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We study theoretically the electronic structure of periodically Si §-doped GaAs subject to a
homogeneous electric field applied along the growth direction. The space-charge potential due to §
doping is obtained by means of the Thomas-Fermi approach. Analyzing the change in the density
of states in the superlattice introduced in the electric field, we observe a set of equally-spaced sharp
peaks corresponding to Stark-ladder resonances. Intrinsic broadening of resonances turns out to be
smaller than the level spacing in the whole range of the electric field we consider. We use the inverse
participation ratio to evaluate the spatial extent of electron wave functions, and we find that the
Stark-ladder spectrum is related to a strong-localization regime at high field.

I. INTRODUCTION

During recent years, much work has been devoted
to investigating the occurrence of Stark ladders in the
electronic energy spectrum of quantum-well superlattices
placed in an electric field along the growth direction.'™
These ladders do not comprise infinitely sharp levels, as
was proposed originally, but rather they are resonant lev-
els whose lifetimes are finite. The spacing between the
energy levels in each ladder is eFa, where F is the mag-
nitude of the electric field, and the electron states are
localized and spatially shifted relative to one another
by integer multiples of the superlattice period a. Re-
cent experiments seem to firmly establish the existence
of a ladder structure in quantum-well superlattices.” !
Epitaxial-growth techniques are currently used to pre-
pare d-doped semiconductor structures, in which a sheet
of impurity atoms is localized within a few monolayers of
the crystal. Impurity atoms usually supply electrons and
give rise to strong confinement by the space-charge po-
tential. In periodically §-doped structures, the overlap of
electron wave functions of adjacent potential wells causes
the formation of subbands, as observed experimentally by
optical'? and Shubnikov—de Haas!® measurements in Si-
J-doped GaAs. As far as we know, however, field effects
on the subband structure and the possible occurrence of
Stark ladders in periodically §-doped structures have not
been reported in the literature.

In the present work we investigate theoretically the
electron dynamics and the density of states (DOS) in pe-
riodically Si-§-doped GaAs subject to an external, static
electric field parallel to the growth axis. We shall show
that Stark-ladder resonances are clearly revealed in the
DOS, hence suggesting that this structure should also be
observable experimentally in periodically §-doped GaAs,
as was the case in quantum-well superlattices. Some
practical considerations, mainly related to loss of quan-
tum coherence by disorder, are raised at the end of the
paper.

II. THE MODEL

The system we study in this work is a superlattice
made of Si-§-doped GaAs, with the following parameters,
which we take from the samples grown by Egues et al.13
by molecular beam epitaxy: the superlattice unit cell is
a 500—A slab of GaAs with a Si-6-doped layer embed-
ded in its center. We assume that there exists a uniform
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p-type background doping with N4 = 1 x 10*® cm™3 ac-
ceptors per unit volume, and that the doping layer con-
sists of a continuous positive slab of thickness d = 50 A
with Np = 3 x 102 cm™2 ionized donors per unit area.
The whole superlattice consists of ten unit cells sand-
wiched between two 1000-A buffer layers of GaAs. The
doping periods @ = 500 A is intermediate between
two limiting cases discussed by Degani.}* This author
found by self-consistent calculations that for large peri-
ods (a ~ 1000A) the system behaves as a single doping
layer, whereas for short periods (a ~ 200 A) a superlat-
tice is formed due to strong coupling between adjacent
wells. Therefore, our study acquires additional impor-
tance to assess the effect of moderate coupling on the
electronic structure.

