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Experimental data near the critical point for the spontaneous magnetization, the zero-field suscep-
tibility, and the specific heat of the (S = -) insulating Heisenberg ferromagnet Cu (NH4)2Br42H&O
are compared with two extensions of asymptotic scaling. One is a previously described phenomenol-

ogy which is equivalent to the predictions of the renormalization group (RG) when all irrelevant
variables are neglected. The second results if one adds to the asymptotic scaling formulas the con-
Buent singularities due to the leading irrelevant variable. We find that both sets of formulas are
consistent with the data for all three quantities: the spontaneous magnetization, the zero-field sus-
ceptibility, and the specific heat, but that overall, the phenomenology requires fewer parameters.
A discrepancy between the experimental and theoretical values for the susceptibility exponent is
discussed.

I. INTRODUCTION

For small magnetic fields and temperatures close to
the Curie temperature, the singular thermodynamic be-
havior of a ferroxnagnet is correctly described by the for-
mulas of asymptotic scaling in terms of universal scaling
functions and critical exponents. For the spontaneous
magnetization Mo, the zero-field susceptibility yo, and
the zero-field specific heat C, asymptotic scaling yields
the well-known power laws

variable. 5 6

The purpose of this report is twofold. First, the phe-
nomenology is extended to include the specific heat and
the results are applied to the insulating ferromagnet cop-
per ammonium bromide, a (S = 1/2) material which be-
longs to the same universality class (n = 3, d = 3) as
do europium oxide and nickel. Second, as in the earlier
analysis, 4 we corn.pare the results of the phenoxnenology
with the corresponding confiuent singularity formulas.

Mo = Bo/t/ Tao = t"o/t/

where t = T/Tc —1 is the reduced temperature, with
T the absolute temperature and T~ the Curie tempera-
ture, and where cr, P, and p are the usual critical expo-
nents and Bo Co and A are the associated amplitudes.
Corrections to these asymptotic scaling formulas are ex-
pected to be important outside the critical region, es-
pecially when the leading singularity is weak. For the
case of the specific heat, the situation is further com-
plicated by significant contributions from analytic back-
ground terms. 2'3

Recently, as part of an eKort to extend the asymp-
totic scaling formulas outside of the critical region, the
present authors compared4 experimental data for the
spontaneous xnagnetization and the zero-Beld suscepti-
bility of europium oxide and nickel with two theoretical
formulas. Each of these separately takes into account
one of two possible types of corrections predicted by the
renormalization groups s (RG). The first makes use of a
phenomenology which is equivalent to the predictions of
the RG in the absence of irrelevant variables and which
includes the leading analytic corrections due to the non-
linearity of the scaling Belds. The second extends the
formulas of asymytotic scaling outside of the critical re-
gion by appending to the leading power laws, the lowest
order con8uent singularities due to the leading irrelevant

II. CORRECTIONS TO SCALING

In this section, we present the correction to scaling for-
mulas that we use to analyze the experimental data for
the spontaneous magnetization, the zero-field susceptibil-
ity, and the specific heat of copper amxnonium bromide.

A. Phenomenology

According to the phenomenology, ~ the spontaneous
magnetization of a ferromagnet may be expressed as

where Bo, a, and ( are adjustable parameters and P, as
indicated above, is the usual critical exponent. As in the
previous study, we impose the normalization condition
Mo(T =0) = 1 and choose the slope at T =0 to be zero.
These constraints lead to the relations Bo ——(1 —a)~~
and $ = 1 —1/a, thereby reducing by 2 the number of
para. meters in the formula for Mo. Assuming, further,
that the exponent P in Eq. (2) is fixed, either experimen-
tally or theoretically for a given universality class, we are
left with just a single &ee paraxneter.
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For the zero-field susceptibility, the corresponding for-
mula is

o.
T (1+at)2- (4)

where Ayy are two constants with the + (—) sign refer-
ing to temperatures above (below) Tc Differen. tiating
Tp, twice, and adding appropriate analytic background
terms, we obtain for the specific heat the formula

C = Ay (1+t) 1+ t
((3-~) -2al

1+ t ( 1—

+ bp+ bgt, (5)

where A~ and A are two constants associated with the
regions above and below Tc, respectively, and bp and
bz are the coefII.cients of the analytic part. As for the
susceptibility in Eq. (3), the parameter a is determined
by the spontaneous magnetization so that with a fixed
the specific heat C involves only the four free parameters
A+, A, bp, and bg.

