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Optical spectroscopy of a surface at the nanometer scale: A theoretical study in real space
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The near-field optical interaction between a pointed detector and dielectric or metallic substrates can
be exploited to perform nanometer-scale surface spectroscopy. This paper presents a general framework
for a realistic description of the optical near field with application to local spectroscopy of metallic ag-

gregates deposited on a transparent sample. The treatment is based on the field-susceptibility method as-

sociated with perturbation theory. The practical solution of this model by discretization in real space is

obtained by a self-consistent procedure which takes all multiple-scattering effects into account. Numeri-

cal results illustrate the evolution of direct space images when scanning metallic aggregates at various

frequencies. Our simulations clearly show the interest of such a local spectroscopy for morphologic
studies and for the characterization of surface mesoscopic structures.

I. INTRODUCTION

A recently developed way to gather optical informa-
tion on nanometer-scale structures lying on a surface is
by exploiting the optical near field. ' The potential of
optical scanning probe techniques for optical microscopy
with lateral nanometer-scale resolution has been convinc-
ingly demonstrated by several groups over the last
years. ' The correlation of subwavelength-resolved op-
tical signals with other properties such as shape, polariza-
bility, or refraction index provides new opportunities for
the characterization of surfaces. In these scanning near-
field optical-microscope (SNOM) experiments, the indivi-
dual structures lying on the surface induce some distor-
tion of the near field established by the self-consistent op-
tical interaction between probe and sample. These distor-
tions are confined around the individual structures. Ex-
perimental studies clearly indicate that such a confined
field strongly varies along the surface reproducing a par-
ticular relief of the object under test. Recently, by ex-
ploiting confined fields associated with resonance phe-
nomena, the scanning plasmon near-field microscope
reached the resolution of A, /200 on silver samples. ' In
order to guide the continued development of new probes
and to understand the contrast mechanism involved in
near-field optics, numerous theoretical approaches and
simulations have already been proposed. " " Recently
the material was reviewed by Van Labeke and Bar-
chiesi. '

The SNOM can also operate in the spectroscopic
mode. ' ' For example, if a spectroscopic event occurs
at a given site of the substrate, then the signal detected by
the probe can be used to perform a local spectroscopy of
the surface. Recently, ruby photoluminescence spectra
have been monitored with such a device. ' In a similar
way, the SNOM offers an interesting opportunity for
studying localized surface plasrnons near a metal island

film. ' For such metallic objects the excitation frequency
coo becomes an important parameter. The excitation of
surface plasmons causes a characteristic field enhance-
ment compared to the incident electromagnetic wave. In
this case the eSciency of the tip-sample coupling depends
on the relative magnitude of the eigenfrequencies of the
probe-object system with respect to the frequency co. '

In this work, we will address questions raised by such
confined field associated with the resonance (plasmon)
effect occurring on the sample surface as a function of the
incident frequency. Our study is pertinent with respect
to the spectroscopic potential of the SNOM. This paper
applies a general framework for a realistic description of
the optical near field to the local spectroscopy of metallic
nanoparticles deposited on a transparent sample. The
traditional method of solving Maxwell's equations by
matching boundary conditions is restricted to a few
specific geometries where the vector wave equation is se-

parable, and is not efficient for studying low-symmetry
systems such as the tip-sample system used in SNOM. In
order to achieve the generality required for the descrip-
tion of SNOM, the method used to solve Maxwell's equa-
tions should be independent of the standard algebra im-

plied by matching boundary conditions on both the ob-
ject and the detector. The field susceptibility
method associated with perturbation theory ' to
be applied in this paper offers these features. The paper
is organized as follows. In Sec. II we define the geometry
of the problem and write the self-consistent integral equa-
tion. EfBcient practical solutions of this model are found
by discretization in direct space. Individual
response properties of meta11ic particles wi11 be described
in Sec. III and simulations of local spectroscopy experi-
ments near a monolayer of metal particles wi11 be present-
ed in Sec. IV. The inQuence of different external param-
eters (location of the detector, sample material properties,
etc.) on the spectral resolution will also be discussed.
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II. THK SELF-CONSISTENT PROBLEM