The first step in the calculation is to compute the po-
tential energy V(z) in the unit cell. This we accomplish
by means of the Thomas-Fermi (TF) semiclassical model.
The TF formulation is equivalent to a self-consistent for-
mulation in a wide range of doping concentrations,'® and
it has been previously applied to periodic structures in
the absence of field by Egues et al.}® The nonlinear TF
differential equation reads

2V (2 s
VD - 2 er v

8 d d

—87 N 40 (a: + %) 0 (:c - g) , (1)

where er denotes the Fermi energy. Distances and en-
ergies are measured in units of the effective Bohr radius
a* (= 100A) and effective Rydberg, Ry* (= 5.8meV),
respectively. The boundary conditions for this equation
are those of the superlattice, given by

We assume the validity of the effective-mass approx-
imation. Thus, once the potential V(z) is found from
(1), the electron dynamics along z inside the unit cell,
in the presence of a homogeneous applied electric field F'
perpendicular to the doping layers, is obtained from the
following one-dimensional Schrédinger equation
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d*y(z)

dz?

+ [eFz + V(z)]¥(z) = E¢(x). (3)

The origin of the spatial coordinate is set at the left edge
of the system, and energies are measured from the po-
tential value at that edge. In what follows, we restrict
ourselves to electron energies in the range 0 < E < eFL.

In the case of zero-field structures, the Bloch theorem
holds and formation of subbands occurs. The dispersion
relation inside allowed subbands and energy gaps may be
found using the numerical method previously given by
Méndez et al.'® However, an applied electric field breaks
the translational symmetry of the potential and the com-
putation of the electronic structure requires a different
approach. Consider an electron of energy E impinging
from the left on the structure. Since we shall only deal
with electron energies E < eF'L, the electron will be re-
flected with probability unity. Therefore, the reflection
amplitude r can be expressed as follows

r= eZiQ(E)’ (4)

where the phase shift ®(F) is real. Levinson’s theorem
relates this phase shift and the changel” in the density
of states Ap(FE) due to the finite potential through the
equation'®

Ap(E) = L d‘zg)

= (5)

The reflection amplitude is calculated by solving the
Schrédinger equation (3), assuming that the wave func-
tion for z < 0 is a superposition of incoming and out-
going plane waves of the form v (z) = exp(ivVEx) +
r exp(—ivV E ), while for z > L it decays exponentially

as Y(z) = Cexp(—VeFL — Ex).
III. RESULTS AND DISCUSSION

The TF potential V(z) in the unit cell is plotted in
Fig. 1(a), choosing the origin of z at the middle of the
cell for clarity; this potential is symmetric around the
center of the cell.!® Figure 1(b) shows the dispersion re-
lation E(k) inside allowed subbands along the growth
direction in periodically d-doped GaAs, in the absence
of external fields. Here k denotes the crystal momentum
along that direction. There exist three subbands below
the top of the potential for the impurity concentration
we consider. The two lowest subbands are only slightly
broadened and become almost nondispersive. This indi-
cates that adjacent wells are only weakly coupled when
the doping period is a = 500 A. On the other hand, the
third subband is clearly dispersive, as would be expected
from the V-shape form of the potential (the higher the
energy, the smaller the distance between adjacent wells).
Also note that gaps above the Fermi energy are very nar-
row.

The applied external electric field modifies the energy
spectrum of the system. The change in the DOS as a
function of the electron energy exhibits a set of pro-
nounced peaks separated equidistantly, as shown in Fig. 2
for two values of the applied electric field (the DOS is
expressed in arbitrary units because we are mainly in-
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FIG. 1. (a) TF potential due to a single §-doped layer ob-
tained by solving the corresponding TF equation. (b) Sub-
band structure, on the same energy scale, of periodically
d-doped GaAs along the growth direction, where « is the crys-
tal momentum in that direction.

terested in the position and width of these peaks). In
the method of phase-shift analysis, Stark resonances are
characterized by a rapid increase of 7 in the phase ®(E);
consequently, the change in the DOS presents sharp
peaks. The number of pronounced peaks equals the num-
ber of layers in the superlattice examined, which indi-
cates the occurrence of a well-defined Stark-ladder struc-
ture in the energy spectrum. There exists more than one
Stark ladder, each one evolving from a different zero-
field subband. Therefore, ladders may be labeled by the
band index n (n = 1 denotes the lowest subband, and
so on). For instance, the pronounced peaks of Fig. 2(a)
correspond to n = 3 whereas those shown in Fig. 2(b)
correspond to n = 2. It is also worth mentioning the
occurrence of subsidiary peaks when the electric field is
increased; this point will be discussed later.