B. Confluent singularities

As in the earlier analysis4 of experimental data for eu-
ropium oxide and nickel, we shall compare the results ob-
tained from Eqs. (2), (3), and (5) with the corresponding
extensions of asymptotic scaling, obtained by including
the conBuent singularities due to the leading irrelevant
variable. ' These nonanalytic corrections to scaling can
be obtained by differentiating Wegner's formula for the
singular part of the free energy which, near the critical
point, assumes the form

Tx. = &Oltl-'(1+ «)2-~-2™~+d. ,

where p and o. are the susceptibility and specific heat
exponents, respectively. Since we presume that the pa-
rameters a and ( are fixed by the spontaneous magnetiza-
tion and that the exponents p, a, and P are known, the
formula for Tyo in Eq. (3) involves two adjustable pa-
rameters, Cp and dp. It should be noted that, in utilizing
Eq. (3), the single constant do is used to approximate
terms of the form ltl Eoeo(t) and Dodo(t) where Eo
and Do are constants and eo(t) and de(t) are analytic
functions of t normalized to unity at t = 0. In our earlier
analysis of data4' for the zero-field susceptibility of Ni,
it was found that this was sufficient to enable Eq. (3) to
represent the data out to 3'. We shall assume this ap-
proximation to be valid in the present case also so that
we need not avail ourselves of the infinity of parameters
implied by the missing terms.

Finally, let us consider the zero-field specific heat. The
singular part of this quantity is obtained by differentiat-
ing the singular part of the free energy which, in zero
field, is given by

and

Tx = ~oltl '(1+ a ltl ')

with aM and az two parameters. Note that the suscepti-
bility involves two free parameters, Cp and a„, the same
number as for the phenomenology in Eq. (3) and that for

the spontaneous magnetization, there are also two free

parameters Bp and aM, which is one more than for the
phenomenology in Eq. (2).

For the zero-Geld specific heat, the corresponding for-

mula is

C = A~ltl (1+a~ltl ') + bo + bit, (9)

where the two analytic background terms bp and b~t have

been included and where, again, the + (
—) sign refers to

temperatures above (below) Tc. Note that in Eq. (9)
there are six parameters A+, A, a&, a&, bp, and bq',

this is to be contrasted with the four in Eq. (5).
The inclusion of the analytic background terms bp+ bzt

in Eq. (9), it should be noted, is essentially an ad hoc

procedure, suggested by Wegner's formula for the free

energy. s This formula separates the free energy —and, by
differentiation, the specific heat —into a singular part and
an analytic part. In some studies of the specific heats
of ferromagnetic materials, the value of the constant bp

has been taken to be different above and below the crit-
ical point. This implies that the background term in the
specific heat is nonanalytic and requires that the num-

ber of free parameters in Eq. (9) be increased &om 6 to
7. The additional nonanalyticity can be understood in

terms of a "jump" discontinuity, as predicted by Landau's

theory, and has been incorporated into RG theory by
use of a crossover formalism. ~ As we shall see below,

good agreement between the data and our theoretical
formulas is obtained without the use of the additional
degree of freedom implied by taking the value of bp to be
different above and below Tc;.

As expected, each of the above formulas in Eqs. (7),
(8), and (9) reduce to the asymptotic scaling formulas

when the correction amplitudes aM, az, and a& (and the
background terms bo + bit in the specific heat) are set to
zero. Note that if o, ( 0, as predicted for the Heisenberg
universality class, the leading term in the specific heat,
as t + 0, is the constant bp.

III. COMPARISON WITH EXPERIMENT

where fe and fi are two scaling functions, h is the mag-

netic field divided by k~T, 6 = p + P, Ai is the correc-
tion to scaling exponent, and nq is the leading irrelevant
variable which remains finite at the critical point.

Making use of Eq. (6), we find that the correction to
scaling formulas for the spontaneous magnetization and
zero-field susceptibility are given, respectively, by

Mo ——Boltl~(l + aMltl ')

0 t ~ i In this section, we compare the above formulas with
experimental data for the spontaneous magnetization,



49 PHENOMENOLOGY, SPECIFIC HEAT, AND CORRECTIONS TO. . . 1139

the zero-field susceptibility, is and the specific heati of
the insulating Heisenberg ferromagnet copper ammo-
nium bromide.

