.182°
d, 0.0246_s; 0.015_736 0.060, 5 0.029_49 5 0.0574¢
E'—E° —0.008 —0.008 —0.019 —0.008 —0.057°
c-ZrO,
a=b=c 5.154, 5 4.940_, , 5.075_0.5 5.054_, - 5.090°

2See also Ref. 6.

Enthalpy difference at the phase transition temperature (Ref. 18). Note that these values are in good
agreement with the thermal energies estimated from the phase transition temperatures as

E'—E‘=k(T,,~T,.,)/2=—0.112 ¢V and E"—E

°=kT,,/2=—0.052 €V.

°Extrapolation to zero temperature using the thermal expansion data from Ref. 4.

dAL 1568 K.
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are less than the experimental values. From these calcu-
lations it is not clear whether the tetragonal and mono-
clinic structures are separated by an energy barrier.
More definite conclusions can be made after performing a
more complete study of the AES. The detailed results of
the ab initio CRYSTAL calculations of the three phases of
ZrO, will be presented elsewhere.?! We should note that
Zhou and Jansen*® have found local minima for both m
and ¢ structures using atom-atom potentials fitted to the
results of their FLAPW calculations.

The CLUSTER and GULP techniques reproduce qualita-
tively the main geometrical parameters of the three
phases. However, the most stable GULP geometry is more
symmetrical (eight symmetry operations) than the real
monoclinic structure (four symmetry operations) and cor-
responds to an orthorhombic space group. Both methods
reproduce less accurately the positions of the O’ oxygen
atoms (see Fig. 1) in m-ZrO,. These atoms have the larg-
est displacements in the course of the ¢-m phase transi-
tion: one of the Zr-O' bonds is broken in the m structure,
so that Zr atoms change their coordination number from
8 to 7. It is worth noting the close agreement between
the geometrical parameters, dielectric, and elastic con-
stants of the ¢ and ¢ phases obtained in this work by the
GULP code and by Dwivedi and Cormack® using periodic
boundary calculations employing the CASCADE code.*
We consider this as an indicator of the accuracy of the
GULP program.

Since the GULP method predicts instability of ¢ and c
phases at zero temperature, their phonon spectra contain
imaginary frequencies. Therefore it is impossible to cal-
culate their thermodynamical properties (entropy, free
energy, thermal expansion coefficient, etc.). Note, how-
ever, that the instability of both phases at zero tempera-
ture corresponds to experimental observations. Since
these phases are stable at high temperatures, one can ap-
proximately calculate the DHM values for the doped
crystals by imposing constraints on the unit-cell shape
and dimensions as described above. As was demonstrat-
ed, the DHM values are sufficient for a qualitative
description of the free energies of the doped crystals
given by Egs. (1) and (2) and construction of the phase di-
agram.

Finally we should note that the energy difference
E°—E" is underestimated by all three calculation tech-
niques used in this study (see Table IV). The agreement
with the experimental data can be improved by taking
into account the thermal expansion of the crystal as dis-
cussed in Ref. 35. For this purpose one can use the ex-
perimentally measured thermal expansion coefficients.*

B. Doped crystals

A full theoretical explanation of the c-phase stabiliza-
tion requires calculation of the DHM values for different
crystalline modifications, or, more exactly, the excess free
energies of mixing. Generally speaking, the DHM values
must satisfy the inequality (4). However, an accurate mi-
croscopic calculation of the DHM’s is a complex prob-
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lem. In order to obtain a qualitative understanding of the
main factors which determine the micromechanism of
stabilization of the ¢ phase we will use simplified models
and various approximations discussed below.

(i) We shall remain within the zeroth approximation of
the molecular theory of solutions which was already used
in Eq. (2). Assuming the validity of Eq. (2), we can ex-
press the DHM through zero-temperature lattice energies
(a similar formula is valid for the ZrO,-MgO solid solu-
tion):

; E}(x) —XEc,o—(1—x) %ro2
Fy=

x(1—x) ’ )

where J(x) 1is the most statistically abundant
configuration(s) of defects. Generally speaking, in order
to find the DHM values one should average expression (5)
over all possible defect configurations according to their
energies and (vibrational and configurational) entropies.
The energies of various impurity-related defects and their
aggregates were calculated by means of the atomistic
simulation technique in Refs. 6, 50, and 51. However, no
attempts have been made to our knowledge to use these
data to calculate the partition function for the solid solu-
tion.

