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Analytical model of a one-dimensional constriction with many occupied subbands:
Calculation and experiment
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We have measured the difFerential conductance of two difFerent one-dimensional (1D) constrictions
with several occupied subbands at low temperature under conditions of high dc source-drain bias
relative to the 1D subband spacing. The results are compared with a simulation based on a saddle-
point potential with and without a thin equipotential strip at the center. We 6t the experimental
results at high conductance by increasing the width of the equipotential strip with an increase in
number of conducting subbands. For a split gate where the depth of the electron gas is 70 nm
and where there are at most three occupied 1D subbands, a simple parabolic saddle-point model is
sufficient. For a device where the depth of the electron gas is 27 nm and there are eight occupied 1D
subbands, the modified potential model is needed to give good agreement with experimental data.

Quantized ballistic conductance, arising from the for-
mation of one-dimensional (1D) electron energy sub-
bands in a short and narrow constriction in a two-
dimensional electron gas (2DEG) remains the clearest
example in lateral electron transport of a quantum-
mechanical size effect. In this paper we begin by re-
viewing previous models of the simple split gate. We
then present the experimental and calculated differential
conductance when there are several conducting 1D chan-
nels and the applied dc bias is of the same order as the
1D subband energy separation. The model used is ana-
lytically soluble in the direction of electron travel and in
the direction of lateral confinement.

The simplest model of a 1D constriction comprises
a constriction between two semi-infinite 2DEG planes
with a hard-wall confining potential. 2 Transverse stand-
ing waves in the electron wave function allow the calcu-
lation of the 1D subband energy spacings. This model
may be modified to incorporate a degree of adiabatic
transport by having a linear decrease in width of chan-
nel approaching the constriction or a finite radius of
curvature to all the corners in the device. In a numeri-
cal calculation using these models, electron phase coher-
ence is assumed throughout the device. When sharp cor-
ners or hard walls are present, length resonances are pre-
dicted due to quantum-mechanical interference between
phase-coherent components of the electron wave func-
tion. These have not been unambiguously observed in
a simple split-gate device because it is dificult to pat-
tern the 2DEG on a length scale comparable with the
electron Fermi wavelength and maintain phase coherence
throughout the whole device. Lithographic limitations
restrict the sharpness of Schottky gate corners and the
potential at the depth of the 2DEG is also smoothed
because the Fourier components of the surface pattern-

ing decay exponentially with depth as exp( —2+an/b),
where n is the order of the Fourier component, a is the
depth of the 2DEG, and 6 is the inverse of the maxi-
mum spatial &equency in the pattern. Even when the
depth of the 2DEG is equal to the characteristic period
of the lithography, the modulation is greatly reduced
[exp( —27r) = 0.001].

A more realistic analytical model for a short constric-
tion was applied by Buttiker, treating the electrostatic
potential as a parabolic saddle point, leading to an equa-
tion for the potential, s

V(x, y) = Vo —zm'&u x + zm'~„y

V(x, y) = Vo —zm'ur x + —m*w„(IyI —W/2) . (2a)

In the flat regions we have

V(x, y) = Vo ——m'ur x (2b)

The width is sensitive to the number of electrons in the

The saddle-point model is applicable principally where
there are few 1D subbands and the device approaches
pinch-off, but above a conductance of e2/h. Within
these limits, this model has been used with great
success. ~ For larger numbers of 1D subbands in a long
1D wire, self-consistent Poisson-Schrodinger calculations
show that the parabolic potential is flattened at the bot-
tom by the screening effect of conduction electrons in the
constriction.

The model that we have chosen is based on a saddle
point and approximates the self-consistent result in an
analytical form with a thin equipotential region of width
R' in the middle of the lateral confining potential. For
Iyl & lV/2
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E„=hors(n+ -', ), n = 0, 1, 2, . . . . (3a)

The constriction widens with increasing electron den-
sity because of the additional screening, i.e., TV increases
while E —Vo remains constant. The 1D subband energy
becomes

+[ho„(n+ —,') + 2m'(~„W/2z. )']'~')' . (3b)

constriction. In the few-electron limit lV ~ 0 and the
confinement is parabolic with equidistant spacing of sub-
bands,

V cm z s ~. Measurements were made by phase-sensitive
detection at a temperature of 300 mK with a constant
ac excitation of 10 pV. Conductance versus gate volt-
age characteristics with V,g ——0 show that this device
has only three occupied 1D subbands at channel defini-
tion and a fit with a simple parabolic model gives the
factor g = ur„/~ = 1.5. Figure l(a) shows the exper-
imental difFerential conductance versus gate voltage for
increxnental V,g for V,g ——0—4.3 mV with a 0.031-mV
step. Figure 1(b) shows the calculated difFerential con-
ductance versus energy for incremental V,s based on the
simple parabolic saddle point with no equipotential strip
and matches the experimental data closely. The equal
length "bundles" show that the parameter P is close to
0.5 and the fact that the crossing points lie on a straight