In carrying out the analyses described below, we have
taken the point of view ' that the critical temperature,
the values of the exponents n, P, p, and the correspond-
ing amplitudes A~, Bp, and Cp are given and that the
remaining parameters in our formulas can be selected
to optimize agreement with experiment. Unfortunately,
for the present material, this is made awkward by an
inconsistency in the value of Tc. Specifically, measure-
ments of the spontaneous magnetization yield the value

T~ ——1.735 6 0.002 K, while those for the zero-field
susceptibiltyis and the specific heati yield the values

T~ ——1.773 6 0.001 K and T~ ——1.795 + 0.002 K, re-
spectively. Since we have been unable to resolve this, we
shall make use of the respective experimental values for
T~ in each of these three cases. Our conclusions, there-
fore, must be viewed in light of this ambiguity.

For the Heisenberg (n = 3, d = 3) universality class,
the critical and correction to scaling exponents are pre-
dicted theoreticallyi to be a = —0.13, P = 0.37,
p = 1.39, and b, i ——0.56. Generally, for materials known
to belong to this universality class, these theoretical val-
ues of cr and P appear to be in reasonable accord with
experiment. On the other hand, for many of the same
materials, a variety of values for the susceptibility ex-
ponent 7 have been foundir and these fall in the range
1.3—1.4. In particular, the experimental value of p for
copper ammonium bromide, is found to be 1.31, which
is significantly lower than the theoretical value of 1.39.
In view of this discrepancy between the theoretical and
experimental values for p, plus the uncertainty in the
value of T~, we shall supplement our analysis by consid-
ering also the results of fixing the critical exponents by
their theoretical values. In all cases, the correction to
scaling exponent will be kept at its theoretical value of
Ag ——0.56.

A. Spontaneous magnetisation

Figure 1 shows a graph of experimental data for the
spontaneous magnetization of copper ammonium bro-
mide, normalized to its saturation value at T = 0,
as a function of T/Tc for temperatures in the range
0 & T & T~, where T~ ——1.735 K. Also shown in the
figure are three theoretical curves, obtained by use of
Eqs. (1), (2), and (7) for the experimental value P = 0.38,
a value which is in good agreement with the theoretical
predictionis of P = 0.37 for the Heisenberg universality
class.

The dotted curve in Fig. 1 represents the asymptotic
scaling formula in Eq. (1) for the experimentally deter-
mined amplitude value Bp = 1.33. Not unexpectedly,
this formula only agrees with the data for a narrow range
of temperatures close to T~. Making use of the same
value of Bp ——1.33, and with aM ———0.1 chosen for op-
timal agreement with experiment, we find that the non-
analytic correction to scaling formula in Eq. (7) is able
to extend this agreement down to about 0.75T~. This

C)
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0.0
0.0 0.5

TjTc
1.0

FIG. 1. The normalized spontaneous magnetization
Mp(T)/Mp(0) of copper ammonium bromide plotted as a
function of T/Tc for Tc = 1.735 K and P = 0.38. The exper-
imental points are those of Wielinga and Huiskamp (Ref 14). .
The dotted curve is the power law in Eq. (1) for Bp ——1.33,
the solid curve is the phenomenology in Eq. (2) for Bp ——1.33,
a = 0.41, and ( = —1.44, and the dot-dashed curve is the
con6uent singularity formula in Eq. (7) for Bp = 1.33 and
aM = —0.1.

is represented in the figure by the dot-dashed curve. Fi-
nally, the solid curve, which is obtained by use of the
phenomenology in Eq. (2), with the values Bp = 1.33,
a = 0.41, and g = —1.44, agrees with the experimental
data over the entire range of temperatures below T~.

Although the value Bo ——1.33 is determined by ex-
periment for small t, we find that by choosing a slightly
different value, the agreement between Eq. (7) and the
data can be extended to lower texnperatures. Specifically,
for Bp = 1.40 and aM = —0.22, the curve obtained by
use of Eq. (7) is found to follow the data down to about
0.5'. Use of this higher value for Bp in Eq. (2), on the
other hand, does not give as good agreement as does the
value Bp ——1.33.

B. Zero-Beld susceptibility

Figure 2 shows a graph of experimental data for
the inverse susceptibilty C/yp, where C is the Curie
constant, along with three theoretical curves obtained
by use of the formulas in Eqs. (1), (3), and (8). As above,
we fix the critical paraxneters in these forxnulas by use of
the experimentally determined values of T~ ——1.773 K,
p = 1.31, and Cp = 1.22 K, although we find that a very
slight adjustment in the value of Cp is needed to obtain
optimal agreement with experixnent for the two correc-
tion to scaling formulas.

