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Magneto-optical absorption in a one-dimensional array of narrow antiwires
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We present a self-consistent 6eld theory for the infrared absorption coefficient of an array of
narrow antiwires in a perpendicular external magnetic field. A detailed study is made of the way
in which the collective mode changes from a cyclotron mode when the confining potential is weak
to tunneling coupled modes for intermediate antiwire potential strength and then to edge and one-
dimensional lattice magnetoplasmon modes for strong potentials. Our numerical calculations show
that at low magnetic fields, there is appreciable electron tunneling between quantum wires. However,
as the magnetic field is increased, the electron tunneling is suppressed. The suppression of electron
tunneling between wires is observed when the tunneling coupled modes emerge into cyclotron modes
in the strong magnetic field regime. The edge mode excitation energy oscillates as a function of the
electron density. These oscillations correspond to soft or hard potential walls for which the electron
states are extended and localized, respectively.

Experimental observations such as the quantum Hall
effect~ in the two-dimensional electron gas (2DEG), the
quenching of the Hall effect in quantum wire junction2
and antidots, 3 the quantization of the resistance of bal-
listic point contacts, and the optical properties of quan-
tum wires have led to an intense investigation of the
optical and transport properties of systems of reduced
dimensionality. Experiments have also dealt with related
systems such as quantum rings. Strong periodic xnodu-
lations and mutual Coulomb scattering have produced
novel effects in the 2DEG subject to one-dimensional
(1D) (Ref. 9) or 2D (Ref. 10) electric potential mod-
ulation.

Recently, submicrometer lithographic technology has
been used to produce quantuxn wires which contain a
number of electrons in discrete energy subbands. The re-
versed structure to wires is antiwires which are obtained
by etching an array of microscopic grooves of submicrom-
eter width into a high mobility 2DEG conductor. The
introduction of this strong spatially modulated poten-
tial leads to dramatic commensurability effects at low
temperature in uniform external magnetic fields. In this
array of artificial scatterers, there is pronounced struc-
ture in the magnetoresistance. Hansen et al. reported
the observation of a softened magnetoplasmon mode by
varying the gate voltage. Wulf et al. and Gumbs et
al. proposed explanations to this softening behavior,
separately. Demel et al. observed the 1D magneto-
plasmons in an array of multiple quantuxn wires where
both the edge and Couloxnb coupled modes were found
in in&ared absorption experiments. Goni et al. further
discovered rotons and spin-Hip excitations in such a sys-
tem by using light scattering. The saxne structure also
showed oscillations in the longitudinal conductance as a

function of an applied gate voltage due to the successive
population of the 1D subbands. For 1D and 2D mag-
netic field modulations, Schmidt and Xue and Xiao
calculated the deterministic diffusion and magnetotrans-
port. In 1D lateral quantum wire superlattices in the
weak modulation limit, Gerhardts and and co-workers~s
theoretically investigated the magnetotransport in which
the commensurability oscillations in the longitudinal con-
ductivity were explained as being due to the changes in
the Landau band arising from the 1D potential modula-
tion when localized and extended states are formed by
the magnetic field. Cui et al. calculated the magneto-
plasmon excitation in the same 1D lateral superlattices
where the commensurability oscillations were predicted
in the magnetic field dispersion of the excitation energy.
Wulf et al. studied the magnetotransport in the strong
modulation limit where giant oscillations in the Hall con-
ductivity were observed.

Although there have already been some experimental
and theoretical studies for the 1D array of quantum wires,
only a few deal with the in&ared absorption and magne-
totransport in the 1D array of antiwires. The physics in
a very weak modulation limit can be well understood on
the basis of a first-order perturbation theory. However,
the lack of self-consistency by taking the zero-order wave
function ' completely excludes the effect &om the lat-
tice periodicity. In the very strong modulation limit, the
system can be viewed as a 1D lattice since the small ef-
fect &om the magnetic quantization is negligible in this
case. What is unknown turns out to be the physics in
the intermediate modulation regime where the Landau
and size quantization becomes comparable to each other.
The cyclotron mode in the 2DEG is split into the tun-
neling coupled modes in the weak modulation regime. In
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the crossover regime, these two coupled modes gradually
develop into the edge and 1D lattice magnetoplasmon
modes in the strong modulation regime.