In the simplest approximation one or several represen-
tative configurations J(x) can be chosen which corre-
spond to the minimum of the crystal free energy at given
concentration of impurities x. The lattice energies of the
pure substances Ec,q (Ep,o) and E %roz can be easily cal-

culated within the Born model as discussed above. How-
ever, in order to calculate the Ej,, one needs to find the
configuration J(x). This point requires more detailed
discussion.

(i) It is known that the excess charge of divalent im-
purities in zirconia is compensated by the oxygen vacan-
cies. Note that at x 20.1 and high temperatures the
impurity-vacancy dipoles are very closely located and the
anion vacancies are mobile. Therefore it is difficult to
distinguish between the different modes of compensation.
For instance, the vacancies can occupy both the nearest-
neighbor and the next-nearest-neighbor sites with respect
to the impurity ion.*® Both substitutional cation impuri-
ties and oxygen vacancies can be considered as nearly
randomly distributed among available lattice sites.

However, in several works attempts have been made to
specify the model in terms of a “preferable” location
(NN*5253 or NNN&46:54) of the compensating vacancy
and a relative distribution of the impurity-vacancy di-
poles. In particular, in order to give an interpretation to
the diffuse-neutron-scattering data, Neder, Frey, and
Schulz** have studied the relative orientation of the
neighboring NN Ca-vacancy dipoles. They have found
that the best representation of the experimental results
can be achieved if one assumes that adjacent dipoles have
parallel or nearly parallel orientation. However, the sug-
gested interpretations of these and other experi-
ments®*%32333% are model dependent and inconclusive.

Two simplified models of the ZrO,-CaO and ZrO,-
M_gO solid solutions were therefore studied in the present
work. In both models we assumed that 1/8 of the Zr



49 THEORETICAL STUDY OF THE STABILIZATION OF CUBIC- . . .

atoms are substituted by impurities (x =0.125) distribut-
ed periodically in the lattice and forming the 2 X2 X2 su-
percell. In the first model the compensating vacancies
occupy the NNN positions, while in the second model
the vacancies and impurity ions form the NN dipoles. In
both models the dipoles in the adjacent supercells have
parallel orientations. As will be shown below, the main
conclusions drawn from the calculations on these two
models are very similar. Therefore we believe that the
most important factors relevant to the mechanisms of the
cubic-phase stabilization can be identified already in this
simplified approach.

Ca-vacancy NN dipole and Ca(Mg)-vacancy NNN dipole

The Ca-vacancy NN dipoles in ZrO, have been studied
in several papers.*»*3%5 However, the results for de-
fect relaxation and electronic structure differ significantly
for the different techniques. For instance, the results of
Ref. 55 predict that the introduction of the Ca-vacancy
dipole increases the band gap of ZrO,. The impurity-
induced one-electron levels are found to be located high
in the conduction band. It was concluded that the Ca ion
interacts with the surrounding lattice mainly via electro-
static forces. These results contradict those of Ellis and
co-workers®® who found that the band gap is reduced
substantially with respect to the pure crystal, and the Ca
impurity levels are located near the top of the valence
band. No calculations have been done thus far to our
knowledge on the electronic structure of the impurity-
vacancy NNN dipoles.

The complete optimization of the ionic coordinates
around the NN and NNN Ca (Mg)-vacancy dipoles in
the ¢ structure was performed using only the GULP tech-
nique. To study the qualitative changes of the crystal
electronic structure imposed by the defects we used the
CLUSTER technique. The calculations were first per-
formed using the ionic coordinates derived from the
GULP calculations. Then an additional geometry optimi-
zation was made along the same relaxation modes (see,
for example, modes 1-7 for the NNN dipoles in Table VI
and Fig. 3). The lattice parameter a, was also optimized
using both methods (see Table VII). It increases (de-
creases) when the Ca (Mg) impurities are introduced, in
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qualitative agreement with the experimental observa-
tions. 378

In Table VI we compare the defect relaxations comput-
ed for the NNN dipoles by means of the GULP and
CLUSTER methods. It can be seen that some of the dis-
placements obtained by the two methods differ
significantly. The reason is twofold. First, the CLUSTER
relaxation is not complete since only a limited number of
relaxation modes was included. Secondly, both methods
use empirical parameters which were optimized for ideal
crystals and may not be accurate for the representation of
complex defect structures. Moreover, some of the ionic
coordinates determined using both techniques for the
pure m structure also differ substantially (see Table V).
However, we found no significant difference in the elec-
tronic structure between the GULP defect geometry and
that further optimized using the CLUSTER technique.