The dotted curve in Fig. 2 represents the asymptotic
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FIG. 2. The inverse susceptibility C/ys of copper ammo-
nium bromide plotted as a function of T/Tc for Tc = 1.773 K
and p = 1.31. The experimental points are those of De Jongh
et al. (Ref. 15). The dotted curve is the power law in

Eq. (1) for Cs ——1.22 K, the solid curve is the phenomenol-

ogy in Eq. (3) for Co = 1.20 K and ds = —0.21 K, and
the dot-dashed curve is the con8uent singularity formula in
Eq. (8) for Cs = 1.17 K and a~ = 0.51.

FIG. 3. Graph of the quantity t~Tgs/C for copper ammo-
nium bromide plotted as a function of T/Tc for p = 1.31.
The data is taken from Ref. 15. The dotted curve was ob-
tained by use of Eq. (1), the solid curve by use of Eq. (3),
and the dot-dashed curve by use of Eq. (8). Each curve was
determined using the same parameter values as for Fig. 2.

scaling formula in Eq. (1). For the experimental values

p = 1.31 and |o
——1.22 K, we 6nd that the validity of

the power law is con6ned to the narrow range of tem-
peratures T~ & T & 1.07T~. The dot-dashed curve in
the figure represents the confluent singularity formula in

Eq. (8) where the choices Co ——1.17 K and a~ = 0.51
have been made to optimize the agreement with exper-
iment. The resulting curve agrees with the data out to
about 1.15Tc. Finally, the phenomenology in Eq. (3)
with Co ——1.21 K and dp ———0.21 K is represented by
the solid curve and follows most of the data, with only
a slight deviation from the experimental points, for tem-
peratures above about 1.3T~.

An alternate and more sensitive way to compare the
theoretical formulas with the data is shown in Fig. 3
where a graph of the quantity t~Tyo/C is plotted as a
function of T/Tc. The horizontal dotted line in the figure
corresponds to the asymptotic scaling formula, the dot-
dashed curve is a graph of the function Co(l+az~t~ '), as
obtained from Eq. (8), and the solid curve represents the
function Co(1+ at)2 2t ~ + dot~ which is derived from
Eq. (3) of the phenomenology. Since the same parameter
values are used to determine the curves in both Figs. 2
and 3, it follows that the intercepts on the vertical axis
in Fig. 3 are precisely the values of Co used to determine
each of the curves in Fig. 2. Note that the experimental
points in Fig. 3 fall very nearly on a straight line.

As discussed above, it is also of interest to consider the
analysis of yo assuming the theoretical exponent value of
p = 1.39. The graphs in Figs. 4 and 5 are the respective
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FIG. 4. The inverse susceptibility C/Xs of copper ammo-
nium bromide plotted as a function of T/Tc for Tc = 1.?73 K
and p = 1.39. The experimental points are those of De Jongh
et al. (Ref. 15). The dotted curve is the power law in
Eq. (1) for Cs = 0.92 K, the solid curve is the phenomenol-
ogy in Eq. (3) for Co = 0.92 K and do = 0.87 K, and
the dot-dashed curve is the con8uent singularity formula in
Eq. (8) for Co = 0.73 K and a„=2.0.
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analogs for p = 1.39 of the corresponding ones in Figs. 2
and 3 for the experimental value p = 1.31.

The dotted curve in Fig. 4 represents the asymp-
totic scaling formula. In this case, the experimentally
determined value for the critical amplitude Co ——1.22 K
turns out to be too high, given the present choice for p.
Instead, we use the value Co ——0.92 K which, as dis-
cussed below, optimizes agreement with experiment for
the phenomenology. We have also considered the value

Co ——0.73 K, which is the corresponding "best choice"
for the nonanalytic correction formula, but we have found
that the higher value of 0.92 K gives a slightly better fit
to the data. The solid curve in Fig. 4 represents the phe-
nomenology in Eq. (3) for p = 1.39 with Cp = 0.92 K and
dp = 0.87 K chosen for optimal agreement with experi-
ment. These choices for Co and do enable the formula in
Eq. (3) to follow most of the available data out to about
1.3T&, although the quality of the fit is not as good as
for p = 1.31.

Making use of the same value of Co ——0.92 K, we find
that the confiuent singularity formula in Eq. (8) with

az ——0.6 extends the validity of the power law in Eq. (1),
but only out to about 1.1T~. However, the agreement
between Eq. (8) and the susceptibility data can be im-

proved, if we treat both Co and a~ as &ee parameters.
In this way, we find that for Co ——0.73 K and az ——2.0,
the agreement with experiment can be extended out to
about 1.3T~ and this is shown by the dot-dashed curve
in the figure. With this value for Co, however, the phe-
nomenology in Eq. (3) does not agree as well with the ex-
perimental data, no matter what value we choose for do.
It should also be noted that the two values Cp = 0.92 K
and Co ——0.73 K dier substantially not only &om each

other but also from the value Co = 1.22 K determined
experimentallyis for p = 1.31.