A. General

S(r,r', ro} is the sum of two contributions:

S(r, r', co}=So(r, r', ro)+S,(r, r', co), (3)

Let Eo(r, co} be the Fourier component of the incident
field on a highly symmetrical system (for example, the
perfectly planar surface that we will consider in our ap-
plication}. In the presence of both a localized defect and
the SNOM detector (cf. Fig. 1), the general solution of
the perturbed field E(r, co) verifies the following implicit
Lippmann-Schwinger equation:

E{r,ro) =En(r, co)

+f fS(r, r', co)y(r', r",r0)E(r",ro)dr'dr" . (1)

At this stage it is important to recall that the first term of
this self-consistent equation corresponds to the field in
the absence of the probe-object system. The second term
then gives the modification of this electric field due to the
polarization of both the probe and object. Moreover
S(r,r', ro) represents the field susceptibility of the refer-
ence system (cf. Fig. 1), and y(r', r",co) is the linear sus-
ceptibility of the perturbation (localized defect plus probe
tip). In this description, the quantity

P(r', ro) =fy(r', r",ai)E(r",co)dr" (2)

occurring in Eq. (1}is the self-consistent polarization den-
sity of the probe-object system which is induced by the
local electric field.

An essential advantage of this description is provided
by the spatial localization of the perturbation which al-
lows to solve exactly the self-consistent Eq. (1), as will be
shown in Sec. IIB. Moreover, working in direct space
rather than in reciprocal space, one avoids difficulties due
to the poor convergence of the Fourier series involved in
standard reciprocal space descriptions.

In the upper half-space (z & 0},the second-rank tensor

Eo"(r')E," (r) E,'(r)E," (r')

ro ro o i I „o co+Co„o—ll ~
(4)

In this expression the terms E,"(r) represent the inatrix
elements of the electric-field operator of the solid surface
(reference system) between the fundamental state and the
rth excited state, and the coefficient I are the corre-
sponding damping parameters. The field susceptibility
defined in (3) can also be built by calculating the response
field of the reference system to an arbitrary fluctuating di-
pole lying in its neighborhood. In the particular case of a
solid (dielectric or metallic) limited by a perfectly planar
surface, various theoretical methods have been developed
to obtain this response function. The analytical form of
S{r, r', ro) depends on the nature of the surface under con-
sideration. ' To treat a crystallographic face of an
ionic crystal, it is more convenient to use a discrete atom-
ic representation of the solid structure. When dealing
with a metal, this susceptibility can be modeled from a
continuous approach in order to account for the delocal-
ized character of the free-electron response. In the nu-
merical work to be discussed in this paper, the analytical
form of S(r, r', ro) can be found in Ref. 19, Eqs. (23) and
(24).

B. EfFective Seld inside the probe-sample system

where the first term represents the field propagator in
vacuum. The presence of a surface at z =0 is described
by the field susceptibility S,(r, r', co). In a general way
this response function can be expressed in term of quan-
tum states

~

r ) of the reference system: o

S,(r, r', co)

z"
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FIG. 1. Illustration of an experimental device working in to-
tal reflection [scanning tunneling optical microscope (STOM),
also called the photon scanning tunneling microscope (PSTM)].
The light beam of wave vector Ko is totally reflected on the
plane surface of a transparent medium. The object is composed
of m metallic spheres deposited on the surface (z =0). The vec-
tor Rp=(Xp Yp Zp) defines the detector apex position, and R;
characterizes the location of a given volume element inside the
tip.