In this paper, we present a model for an array of nar-
row antiwires and a self-consistent field theory for the
infrared absorption coefficient. We carry out a detailed
calculation of the in&ared absorption spectra as a func-
tion of the antiwire modulation strength, the magnetic
field, and the electron density.

The single-particle Hamiltonian for a 1D periodic ar-
ray of narrow antiwires in the x-y plane in a uniform
perpendicular magnetic field B is given in the Landau
gauge by1,B' (5B+

~

——+ eBz
~

+ V'"'(z), (1)2m' Bz2 (,i By )
where m* is the electron effective mass. In Eq. (1),
the narrow antiwire potential V'"t(z) is taken as one-
dimensional 8 functions

where H (z) is the nth order Hermite polynomial.
Clearly, B„„(Xp) has the periodicity of the lattice.
From this, it follows from Eq. (5) that E~ (X.p) = E& (Xp+
a). Since the coefficient matrix in Eq. (4) is real and sym-
metric, C„(j, Xp) must be real.

A straightforward but lengthy calculation yields the
Lorentz ratio nL, (u) defined as the ratio of the Fourier
coefficient of the absorbed energy of &equency w of an
external electric field to the square of the amplitude of
the probing field. We have

e2A . dXp
ar, (~) = —

2 ) X, i (Xp)I
fp [Ei(Xo)] —fo [Ei'(Xo)]

Ru —[E, (Xp) —E, (Xp)] + ip
ao f). Sp;~s(mG; ~) l

eEext

(2)
xS(!mG!)F~~,x, (mG) e' (6)

where Vp/a ) 0 represents the strength of the antiwire
potential. The approximate form in Eq. (2) for simulat-
ing a 1D array of narrow antiwires reduces the amount
of numerical calculations considerably. Furthermore, this
model is satisfactory provided that the lattice period a is
much larger than the widths of the antiwires.

In the presence of the antiwire potential, the single-
particle energy eigenstates are labeled by the quantum
numbers (j, Xp) and we expand the eigenfunctions ac-
cording to

&~,x.(» y) = ) . C-(j»p) &-,x.(» y) (3)
n=o

where P„x,(z, y) are harmonic oscillator wave func-
tions for a homogeneous 2DEG, with energy eigenvalues

E = (n + 1/2)hu, . Here, ur, = eB/m' is the cy-
clotron &equency. In this notation, n = 0, 1, 2, . . . is
a Landau-level index, Xo ——k„L~ is the guiding cen-
ter, k„ is the wave vector along the y direction, and

LH = (5/eB)i/2 is the magnetic length. The expansion
coefficients C„(j, Xp) in Eq. (3) are determined from the
following linear equation:

) ([E( l —E, (Xo)]b„„+B„,„(Xo))C (j, Xo) = 0,

(4)
as well as the orthonormality condition:

C (j, Xp)C (j', Xp) = b~ z . We obtain a sec-
ular equation for the jth energy eigenvalue E~(Xp) by
setting the determinant of the coefficient matrix in Eq.
(4) equal to zero. Also, the second term in the coefficient
matrix in Eq. (4) is given by

B„„(Xp)= Vp ) (1/~2"+" n!n'!L~)'
i=—oo

xe ' + ' ~ H„[(la+ Xp)/LH]
x0 [(la + Xp)/LH], (5)

(8)