Comparison of the graphs of the quantity t~Tyo/C for

7 = 1.31 in Fig. 3 and for p = 1.39 in Fig. 5 makes ev-
ident the dHFerences between the two correction to scal-
ing formulas. The most noticeable diHerence is the ap-
pearance in Fig. 5 of a negative curvature in the data,
which becomes more pronounced as the critical point is
approached. This feature, which is absent in Fig. 3, is
closely matched by the dot-dashed curve, obtained by
use of Eq. (8). On the other hand, the solid curve, which
represents Eq. (3), shows a positive curvature which is in-
consistent with the data. Comparing the two solid curves
in Figs. 3 and 5, therefore, we 6nd that the phenomenol-

ogy in Eq. (3) agrees far more closely with experiment for

p = 1.31 than for p = 1.39. By contrast, the nonanalytic
correction to scaling formula in Eq. (8) is able to repre-
sent the experimental data over a much broader range of
temperatures for the theoretical value of p = 1.39 than
for the experimental value of p = 1.31.

C. Specific heat

Figure 6 shows a graph of the experimental points for
the zero-field specific heat C of copper ammonium bro-
mide as a function of T/Tc for temperatures above and
below T~. Also shown are the theoretical curves obtained
by use of Eqs. (5) and (9). The measured valueis for the
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FIG. 5. Graph of the quantity t~TXp/C for copper ammo-
nium bromide plotted as a function of T/To for p = 1.39.
The data is taken from Ref. 15. The dotted curve was ob-
tained by use of Eq. (1), the solid curve by use of Eq. (3),
and the dot-dashed curve by use of Eq. (8). Each curve was
determined using the same parameter values as for Fig. 4.

FIG. 6. The speci6c heat C of copper ammonium bro-
mide plotted as a function of T/Tc for To = 1.795 K and
o. = —0.07. The experimental points are those of Suzuki and
Watanabe (Ref. 16). Each of the curves was determined by
use of the parameter values A+ ———34.5, A = —28.0, and
bp = 32.0. The dotted curve was obtained by use of Eq. (9)
with a& ——0 and bz ——8.0, that is, the power law plus analytic
background and the solid curve by use of the phenomenology
in Eq. (5) with bg = 47.0.
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critical temperature, in this case, is T~ ——1.795 K, which
differs from the corresponding values of 1.735 K and
1.773 K obtained for the spontaneous magnetization
and the zero-Beld susceptibility, respectively.

In the original 1970 analysis of the specific heat, it
was assumed that near the critical point the data could be
represented by the function A ln ~t~ + B with both of the
constants A and B free to take on different values above
and below T~. We do not use this form here since RG
theory 3 predicts a = —0.13 for the three-dimensional
Heisenberg universality class and not a logarithmic di-
vergence. We note, however, that the sharp but finite
cusp, associated with a small negative value of o., can
often resemble a logarithmic divergence.

In the absence of a suitable experimental value for the
critical exponent o., we have chosen to Bx its value, first
of all, by use of the scaling relation '

n+2P+p = 2,

which, for the above values P = 0.38 and p = 1.31, gives
n = —0.07. As for the susceptibility above, we also carry
out an analysis of the specific heat for the corresponding
theoretical value of o. = —0.13. For both these choices of
n, the six parameters A+, A, bo, bi, and a& in Eqs. (5)
and (9) are taken to be free, with A+, A, and bo de-
termined by the power law in Eq. (1) plus analytic back-
ground, that is, by Eq. (9) with a& ——a& ——0.

The dotted curve in Fig. 6 represents the asymptotic
scaling formula in Eq. (1) plus analytic background for
the values A+ ———34.5, A = —28.0, bo = 32.0, and
bq

——8.0 selected to optimize agreement with experi-
ment. As may be seen from the graph, the resulting curve
follows all of the available data. We have not included
the corresponding (dot-dashed) curve for the nonanalytic
correction formula since, for a& ——a& ——0, it is identical
to the dotted curve in the figure. Thus for o. = —0.07
we conclude that no additional confluent singularity is
needed to fit the specific heat.