The spacing between consecutive Stark levels is almost
the same for a fixed value of the electric field. We realize
that the average level spacing is of the form A = eFa in
a wide range of electric fields. As pointed out by Ritze
et al® in the case of Ga;_ Al As-based quantum-well
superlattices, the position of the peaks arises from the
interplay between two interactions, namely, the coupling
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FIG. 2. Change in the DOS versus electron energy
for two different values of the applied electric field: (a)
F =0.5kV/cm and (b) F =5.0kV/cm.
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between different wells and the coupling with the applied
electric field. This causes a sublinear dependence of the
Stark level spacing A as a function of the applied elec-
tric field in the low-field range, as they observed in thin-
ner barriers. In the periodically §-doped GaAs we are
dealing with, the coupling between adjacent wells is rela-
tively weak, as we mentioned earlier, and the interaction
with the electric field dominates. Therefore, the Stark
level spacing A is linear in the whole range of electric
fields, even at low fields. We would like to stress that
our system is finite and thus it lacks perfect periodic-
ity. Finite-size effects should be appreciable at low fields,
when the interaction between wells becomes important.
This effect is apparent in Fig. 2(a), where one observes
that (i) the two lower-lying Stark levels are broader and
lower, (ii) the spacing between them is somewhat larger
than the predicted value eFa, and (iii) subsidiary peaks
only appear between higher-lying levels. The absence
of a perfect periodic pattern in the DOS indicates that
Stark-ladder states are rather localized; only states lo-
calized at the outermost wells (giving rise to lower- and
higher-lying resonances) experience the missing spatial
periodicity. We will give later further evidence of local-
ization.

With increasing field, the peaks corresponding to the
same Stark ladder shift and become broader and lower.
In general, the shapes of Stark-ladder resonances are fit-
ted by Lorentzian curves. In our computations, all the
widths turn out to be much smaller than the spacing A
in the whole range of electric fields. The position of the
peaks, E,i (n is the ladder index and k = 0,1,...,9 runs
over the peaks), depends linearly on the applied electric
field, except for lower resonances at very low fields. The
energy of Stark levels for a not very low field is approxi-
mately given by

Epx = (k+5/2)eFa+ E2, (6)

where E? is roughly the energy of the n subband. The
factor 5/2 comes from the fact that the first §-doped layer
is placed at = = (5/2)a. We actually found that extrapo-
lation to F' — 0 of each resonance belonging to the same
ladder yields slightly different values of EC. This is to
be expected because the width of the zero-field subband,
from which the corresponding Stark ladder evolves, is
actually nonzero. For those ladders shown in Fig. 2, the
mean values are Ej = —0.06 Ry* and EJ = —1.9Ry*,
in good agreement with the center of the third and the
second subbands, respectively, measured from the top of
the TF potential'® (see Fig. 1). Zhao?° has recently stud-
ied a two-band, tight-binding Hamiltonian and demon-
strated that field-independent terms also involve inter-
band coupling. In our system this contribution seems to
be negligible, so we are led to the conclusion that cou-
pling between different bands may be neglected as a first
approximation.

At zero field electronic states are delocalized and form
bands. This picture holds even when a very low electric
field is applied. However, as the field increases the states
of each well are shifted and quantum coherence is then
reduced. Because of the decreasing coherence, localiza-
tion of the electron wave function occurs, with quantum
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states confined in individual wells. This result is clearly
seen in Fig. 3(a), showing a localized electron wave func-
tion confined in the sixth well due to an applied electric
field (F = 5kV/cm). The electron energy is 31.887 Ry*,
corresponding to the sixth pronounced peak in Fig. 2(c),
that is, this state belongs to the second Stark ladder. A
detailed view of the change in the DOS in this energy
range appears in Fig. 4(a). Notice that the energy level
is below barrier (i.e., below the local maximum of the po-
tential after applying the electric field) so that, in fact,
it is a tunneling state. High spatial localization means
high lifetime and, consequently, the level width is small,
as observed in Fig. 4(a). On the other hand, the sub-
sidiary peaks are broader, thus corresponding to more
extended states. These broad peaks are due to above-
barrier states, as shown in Fig. 3(b). The energy of this
less localized state is 33.750 Ry*, and it coincides with
the position of the broad resonance inmediately above
the pronounced peak in Fig. 4(a). Similar conclusions
have previously been reached by Ritze et al.® in regard
to below- and above-barrier states in quantum-well su-
perlattices.