In SNOM experimental setups, the main element is the
tip of a dielectric stylus. Actually the current trend is the
use of monomode fibers whose cone-shaped tip is ob-
tained by different techniques such as chemical etching or
pulling-heating processes. In the present application the
optical probe will be treated as a continuous medium of
refraction index n, . In this subsection we consider the
problem of such a pointed dielectric stylus facing a set of
m spherical nanoparticles deposited upon a plane dielec-
tric surface (cf. Fig. 1). There are various ways of
describing the response properties of such metallic ob-
jects. Maxwell's equations can be solved by applying
standard boundary conditions to the surface of the metal-
lic aggregate. This approach leads us to introduce a bulk
dielectric constant of the metal. A different method
based on the multipolar expansion of each metallic parti-
cles can also be adopted. This last approach, which ap-
pears to be more adequate to account for nonlocal effects,
will be developed in this section.

In experimental devices, the probe and sample always
remain well-separated systems during a scan. Conse-
quently the electric susceptibility y(r, r, ro) describing the
linear-response properties of the perturbation can be
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written as the sum of two contributions associated with
the probe and the object, respectively:

g(r, r', co) =y, (r, r', co)+y»(r, r', co) .

The spheres forming the monolayer lie at a constant dis-
tance Zo from the surface. In the first approximation we
consider that the quantum electronic states of the spheres
composing the object are weakly perturbed. We can then
write g,b as a sum of individual susceptibilities:

y,b(r, r, co)= g y;(r, r, co),
i=1

where the subscript i is needed to define the location of a
sphere in a plane parallel to the surface. For metallic
particles of subwavelength size, the nonlocal susceptibili-
ty g; can be expanded as a series of dynamical multipolar
polarizabilities: '

y, (r, r', co) =a"'(co)5(r—r;)5(r' —r;)+ —,
'a' '(co)[2]V,V,.5(r —r, )5(r' —r, )+

z
a'~'(co)[2p —2]V,'~ "V',& "5(r—r;)5(r' —r;),

[(2p —1)"]' (7)

where V, is the gradient operator, r, represents the posi-
tion vectors of the spheres, and a'~'(co) defines their mul-
tipolar polarizabilities. Moreover, the symbol [p] indi-
cates a total contraction of two pth-order tensors. In the
case of noble-metal particles, the charge-density suscepti-
bility approach provides a good framework to describe
the response functions a' ' in the optical range.

The integral equation (1) can be expressed in terms of
effective fields and field gradients existing at each site oc-
cupied by the spheres

E(r, co)=ED(r, co)+4',(r, co)+C,b(r, co) .

In this last equation, the second term is proportional to
the perturbation induced by the detector extremity

@,(r, co) =f f S(r, r', co)y, (r', r",co)E(r",co}dr'dr" .
pr

The response of this dielectric stylus is assumed to be lo-
cal. It is then possible to express 8, from the refraction
index n, of the detector:

nz, ( co) 1—
6,(r, co) = ' f S(r, r', co)E(r', co)dr' .

4m pr
(10)

This last integral can be calculated by discretization in
Cartesian space, and optimized by using a tridimensional
Gauss method. This leads to

n ~, (co) 1—
C,(r, co)= g W S(r, r, ,co)E(r;,co),

7T J —
1

where W represents the weight of the jth discretized ele-
ment in the tip apex.

By taking (5), (6), and (7) into account, the term pro-
portional to the perturbation induced by the metal parti-
cles in Eq. (7) is given by

8,b(r, co)= g g IV'„& "S(r,r', co)], , [p]a' '[p]F'"'(r;, co),
=i [(2p —1)((]'

(12)

For metallic particles of small size, the multipolar contri-
butions higher than the dipolar one in Eq. (12) will be
neglected, resulting in a single summation for the
spheres' positions. In this approximation the number of
discretization points is then identical to the number of
metallic particles. Equation (12) reduces to

A,b(r, co)= g S(r, r, ,co)a"'(co)E(r;, co) . (14)

where the tensors F'~' describe the successive field gra-
dients experienced by each metal particle

F'~'(r;, co) = I V',~ "[Eo(r,co)+ 0'~,(r, co)+ C,b(r, co)]J,=, .