The solid curve in Fig 6 represents Eq. (5) for the same
values of A+, A, and bo as for the dotted curve. This
time we choose the coefBcient of the linear term in the
background to be bq ——47.0 with the value a = 0.41
in Eq. (5) fixed by the spontaneous magnetization. For
these parameter values, the agreement between Eq. (5)
and the experimental data, although good for tempera-
tures above T~, does not extend as far &om the critical
point below Tc as does the scaling formula without cor-
rections. Thus, it would seem that, for T ( T~, the
addition of correction terms to the scaling formula plus
analytic background leads to a worse Bt to the data. As
we shall see below, this does not happen for the theoret-
ical exponent value o. = —0.13.

Finally, an important quantity to consider in the anal-
ysis of the specific heat is the amplitude ratio A+/A
which, like the critical exponents, is predicted to be a
universal quantity. Using the above values of A+ and
A, we find that

= 1.23,

which is noticeably smaller than the value A+/A
1 58

y
obtained theoretically.

Let us now reconsider the above analysis using, in place
of a = —0.07) the theoretical value o, = —0.13. Fig-
ures 7 and 8 show graphs of the same experimental data
as above as well as the theoretical curves obtained by
use of Eqs. (5) and (9), respectively. Although the am-
plitudes A+, A, and bo are &ee parameters, we find
this time that the same values for these quantities can
be used in both Eq. (5) and Eq. (9) to obtain a good fit
to the data. On the other hand, the optimal value for
the coeKcient bz is again found to be quite different in
the two cases.

To obtain the curves in Fig. 7, the parameters were se-
lected to optimize agreement between the experimental
data and the confluent singularity formula in Eq. (9).
The resulting values are A+ ———22.0, A = —14.0,
bo ——19.0, bq

——11.0, and a& ——a& ——0.03 and en-
able Eq. (9) to follow the data over the entire range of
temperatures for which it is available; this is represented
in the figure by the dot-dashed curve. The dotted curve
is obtained by use of Eq. (9) with the same parameter
values except that a& ——a& ——0. Thus, apart &om a
small confluent singular correction, we find that the data
is well represented by just the power law plus analytic
background. However, with the same values of A+, A
and bo and with a = 0.41 Bxed by the spontaneous mag-
netization and bq

——11.0 selected optimally, we Bnd that
the solid curve, which represents Eq. (5), does not agree
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FIG. 7. The speci6c heat C of copper ammonium bro-
mide plotted as a function of T/To for Tc = 1.795 K and
n = —0.13. The experimental points are those of Suzuki
and Watanabe (Ref. 16). Each of the curves was determined

by use of the parameter values A+ ———22.0, A = —14.0,
bo ——19.0, and by

——11.0. The dotted curve was obtained us-

ing Eq. (9) with az = 0, that is, the power law plus analytic
background, the solid curve is the phenomenology in Eq. (5),
and the dot-dashed curve is the con6uent singularity formula
in Eq. (9) for ao ——0.03.



49 PHENOMENOLOGY, SPECIFIC HEAT, AND CORRECTIONS TO. . . 1143

15

10

0
E

/

0

/

/ ~

r

0.70 0.80
I

0.90 1.00
T/TQ (K)

1.10 1.20

FIG. 8. The speci6c heat C of copper ammonium bro-
mide plotted as a function of T/Tc for Tc = 1.795 K and
n = —0.13. The experimental points are those of Suzuki
and Watanabe (Ref. 16). Each of the curves was determined
by use of the parameter values A+ ———22.0, A = —14.0,
bp ——19.0, and b~ ——29.5. The dotted curve was obtained
by use of Eq. (9) with az ——0, that is, the power law plus
analytic background, the solid curve is the phenomenology in
Eq. (5), and the dot-dashed curve is the con8uent singularity
formula in Eq. (9) for a~ ——0.23 and a~ ———0.3.

as well with the experimental data.
The situation is reversed in Fig. 8, where we 6nd that

optimal agreement between experiment and Eq. (5) of
the phenomenology can be obtained for the same values

A+ ———22.0, A = —14.0, and bo ——19.0, as above,
but with the value bq ——29.5. This leads to the solid
curve in the 6gure. The dotted curve is again obtained
by use of the power law plus analytic background, while
the dot-dashed curve is obtained by use of the nonana-
lytic correction formula in Eq. (9) with a& —0.23 and

a& ———0.3, both chosen to optimize agreement with ex-
periment. Note that for both the dotted and dot-dashed
curves in Fig. 8, the same values of A+, A, bo, and bq as
for the solid curve have been used. With these choices,
we 6nd that, except close to T~, it is now the scaling
formula plus analytic background which does not repre-
sent the data well, while the inclusion of the conBuent
singularity only leads to a small improvement.