2me2 8+ QimiGL, + 3m2G2L2
S mG

e, im[G 8(1+ im[GL, )s 9)

where ~, = 4vreoeg and eg is the background dielectric con-
stant. In Eq. (9), the Fang-Howard variational ground
state wave function in the z direction for a 2D heterojunc-
tion was used. In Eq. (6), the induced electron density is

a solution of the following linear equation:
OO

)
)

In this notation, A is the area of the sample, p is the
optical broadening due to impurity, phonon, and surface
roughness scattering, E'"' is the amplitude of the prob-
ing field, G = 2'/a is a reciprocal lattice vector, and

fp[Ei(Xp)] = (1+exp[Ei(Xp) Eg]/kBT—) i is the Fermi
distribution function; EF is the Fermi energy determined
by the electron density n2D. The dipole transition matrix
Xi i (Xp) is given by

Xi q (Xo) = ) C (j, Xo) [v n + 1C +i (j Xo)

+vtnC„ i(j ', Xp)] —Xp&i,j', (7)

and the form factor is defined by

F~~,x, (mG) = ) C„(j, Xo)C„(j', zp)
n n'=O

7

x[QN(!/N)! (i sgn (—m)](

x mG L /4—
(H2G2L2 J2)(N) N& )/2—

H/

xL, ' ' (m'G'L' /2)],
where sgn(z) is the signum function, L„(z) is a Laguerre
polynomial, N( ——minjn, n'), and N) ——max(n, n').
The screened factor of Coulomb interaction due to the
finite thickness L, of the EG layer has been calculated
as
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FIG. 1. The excitation energies of edge mode (filled

circle), cyclotron mode (unfilled triangle), snd 1D lat-
tice msgnetoplssmon modes (filled triangle snd unfilled

square) are shown as s function of the sntiwire po-
tential V = (V()/a)/(V s h /m'a ). The parameters
in the numerical calculation are chosen as follows: a = 1000 A. ,
m' = 0.067m„e), = 12.9, L, = 50 A. , p = 0.12 meV, T = 0

K, B = 0.45 T, nqDa = 5.0.
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where

and

1 . dxp
, (~) = L, ),+,',, ;x.(m'&)

H ~g~)

x F, , x, (mG) S(]mG~) e'

fo [Ej(Xo)]—fp [Ei'(Xp)]
ha) —[E,I(Xp) —E, (Xp)] +ip
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FIG. 2. Plots of the absorption coefficient P b, ((d)a as s
function of the photon energy ~ for various values of the
magnetic field B in the intermediate [V = 1.0 in (s)] snd the
strong [V = 5.0 in (b)] potential modulation regimes. The
parameters in the calculation are the same as those in Fig. 1.
Each curve in the figures is shifted upward by a constant.
From the bottom, the curves correspond to B = 0.2 —0.9 in
steps of 0.1 T.

fo [E~(Xo)]—fo [EJ'(Xp)]
h4p —[E, (X ) —E, (Xo)]+

'

(12)

The absorption coeKcient is given in terms of the real
I

(Re) and the imaginary (Im) parts of the Lorentz ratio
by20

/Bsb, (s)) = [(d/epcLgAn„((u)] [pph((d) + I] Imal, (~), (13)

where p~t, (u) = [exp(fad/kJJT) —I] is the photon distri-
bution function, and the &equency-dependent refractive
j.ndex }s

n„(u) = (i2(as+ ReaL, (ur)/epL, A+ V/[es+ Rear, (~)/epL, A] + [lmaL, ((d)/epL, A] )) (I4)