(13)

Let us note that a more refined calculation of both local
field and local-field gradients at each site occupied by the
metallic particles would require us to go beyond the dipo-
lar approximation. In fact, the truncation of the multipo-
lar expansion depends on the length scale over which the
local field varies inside the probe sample system, and the
dipolar approximation used to treat the response of the
spheres must be considered as a first step toward an all-
orders calculation. This approximation avoids the com-
putational difhculties involved in a complete multipolar
self-consistent calculation, and nevertheless gives a
reasonable description of the optical spectroscopy of a
surface at the nanometer scale. In this context an essen-
tial strength of the present treatment is the spatial locali-
zation of the defect, which allows us to solve the self-
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where the quantity ai(co} has the dimension of a dynami-

cal polarizability and changes its value according to the
index l:

and

ai(co) =a'"(co) if (1 ~ 1 ~ m ) (16)

n, (co } 1—
a~(co)= ' 'W& if (m+1 I ~n+m) .

4m

consistent equation (8) exactly. Indeed, both indices n

and m remain finite, so that the resulting matrix equation
can be solved by standard linear algebra procedures

n+m
E(rz, co) =ED(r„,co)+ g S(rz, r, ,co)a,(co)E(r„co),

l=1

(15)

ed for the last 20 years. In the case of metal spheres
embedded in a transparent dielectric, the interface be-
tween the two materials introduces a surface-plasmon
resonance whose frequency depends on the optical prop-
erties of the metal and on the surrounding dielectric con-
stant. Recently, a theoretical approach based on the
charge-density susceptibility formalism has been applied
to a spherical jellium. In our work the main aspects of
the optical properties of the particles are introduced by
generalizing the method of Newns to an electron gas
confined in a spherical well. From this model the mul-

tipolar polarizabilities a'P' of noble-metal particles can be
described by introducing the interband electronic contri-
butions of the metal from standard experimental data. '

In fact, this problem can be solved by including all terms
for which p &1 in the treatment presented in Ref. 39.
For first- and second-order polarizabilities, such a pro-
cedure leads to

(17)

We note that the procedure avoids matching boundary
conditions. The latter are in fact implicitly guaranteed

by the self-consistency of the original integral equations
(1) and (15). The only approximation of the technique
lies in the density of the discretization grid, which is arbi-
trarily adjustable.

and

1 F, (a, co—)/a

2F, (a, co)la+1

1 2F2(a, co—) la
3F2(a, co)la +1

(19)

(20}

C. Signal detected by the tip

The conversion process of evanescent waves in the im-

mediate proximity of the object into homogeneous waves

propagating in the detector can be described from the
above results. In fact, knowledge of the e8'ective-field dis-
tribution inside the perturbation is sufBcient to describe
the far-field E~„crossing a surface located in the wave

zone of the dielectric stylus (cf. Fig. 1):
n+m

E&„(R~+ro,co) = g S(R~+ro, rz, co)az(co}E(rz,co),
k=1

(18)

where R& defines the location of the tip apex with respect
to an absolute frame, and the vector ro represents the po-
sition of a point of the X surface with respect to the apex
of the detector. In fact, Eq. (18) means that the solution
inside the localized perturbation does not depend on the
solution outside the perturbation (object plus probe).
Thus, by using an asymptotic form of the propagator S in
the far-field range, it is possible to describe regions far
from the perturbation. Finally, numerical integration of
the Poynting vector associated with E&„(R~+ro,co) on
the surface of the cross section X of the probe leads to the
energy Aux across that section and hence the detected in-
tensity I(R,co), which is the relevant observable in
current SNOM experiments.

III. INDIVIDUAL RESPONSE PROPERTIES
GF METALLIC NANOPARTICLES

The study of the optical linear-response properties of
small metallic aggregates has been extensively investigat-

with

j ~(ka)k
Fp(a co) =—g e '(co, k),

jp(ka} jp+, (ka)jp— ,(ka}

(21)

where a is the radius of the metallic sphere, j is the pth
spherical Bessel function, and e (co, k) represents the
nonlocal bulk dielectric constant of the metal.