We emphasize the fact that the values of the parame-
ters A+, A, and bo are the same for the curves in Figs. 7
and 8 and that it is only the parameter bq that differs,
in the two cases. Furthermore, we 6nd that it is possible
to 6t the data without signi6cant use of a nonanalytic
correction. Thus, it would appear that for o. = —0.13,
unlike the previous choice n = —0.07, the effects of the
analytic corrections multiplying the ~t~

™term partially
cancel the eH'ects of the linear t term in the analytic back-

ground, at least over the range of temperatures consid-
ered here.

It is also of interest to consider the universal amplitude
ratio A+/A for the value a = —0.13. Using the above
values of A+ ———22.0 and A = —14.0, we 6nd that

A
= 1.57, (12)

which is in substantially better agreement with the
theoretica12~ value A+/A = 1.58 than the value ob-
tained in Eq. (11) by use of the "experimental" value
a = —0.07.

Besides the critical amplitude ratio A+/A, ratios
formed from the correction to scaling amplitudes, aM, az,
and a& in Eqs. (7), (8), and (9), are also predicted by the
RG to be universal. 2o It would be of interest, therefore, to
determine the values of, say, az/aM, a& jaz, and a&/a&
for copper ammonium bromide and to compare these
with the corresponding theoretical predictions. so'2~ Un-
fortunately, it appears that the presently available data
do not allow an accurate determination of the values for
these quantities. To obtain a good 6t for the susceptibil-
ity data, for example, the value of az had to be changed
from 0.51 to 2.0 as the experimental value for p was re-
placed by the corresponding theoretical value. Thus, for
the value aM ———0.1, which was used to determine the
dot-dashed curve in Fig. 1, we obtain az/aM = —5.1
and ax/aM ———20.0 for these two az values. 22 Further,
since it is possible to represent both the spontaneous
magnetization and the speci6c heat data, above and be-
low Tc, without the use of a ~t~+' correction, it would
seem that a&/a„= 0 and that a&/a& is indeterminate.
This is to be compared with the values a&+/az ——4.6 and
a&+/a& ——1.4, which have been obtained theoretically2o 2~

for the (n = 3, d = 3) Heisenberg universality class. Note
that for the values a+& ———0.3 and a& ——0.23 used in
Fig. 8 we obtain a&/a& ———1.3 which is opposite in sign
but close in magnitude to the theoretical value. We con-
clude, therefore, that reliable values for the ratios az/aM,
a&/az, and a&/a& cannot be obtained from the present
data.

The above results for the speci6c heat of copper am-
monium bromide appear to be consistent with the the-
oretical predictions for the Heisenberg (n = 3, d = 3)
universality class, and with the results of Rives et al. ,
whose measurements for this material led to the values23
a —0.1 and A+/A 1.5. It should be noted, how-

ever, that these authors analyzed their data using the
confluent singularity formula in Eq. (9) but with bq = 0,
that is, with no linear term in the analytic background.
In this connection, it is of interest to note the work of
Ahlers and Kornblit who, in their study of the specific
heat of (S = 7/2) europium oxide, made use of Eq. (9)
both with the constraint a& ——a& ——0 and with a&
treated as adjustable parameters. While the former con-
straint led to the valuess cr —0.044 and A+/A 1.22,
the latter gave a —0.1 and A+/A 1.52, in closer
agreement with the theoretical predictions for the Heisen-
berg universality class. The fact that these authors make
use of a nonanalytic correction in their analysis, whereas
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we essentially require no term of this kind to fit the spe-
cific heat of (S = 1/2) copper ammonium bromide, may
be significant in the light of some earlier results for cer-
tain spin-S lattice models.

IV. SUMMARY AND DISCUSSION

Our main goal has been to assess the ability of two
correction to scaling formulas to represent the thermo-
dynamic behavior of the (8 = 1/2) Heisenberg ferromag-
net copper ammonium bromide in an extended region
about the critical point. As in the earlier nickel and eu-
ropium oxide study, 4 our general conclusion is that, for
certain parameter choices, both sets of formulas can be
made to agree with the experimental data, although the
phenomenology provides a better fit for the spontaneous
magnetization and, overall, requires fewer parameters.

In our analysis, we have made use of both experimental
and theoretical values for the critical exponents. When
the exponents were fixed by their theoretical values, we

found that the spontaneous magnetization and the spe-
cific heat could be fitted essentially toithout the use of a
confluent ~t~

' correction. However, for the theoretical
value of p, it was found that the zero-field susceptibility
data requires a significant correction term of this type to
secure an optimal fit.