Some parameters of the electronic structure of the Ca
(Mg) dipoles calculated using the CLUSTER method are
presented in Table VII. The impurity-related, one-
electron orbitals (orbital energy €c,mg)) are located high
in the conduction band. The band-gap width E, in-
creases in the presence of Ca (Mg) impurities and there is
a negligible admixture of the impurity orbitals with the
mixed O(p)-Zr(d) valence band. These conclusions are in
qualitative accord with the results of Ref. 55. Since an
increase of the impurity concentration means substitution
of the Zr ions with more electropositive Ca (Mg) ions,
one can expect that the average ionicity of the crystal
may also increase. The average electron population on
the cations g, and especially the d-shell population g,
(since the d orbitals of Zr form covalent hybrids with the
p orbitals of oxygen atoms?*®!) are suitable parameters
for describing the degree of ionicity (covalency). The re-
sults presented in Table VII show that the ionicity indeed
increases in the case of the Ca impurity (the average elec-
tron populations on cations and on their d orbitals de-
crease). This effect is less pronounced in the case of the
Mg impurity.

The calculated DHM values for the three ZrO, po-
lymorphs with full geometry optimization by the GULP
method are presented in Table. I. As can be seen, the ex-
pected behavior F§' > F} > F§ is reproduced correctly for
both NN and NNN dipole configurations.

TABLE VI. Comparison of the GULP and INDO geometries of the relaxed Ca-vacancy and Mg-
vacancy NNN dipoles. Numbers of modes and directions of displacements along these modes are the
same as in Fig. 3. The mode 1 corresponds to the shift of three Zr ions (not shown in Fig. 3) located in
the positive direction of the threefold axis { 111) with respect to the impurity ion.

Displacements (A)

Direction Ca-vacancy Mg-vacancy
No. of mode of displacements GULP CLUSTER GULP CLUSTER
1 (Zr) away from Ca (Mg) 0.17 0.12 0.15 0.14
2 (0) away from Ca (Mg) 0.30 0.71 0.29 0.80
3 (0 away from Ca (Mg) 0.12 —0.14 0.05 —0.25
4 (Ca or Mg) (111) 0.07 0.22 0.09 0.12
5 (0) toward vacancy 0.45 0.29 0.43 0.26
6 (O) toward vacancy 0.38 0.23 0.38 0.21
7 (O) away from Ca (Mg) 0.25 0.09 0.20 —0.08
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FIG. 3. Schematic of the NNN Ca (Mg) -vacancy dipole in
¢-ZrO,. There are no separate dipoles in the lattice. Each im-
purity cation is surrounded by three oxygen vacancies symme-
trically with respect to the threefold (111) axis. Arrows show
the directions of ionic displacements obtained in the GULP cal-

culations. The numbers by the arrows correspond to the relaxa-
tion modes in Table VI.

V. DISCUSSION

Let us consider the physical reasons which cause the
perturbation created by the defects to be smaller in the
high-symmetry phases than in the low-symmetry phases
[see Eq. (4)]. This may be a result of several effects, some
of which are discussed below.

(a) Vacancies. As was found by Dwivedi and Cor-
mack,® the defect energy of a vacancy (and the corre-
sponding contribution to the DHM) is lower in ¢-ZrO,
than that in t-ZrO,. Therefore the presence of vacancies
makes the ¢ phase more stable. The symmetrical relaxa-
tion of the nearest oxygen atoms around the vacant site
(see Table VI and Fig. 3) imposes isotropic negative pres-
sure on the anionic sublattice, which favors formation of
an isotropic cubiclike structure around the vacancy and
increases the energy of the anisotropic ¢ structure. The
importance of the oxygen vacancies for the c-phase stabil-
ization was emphasized also in Refs. 40 and 59.

(b) Defect-defect interactions. The structure of the
solid solution may be simplistically considered as a
three-dimensional lattice (in general nonperiodic) consist-
ing of charged “particles” (impurity ions and vacancies,
g~=12.0) embedded in the dielectric medium with the
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dielectric constant €;(i =m,t,c). The interaction between
these particles contributes to the total energy of the
doped crystal. Although they are close together, the use
of the dielectric constant can be justified by the results of
recent calculations for the impurity-vacancy interaction
in Li,0.%° They have demonstrated that for a separation
of more than 2a, the association energies of the
impurity-vacancy dipole become similar to those ob-
tained from the screened Coulomb interaction in the
quasicontinuum model. Let us assume for the sake of
simplicity that the impurity-vacancy lattice is periodic
with lattice constant a, where (a})® is proportional to
the inverse defect concentration and the unit-cell volume
of the host crystal. This lattice may be characterized by
a Madelung constant M;(M; >0 for energetically stable
defect arrangements). In the simplest (Coulomb) approx-
imation we can express the defect-defect contribution us-
ing the simple formula