Figure 1 shows plot of resonant peak positions of the
absorption coefBcient as a function of the antiwire po-
tential strength. This is an example that shows how the
magnetoplasmon mode changes &om a cyclotron mode
in the weak modulation potential regime to a 1D lattice
magnetoplasmon mode when the modulation potential is
strong. For intermediate values of the lattice potential,
the cyclotron mode first splits into two new tunneling
coupled modes. One of these two coupled modes devel-
ops into the 1D lattice magnetoplasmon mode when the
lattice potential becomes strong while the other gradually
changes into an edge mode as the potential strength is
increased. The antiwire potential first shifts the electron
energy levels upward which enhance the electron tunnel-
ing Rom both sides of the antiwire. However, when the
potential is very strong so that the electron tunneling
is suppressed, we are left with an array of isolated wide

quantum wires. The potential strength dispersion of the
tunneling coupled modes is appreciable compared with
the 1D lattice magnetoplasmon modes. When the mod-
ulation potential becomes strong, a hard potential wall
is formed which favors the electrons performing skipping
orbits along the wall. As a consequence, the excitation
energy of the edge mode decreases as the potential is
increased. In the weak potential regime, the tunneling
coupled modes are the dominant excitations. Whereas
in the strong potential regime, the 1D lattice magneto-
plasmon mode becomes dominant. There is a crossover
region where the absorption peaks of both of these modes
are comparable.

Figures 2(a) and 2(b) are plots of the absorption coeffi-
cient as a function of the photon energy for various values
of the magnetic field in the intermediate [Fig. 2(a)] and
the strong [Fig. 2(b)] modulation potential regimes. Fig-
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FIG. 3. Calculated absorption coefficient P b, (u)a is shown

as a function of the photon energy Ru for various values of
the electron density n2Da in the strong potential modula-
tion regime with V = 5.0. The parameters in the calculation
are the same as those in Fig. 1. Each curve in the 6gure is
shifted upward by a constant. From the bottom, the curves
correspond to n2Da = 1.0 —8.0 in steps of 1.0.

ure 2(a) shows the crossover from the tunneling coupled
modes at weak magnetic Belds to the cyclotron mode at
strong magnetic Gelds. During this process, there are
significant peak strength exchanges between the tunnel-

ing coupled modes which correspond to antiphase oscil-
lations in the peak strengths as a function of the mag-
netic Beld for these two modes. The 2~, and the 3~,
modes are also visible at low magnetic fields because of
the broken translational symmetry in the system. On the
other hand, in the strong potential regime, as in Fig. 2(b),
we can see the crossover &om a 1D lattice magnetoplas-
mon and edge modes at weak magnetic Geld to the cy-
clotron mode at even higher magnetic Gelds, after passing
through the formation of tunneling coupled modes.

Figure 3 shows the calculated absorption coeKcient as
a function of photon energy for various values of the elec-
tron density in the strong modulation potential regime.
The edge mode oscillates as a function of the electron
density. When the Fermi energy lies about halfway

between two Landau bands, corresponding to localized
states, the excitation energy is a minimum. In this case,
the potential wall of the antiwires is comparatively hard
which favors skipping orbits of the electrons. When the
Fermi energy is within a Landau band, corresponding to
the extended states, the edge mode excitation has the
maximum energy. Here, the potential wall becomes soft
and the coupling between both sides of the antiwire shifts
the excitation energy upward.

Compared to the 1D array of narrow quantum wires
with Vo ( 0 (not shown here), we find that the absorp-
tion strength in this case is four times smaller. This
is because most of the electrons are located outside the
narrow quantum wires. This is a result of electron over-

flowing due to the elevated energy levels by the strong
electrostatic confinement.

In conclusion, we have used b potentials to simulate
an array of narrow antiwires. We have derived a self-
consistent Geld theory for the in&ared absorption of this
system. The crossover of the cyclotron mode to two tun-
neling coupled modes and Gnally to the edge and 1D
lattice magnetoplasmon modes with the increase of anti-
wire potential is thoroughly studied. The magnetic field
enhanced and suppressed electron tunneling, associated
with the evolutions to cyclotron mode at strong magnetic
field passing through the formation of tunneling coupled
modes are observed. The edge mode excitation energy
oscillates as a function of the electron density. These
oscillations correspond to a soft or hard potential wall
for which the electron states are extended and localized,
respectively.
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