The differential conductance at zero temperature is given
by

+pT„(E„+peV.d)), (4)

where V,d is the source drain voltage,

and

T„=1/[1 + exp( —7rs„)]

-2 -1.5 -1
Gate Voltage(V)

I

-0.5

s„=2[E —E„—Vp]/hu (6)

In deriving Eq. (4) we have assumed that the Fermi
energy E~ ) eV,g. The parameter P defines the potential
drop over the constriction (0 & P & 1): PV,d is the
potential difference between the source region and saddle
point and (1 —P)V,s from saddle point to drain. We
assume that the voltage drop is symmetric across the
device so that P = 0.5 for conductance down to e2/f't and
then drops linearly to zero at device pinch-ofF in order to
match the experimental data. On general grounds P = 0
when G = 0.

Comparisons between experimental and calculated
data for two split-gate devices are presented. Both
are made by electron beam lithography with Nichroxne-
gold metallization overlaying a GaAs-Al Gaq As het-
erostructure. The calculated data have not been cor-
rected for the thermal smearing because the subband
spacings deduced &om the high dc bias difFerential con-
ductance measurements are greater than 10 kT in both
devices at their respective measurement temperatures.

The first device A544-QPC13 is a split gate with length
0.1 p,m and width 0.3 pm fabricated on a 2DEG at a
depth of 70 ~m with sheet carrier density n, = 4 x 10
cm z (E~ = 14 meV) and mobility p = 2 x 10s
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FIG. 1. (a) Sample A544-QPC13: Experimental differ-
ential conductance (G) vs gate voltage for incremental V,a
for Vd = 0—4.3 mV with a 0.031-mV step. (b) Sample
A544-QPC13: Theoretical conductance G as a function of
electron energy at constant source-drain bias V,p. The pa-
rameter P tends to zero linearly below the lowest plateau.
The parameters Ace„= 4.3 meV and g = 1.5 are obtained by
comparing theoretical values of G vs energy with experiment.
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line shows that the spacings between the first three 1D
subbands are equal, as predicted by the parabolic model.

The second device A704HIT2-2 is a split gate formed
by two offset rectangular corners with a separation of
0.1 pm fabricated on a 2DEG at a depth of 27 nm with
n, = I x10~ cm (E~ =35meV) and y=7.1x10
Vcm s after illumination by a red light-emitting
diode. The radius of curvature of the gate metallization
in this device is between 10 and 20 nm. Measurements
were made by phase-sensitive detection at a temperature
of 4.2 K with a constant ac excitation of 100 pV. The
sheet carrier density, shallow depth of 2DEG, and short
channel of the second device give large subband energy
spacings and this allows the measurements to be made at
4.2 K. A correction has been made for the effect of a 500-
0 series resistance on the conductance and the source-
drain bias across the device. Conductance versus gate
voltage characteristics with V,g ——0 show that this device
has at least seven occupied 1D subbands at channel defi-
nition and a fit with a simple parabolic model for the first
few 1D subbands gives the factor g = u„/u = 2. Fig-

ure 2(a) shows the experimental differential conductance
versus V,g for incremental gate voltage for gate voltage
V~ = —0.7 to —1.2 V with a step of —0.01 V. The de-
vice is modeled well by the simple saddle-point model
at low conductance. A nonparabolic term in the poten-
tial would lead to deviations of the plateaus conductance
away from the exact half-plateaus values at high dc bias.
At high conductance, the analytical model of Eq. (2)
is more appropriate. Figure 2(b) shows the differential
conductance versus V,p for incremental electron energy
calculated from Eqs. (Sb) and (4) with the value of W
varying nonlinearly between 0 at subband index n = 1
and 65 nmat n= 7.

We have confirmed the validity of the simple parabolic
saddle-point model with parameters Ru„, P, and u„/u
for a simple split gate with few ((4) occupied 1D sub-
bands. We have also presented an analytical model with
an additional parametric equation W(n) which describes
the differential conductance in the range when there are
large numbers (approximately seven) occupied 1D sub-
bands at channel definition. Both models are valid when
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FIG. 2. (a) Sample A704HIT2-2: Exper-
imental difFerential conductance vs V,g for
incremental gate voltage for gate voltage
V~ = —0.7 to —1.2 V with a —0.01-V step.
The dashed lines indicate half-plateaus used
for finding the width W. Dot-dashed lines
connect integer plateaus as predicted by the
model. (b) Theoretical conductance for de-
vice A704HIT2-2 according to the present
model with Ru~ = 9 meV, g = 2. The dashed
lines indicate half-plateaus used for finding
the width W. Dot-dashed lines connect inte-
ger plateaus as predicted by the model. Be-
low the lowest plateau the parameter P tends
to zero linearly with (E —Vo).
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E~ )E—Vp, and when the applied dc bias is less than or
equal to approximately two times the 1D subband spac-
ing. The models fit the experimental data if the param-
eter P is reduced linearly &om 0.5 to zero between a
conductance of e2/h and pinch-off.
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