Miqz

age;

A
Ejq=

Obviously, the defect-defect interaction energy E, de-
pends on the geometrical structure of the host lattice, and
therefore can influence the relative values of the DHM in
different polymorphs. There are two important factors.
First, the lattice constant a decreases in the sequence
m—~t—c and thus favors formation of the cubic lattice.
Secondly and most importantly, the dielectric constants
are different® in the m, ¢ and ¢ phases:
€,(38.6)>¢€,(26.9)>¢€,,(14.4). Therefore this factor also
destabilizes the ¢ structure.

Using the experimental unit-cell volumes and the cal-
culated ¢; values in the ZrO, polymorphs,® and assuming
a periodic distribution of the NNN dipoles (x =0.125),
one can find the E), values corresponding to the
different phases. The contributions to the DHM values
for each phase are equal to E ,/x(1—x). Then taking
the differences we found for F{—F{ and F{—F[ the
values of —0.15 and —0.52 eV respectively. Note that
these are comparable with the differences of the DHM
values computed by the GULP method (see Table I).
Therefore the interactions between defects may play an
important role in the mechanism of cubic-phase stabiliza-
tion. We found that the change of the Madelung con-

TABLE VII. The properties of doped (x=0.125) and pure ZrO, crystals computed using the
CLUSTER code. E, is the electronic band gap; €camg) is the one-electron energy of the unoccupied im-
purity state; g. and g, are the total electron populations on cations (including Zr ions and impurities)
averaged by the unit cell, and the d populations on the Zr ions, respectively. gcamg) are the populations
of Ca (Mg) ions. Energies are in eV and populations in a.u. Results of the GULP calculations are given

in parentheses.

Defect

Property c-Zr0O, NN Ca-vac. NNN Ca-vac. NNN Mg-vac.
a, (A) 4.94 (5.075) 5.00 (5.127) 5.02 (5.120) 4.94 (5.072)
E, 2.88 3.88 4.00 3.99
eca(Mg) 5.8 5.4 5.9

q. 1.97 1.91 1.92 1.95

94 1.51 1.46 1.47 1.51
dcaMg) 0.12 0.10 0.11
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stant induces a negligible variation of the DHM values
(about 0.003 eV for the t-c transition). Thus the
difference of the dielectric constants in the two phases
makes the most important contribution to the stabiliza-
tion of the cubic phase. More reliable experimental mea-
surements of the dielectric constants of the high-
temperature phases are necessary for better understand-
ing of this effect.

(c) Ionicity. It is well known that directional covalent
forces contribute substantially to the Zr-O interaction in
ZrO,. Formation of Zr(d)-O(p) hybrid orbitals and in-
crease of the electronic charge density between the Zr
and O atoms are clearly seen from the calculated elec-
tronic charge distribution in the ZrO, crystals.?**’ In
Table VIII, data from various sources are presented
characterizing Zr atomic and Zr(d) orbital populations in
the three phases of pure ZrO,. Despite the different
methods used for both the electronic-structure calcula-
tion and the charge determination, the general tendency
is clear: there is a decrease of ionicity [increase of the Zr
and Zr(d) population] for the lower-symmetry phases.
The Zr-O overlap population increases as well in the
low-symmetry structures.??® These tendencies follow
from symmetry considerations, ®"*%? which partially forbid
mixing of the Zr(d) and O(p) states for ¢-ZrO, and espe-
cially for ¢-ZrO,. It is also well known that smaller ioni-
city (higher covalency) favors structures with lower coor-
dination numbers.% In fact, the coordination number of
Zr decreases from 8 in the fluorite structure to 7 in the m
structure through some intermediate value in the ¢ struc-
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ture. Therefore, the Zr-O covalent bonding is one of the
major factors influencing the stability of the low-
symmetry structures of ZrO,.

In contrast, the Ca-O and Mg-O bonds are mostly ion-
ic, thus exhibiting no angular dependence. As discussed
in Sec. IV B, the average ionicity of the crystal increases
after addition of the divalent impurities. Therefore one
can expect that addition of divalent impurities will in-
crease the stability of the high-symmetry phases (especial-
ly the cubic phase, which is characteristic of such com-
pounds as CaO and MgO).