The degree of localization may be evaluated by means
of the inverse participation ratio (IPR), as introduced by
Bell and Dean.?! The IPR measures the volume occupied
by the electron wave function: the smaller the IPR, the
more extended the electron state. The IPR has been suc-
cessfully used to study localization of Stark-ladder states
in tight-binding Hamiltonians by Leo and MacKinnon!
and in GaAs-AlAs superlattices by Degani.* We have
evaluated the IPR as a function of the electron energy,
for fixed field, in periodically é-doped GaAs, as shown
in Fig. 4(b) for F = 5kV/cm. A comparison between
Figs. 4(a) and (b) demonstrates that a pronounced peak
in the change of the DOS, corresponding to Stark-ladder
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FIG. 3. Squared electron wave functions for an applied
electric field F = 5kV/cm: (a) a state belonging the second
Stark ladder localized in the sixth well with energy 31.887 Ry*
and (b) above-barrier state with energy 33.750 Ry*. The po-
tential profile of the structure subject to the electric field is
also shown, and the dashed line indicates the energy of the
state.
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FIG. 4. (a) Change in the DOS and (b) IPR as a function of
the electron energy for an applied electric field F = 5kV /cm.

states, yields a sharp peak in the IPR, implying that
those states are strongly localized. However, a subsidiary
peak, corresponding to above-barrier states, yields a mi-
nor increase in the IPR, reflecting the fact that those
states are rather delocalized. Therefore, we may state
that the IPR confirms the results we discussed above.

IV. CONCLUDING REMARKS

We have numerically investigated the change in the
DOS introduced by periodically Si-é-doped GaAs in
an electric field applied perpendicular to the layers.
The space-charge potential due to the layer of impurity
atoms has been calculated by means of the semiclassi-
cal Thomas-Fermi model, which yields very good results
in a wide range of donor concentrations. The change in
the DOS exhibits a set of equidistant pronounced peaks,
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demonstrating the occurrence of well-defined Stark lad-
ders in the energy spectrum. The corresponding elec-
tron wave functions are localized in a single potential
well, indicating loss in the quantum coherence due to the
misfit of quasilocal levels. Electronic states are pushed
upward and become broader as the electric field is in-
creased, hence giving rise to the so-called above-barrier
states. The IPR clearly shows that these states are less
localized than Stark-ladder states.

As a major point, we have found that the average Stark
level spacing is always larger than the level width. The
physical relevance of this result is evident since one re-
quires well-separated levels for experimental observation.
However, the level width refers to the intrinsic broaden-
ing predicted by scattering theory; there are many scat-
tering mechanisms not included in our model (electron-
phonon interactions, scattering by disorder), which could
result in broadening. The experience gained in con-
nection with quantum-well superlattices suggests that
the temperature should be kept low to reduce electron-
phonon interaction, making easier the observation of
Stark ladders. In the case of periodical § doping, broad-
ening due to scattering by disorder might be more dra-
matic than in quantum-well superlattices. The random
distribution of donors in the §-doped layers as well as fluc-
tuations in their thickness may lead to a strong reduction
of phase coherence. Therefore, experimental work is nec-
essary to elucidate whether the molecular-beam-epitaxy
techniques now available can fabricate samples with the
required large coherence length. We hope that our results
will encourage experimental effort in that direction.
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