IV. LOCAL SPECTROSCOPY
OF NOBLE-METAL PARTICLES

DEPOSITED ON A TRANSPARENT SAMPLE

The two relations (15}and (18}defined in previous sec-
tions are general, since they account for the real profile of
the tip apex and they include, through a"'(co), the
dynamical properties of the metallic particles forming the
object. From these equations it is possible to calculate
the signal I(R,co) and to simulate, for a fixed location of
the detector, a local spectroscopy experiment. For this
study, the dipolar dynamical polarizability of the metallic
particles will be described from Eq. (19) by including spa-
tial dispersion e6ects through a hydrodynamic dielectric
constant. Furthermore, the discussion will be presented
in the internal total refiection (STOM/PSTM, where
PSTM is the photon scanning tunneling microscope)
configuration described in Fig. 1.

For metallic objects, the excitation frequency m of the
incident field becomes an important parameter. In the
region above the surface of the sample, where the evanes-
cent field is sensed, it is possible to restore the spectro-
scopic characteristics of nanometric-sized particles by
varying the external frequency. Surface particles have
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often been used in enhancement studies. They are easi-
ly produced and can generate a strong local field. In par-
ticular, silver and gold island films have been extensively
studied in the past because of their unusual optical prop-
erties. Such objects appear to be interesting systems to
test local spectroscopy properties in the optical range.

The infIuence of co on the magnitude of the detected in-
tensity is numerically studied in Figs. 2, 3, and 5, where
we present the frequency-dependent intensity I(R,co) forpP

particular positions R of the detector. All results are
presented in p-polarized illumination. The incident angle
of the light beam is 80=60', and the incident wave vector
Ko is located in the plane ( FOZ).

Figure 2 describes the evolution of the spectrum
recorded near a single metallic particle for different la-
teral positions of the tip apex. The approach distance
(Zz in Fig. 1) between the detector edge and the plane
support is kept constant. A spatially extended probe tip
(20-nm curvature at its extremity, 70-nm height), discre-
tized by 36 cells in a closed-packed arrangement, was
considered in all our calculations. As expected, the local-
ized plasmon peak collapses when the detector moves
away. For example in the case of gold [Fig. 2(a)], beyond
a distance of 50 nm the plasmon resonance becomes un-
detectable. One observes in the successive curves of Fig.
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FIG. 3. Isointensity curves detected above an aggregate com-
posed of nine noble metal particles of different nature (the
sphere located at the corner of the pattern is in silver, the others
are in gold). The calculation is performed in a plane parallel to
the surface (Zp =11 nm). The 10-nm-diameter spheres are or-
ganized on the surface as a square lattice and the scanned area
is (70X70) nm . (a) The frequency co of the incident field is
equal to 2 eV. (b) co=3.34eV.
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FIG. 2. Study of the behavior of the detected intensity as a
function of the incident field frequency. The object is a single
metallic particle of 15-nm radius located at the origin of the ab-

solute frame. The tip-surface distance is maintained constant
(ZP=32 nm). (a) Gold sphere. (b) Silver sphere.

FIG. 4. Square geometry of the layered metallic nanoparti-
cles used in the calculations of Fig. 5. The gold spheres of 10
nm diameter are schematized by large shaded circles. The
square limited by solid lines represents the scanned area.
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2 that a slight redshift of the plasmon resonance occurs
when Y decreases. The shift is due to the presence of
the detector approaching the metal particles. It is similar
to the shift observed when noble-metal particles are em-
bedded in a transparent dielectric medium.