While experimentally measured values for the criti-
cal exponents of the specific heat and the spontaneous
magnetization of other materials belonging to this uni-
versality class also appear to be in fair agreement with
their theoretical counterparts, experimental values for
the susceptibility exponent p are often found " that are
lower than the theoretical value of p = 1.39. For the
present case of copper ammonium bromide, experiment
seems to prefer the value p = 1.31 for which it was found
that the phenomenology provides a better representation
of the data than does the conBuent singularity formula.

By contrast, for the theoretical value p = 1.39 it is the
confiuent singularity formula that agrees better with ex-
periment. Furthermore, by extrapolating the quantity
t~Tyo towards the critical point as a function of T/Tc,
we found that when p = 1.39 there appeared a distinct
downward curvature in the data very close to Tc which
was absent for the case p = 1.31. Thus, it would seem
that either the value p = 1.39 is too high for this ma-
terial, or considering the very good agreement between
Eq. (8) and the experimental data in Fig. 5, that signifi-
cant irrelevant variable efFects are present in the zero-field
susceptibility.

A possible explanation for some of the difFerences be-
tween experimental and theoretical values for p has been
suggested by Herzum et al. These authors argue that,
although theoretical calculations can be carried out for
strictly zero magnetic Geld, experimental measurements
of the susceptibility usually involve the use of nonvan-
ishing magnetic fields. In some cases, it seems, the data
are extrapolated to zero Geld whereas in others they are
not. In view of this, it is worth emphasizing that the
susceptibility is only truly divergent at the critical point

TABLE I. Some experimental values for the susceptibility
exponent p. Values for three insulating ferromagnets are given

in the erst two columns while values for three magnetic metals
are given on the right. The values for EuO, EuS, RbMnFq, Fe,
and Co were obtained from neutron scattering experiments
whereas the value for Ni is taken from the results of neutron
depolarization experiments carried out by Stiisser et aL

Material 'Y

EuO 1.387 + 0.036
EuS 1.399 + 0.040

RbMnFq 1.366 + 0.024

Material 'y

Ni 1.32 + 0.02"
Fe 1.344 + 0.018'
Co 1.23 + 0.05

Ref. 26.
Ref. 28.
Ref. 29.
Ref. 30.

and that, in a neighborhood about the critical point not
including the phase boundary and critical isochore, even
a small magnetic field will suppress the singular behavior
expected at the critical point. Thus, for T = T~, a weak
magnetic field will leave the susceptibility large and Gnite
whereas, for temperatures just above Tc, , the susceptibil-
ity may display a weaker apparent divergence than would
be observed if the magnetic Geld were exactly zero. In
support of their argument, the above authors cite the re-
sults of two neutron scattering experiments, in which
the susceptibilty is obtained directly from the diKeren-
tial scattering cross section, thereby obviating the use of
a magnetic field.

The exponent values obtained &om the two experi-
ments cited above are p 1.58 and p 1.44. Al-
though these are higher than the theoretical value of
p = 1.39 and dier from this value by as much as some
of the lower reported values, other neutron scattering
experiments ' carried out more recently have yielded
values for the exponent p which are much closer to the
theoretical value of 1.39. A list of p values, obtained
by these methods, is given in Table I for three insulating
materials believed to be good realizations of the Heisen-
berg model. Unfortunately, to our knowledge, no such
value for copper ammonium bromide has appeared in the
literature.

Interestingly, values for the susceptibility exponents
of magnetic metals are found still to be significantly
lower than the predicted value for the Heisenberg model,
even when the experiments are carried out for very
small fields and when the data are analyzed by tak-
ing into account the leading confluent singularity; three
examples are given in Table I. Collins has sug-
gested that, because of the presence of the conduction
electrons, the predictions of the Heisenberg model need
not apply to these systems and that the conductors listed
in Table I might even belong to a difFerent universality
class than do the insulators listed in this table.

In a more speculative vein, we note that, in general,
both of the corrections to scaling considered here are
expected to be present to a greater or lesser degree.
Therefore, it is of particular interest to be able to make
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comparisons with experiment using formulas that take
into account both kinds of corrections. The availability
of such formulas would thus enable experimental data
to be analyzed with greater confidence over a broader

temperature range about the critical region. We have
begun to take steps toward this goal by reformulating
the phenomenology to include the conBuent power law
corrections and we hope to report on this in the future.
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