(d) Electronic configuration of cations. As one can see
from Table VIII, the valence electronic configuration of
the Zr ions in ¢-ZrO, is close to the 4d 2 configuration. In
the crystalline field having O, symmetry this corresponds
to the partial occupancy of the t,, levels,” resulting in
sixfold degeneracy. According to the Jahn-Teller
theorem this (cubic) structure around the cation site is
unstable, and lattice distortions should appear in order to
lower the symmetry and remove the degeneracy. This ex-
plains why six different (symmetry-related) tetragonally
distorted structures may appear around each Zr atom.
The total energy of the crystal is reduced if the local dis-
tortion fields around neighboring cations do not disturb
each other. Evidently, this corresponds to the formation
of the global ¢ structure in which the anion sublattice is
displaced along the X; mode (see Fig. 1). The Ca’" or
Mg?" dopants have no valence electrons, and the Jahn-
Teller distortion does not take place around these ions.
This destroys the coherent anionic displacements in the ¢

TABLE VIII. Electron population analysis (in units of electron charge) on Zr atoms in the three
ZrO, polymorphs. “Zr” is the total population and “Zr d” is the population on the d orbitals of the Zr

atoms.
Population
Method analysis Geometry m t c
Hartree-Fock Mulliken optimized Zr 0.750* 0.715° 0.679°
pseudopotential® Zr d 1.302® 1.246° 1.162°
FLAPW! charge-
density
integration experimental Zr d 1.69 1.42
LDA LCAO® Mulliken experimental Zr 2.09 2.05 1.91
Zr d 1.91 1.94 1.73
Cluster DV-X,f Mulliken experimental Zr 1.1 0.9
CNDO# Lowdin experimental Zr 0.9 1.0 1.0
This work
Hartree-Fock Mulliken optimized Zr 1.065 0.984 0.962
Pseudopotential® Zr d 0.868 0.807 0.792
INDO Lowdin optimized Zr 2.36 2.01 1.97
Zr d 1.88 1.53 1.51

“Reference 21.
YReference 29.

‘Hay and Wadt large-core ECP (Ref. 19) on Zr atoms. In this method the total electron population on
Zr atoms is smaller than that on Zr d functions. This is an artifact of the basis set used, as discussed in

Ref. 29.
dReference 47.

‘Reference 31. LDA is the local-density approximation.

fReference 61.

EReference 62. CNDO is the complete neglect of differential overlap.
"Hay and Wadt small-core ECP (Ref. 19) on Zr atoms.
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structure and reduces the energy separation between the ¢
and c¢ phases in the doped crystals.

The discussion above shows that the stabilization of
cubic zirconia by impurities is a complex phenomenon
comprising significant changes of both atomic and elec-
tronic structures of the doped crystals. In our model cal-
culations we have identified some of the basic factors con-
trolling the relative stability of the #- and c¢-ZrO, po-
lymorphs and discussed them in the context of aligned di-
poles. However, in order to understand this effect in full,
more sophisticated models of the solid solution should be
employed which take into account also the distribution,
mobility, and clustering of defects,®® their vibrational
and configurational entropy,*! the nonlocal compensation
of the charge of the impurity (for instance, due to segre-
gation of the charged defects to the grain boundaries®),
and the reorientation of dipoles. Moreover, these results
for different models should be properly averaged accord-
ing to their statistical weight and temperature (for in-
stance, by means of the Monte Carlo technique). Solu-
tion of these challenging problems will provide a better
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understanding of the mechanisms of phase transitions
and promote the technological implementation of
zirconia-based ceramics.
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FIG. 1. Schematics of the three ZrO, polymorph structures.
Small circles represent the oxygen atoms; large shaded circles
represent the zirconium atoms. a, b, and c indicate the crystal-
line axes. (a) ¢-ZrO,. The arrows show the directions of dis-
placements of the oxygen atoms corresponding to the X; dis-
tortion which transforms the ¢ structure into the ¢ structure. (b)
t-ZrO,. Note the deformation of the oxygen sublattice (dashed
lines) with respect to that in the ¢ structure. (c) m-ZrO,. In
contrast to the ¢ and ¢ structures Zr atoms are seven coordinat-
ed and O’ atoms are three coordinated: the Zr-O' bond which is
shown by a dashed line is broken. Note that the unit cell is ro-
tated with respect to that in (b).
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FIG. 3. Schematic of the NNN Ca (Mg) -vacancy dipole in
c-Zr0,. There are no separate dipoles in the lattice. Each im-
purity cation is surrounded by three oxygen vacancies symme-
trically with respect to the threefold {111) axis. Arrows show
the directions of ionic displacements obtained in the GULP cal-
culations. The numbers by the arrows correspond to the relaxa-
tion modes in Table VI.