Figure 3 presents an ensemble of isointensity curves
detected above an aggregate composed of nine noble-
metal particles. The sphere located at the corner of the
pattern is made of silver, and the others of gold. The cal-
culation of these isointensity curves is performed in a
plane parallel to the dielectric support (Z =11 nm), and
the 10-nm-diameter spheres are organized on the surface
at the nodes of a square lattice. A surface of 70X 70 nm
is scanned around and above the aggregate. One remarks
that the density of the isointensity curves increases in the
direction (OY) of the light beam propagation. Moreover,
by working far from the localized plasmon resonance of
the silver sphere [See Fig. 3(a)], the intensity distribution
detected by the probe tip retains the square symmetry of
the aggregate. This result is consistent with the magni-
tude of the individual polarizabilities of gold and silver
spheres in this frequency range. Now when the external
frequency ~ reaches the plasmon frequency of the silver
spheres, the electric field is enhanced at the immediate
proximity of this particle and induces a strong distortion
in the intensity distribution. It is then possible to
discriminate between different kinds of metallic particles.

Figure 5 illustrates the behavior of the constant dis-
tance image of the monolayer of metallic particles de-
scribed in Fig. 4. In this application, the aggregate con-
sists of a set of seven 10-nm-diameter silver particles sur-
rounded by gold spheres of the same size. The silver
spheres are organized on the substrate like a letter H, and
the scanned area is centered around this pattern as illus-
trate in Fig. 4. It may be seen in Fig. [5(a)] that around 2
eV the image corrugations are weak. In contrast, when
the frequency increases to reach the localized resonance
of the set of silver particles [see Fig. 5(b) and 5c)] the
shape of the images is dramatically changed. In fact,
around this resonant model [Fig. 5(c)], the form of the
letter H may be recognized, though with some distortion
due to depolarization effects occurring at the center of
the pattern.
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FIG. 5. A sequence of NFO images calculated in constant
distance mode (Zz =12 nm). The object is described in Fig. 4.
The curvature tip end and the scanned area are 15 nm and
(40X40) nm, respectively. The silver spheres appear to be well
resolved when the incident frequency reaches 3.2 eV. (a) co=2
eV. (b) ~=3.1eV. {c)co=3.3 eV.
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FIG. 6. Frequency-dependent study of the deflection experi-
enced by the dielectric probe tip above a silver particle 15 nm in

radius.
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In many experimental studies, near-field optical (NFO)
images are recorded by keeping the detected intensity at a
constant level with a feedback mechanism. '
Thus, when the tip is displaced along the surface being
tested, it follows the contour of the object, and the images
are obtained by measuring the deflection of the detector.
A simulation of this operating mode is given in Fig. 6,
where we have calculated the trajectory of the tip apex
above a single silver particle 15 nm in radius. As expect-
ed, the amplitude of the deflection above the sphere de-
pends on the incident-field frequency. Near the plasmon
resonance this deflection reaches 35 nm and reveals the
presence of a strong enhanced electric near field.

V. CONCLUSION

%e have theoretically analyzed, in systems of experi-
mental interest, the possibility of performing local spec-
troscopy for a surface with a near-field optical microscop-
ic working in the STOM/PSTM configuration. Starting
from a Lippmann-Schwinger version of Maxwell's equa-
tions, we have studied the near-field behavior of metallic
objects at close proximity as the external frequency is
varied in the optical range. The discretization procedure
in direct space used to solve this implicit integral equa-
tion appears to be well suited for dealing with realistic

situations, since it is independent of the boundary shapes
and accounts for any kind of dielectric function profile.
Numerical simulations have been performed by discretiz-
ing the apex of a dielectric stylus. For such a detector,
the interaction between the detection device and the ob-
ject weakly perturbs the spectral characteristics of the
system to be analyzed. The authors hope that the simula-
tions presented in this paper stimulate experimental de-
velopment toward scanning optical spectroscopy. If such
an experiment becomes possible, it should be kept in
mind that the uncertainty about the nanoparticles suscep-
tibilities might induce some quantitative deviations from
our results; in particular, the resonance peaks could turn
out to be somewhat shifted. Nevertheless, the aim of our
simulations is not the exact determination of such peak
values but rather to show the interest of such a method
for morphologic studies and for the characterization of
structures in the mesoscopic range.
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