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The importance of intraband Auger processes in determining the ionization balance in quantum
dots is reported. The numerically inexpensive binary-encounter model for a Coulomb collision be-
tween identical particles is found to be a good estimator of the intraband Auger rates out of a
quantum dot. Intraband and the conventional interband Auger processes differ in that the former
involve only intraband transitions whereas the latter always involve a radiationless interband transi-
tion. As such, intraband Auger rates do not involve the evaluation of the very small overlap integral
of a conduction band with a valence band Bloch wave function and are thus much larger than in-
terband Auger rates, especially for large-band-gap semiconductors like GaAs. Though intraband
Auger processes are not strong enough to establish a quasiequilibrium within the entire conduction
band at the room-temperature free-carrier concentrations (10'® cm™?) and bound energy separations
(greater than an LO-phonon energy) commonly assumed in the quantum-dot literature, they are ca-
pable of placing almost as many bound carriers in states near the band edge as would be predicted
erroneously by a quasiequilibrium Fermi-Dirac distribution. Such large bound state occupations are
important for quantum-dot laser design. A sufficient condition for a quasiequilibrium to exist within
all of an energy (conduction or valence) band is found to be the existence of many inverse Auger pro-
cesses faster than interband spontaneous emission, which occurs for total (bound plus free) electron
concentrations greater than 5%x10'7 ¢cm~? at room temperature in 100 A radius GaAs/Alo.3Gao.7As
quantum dots whose centers are separated by 400 A. The nonlocal thermodynamic equilibrium pop-
ulations in quantum dots can be understood from a simple model in which states connected by fast
Auger or phonon processes are in Saha-Boltzmann equilibrium. All other states have occupation
factors which are determined by the ratio of intraband collisional to interband radiative lifetimes, as
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described by a Fokker-Planck equation modeling diffusion in energy of bound particles.

I. INTRODUCTION

We have recently shown that the assumption of
quasiequilibrium within an energy (conduction or va-
lence) band is highly questionable? over a wide range
of temperatures at the typical bound energy separations
(greater than an LO phonon energy) and free-carrier con-
centrations (10'® cm™3) commonly assumed3® in the
quantum-dot literature. The assumption of quasiequi-
librium is indicated by the same quasi-Fermi level (Ep.
or Er,) in the distribution function”

1

feo(B) = 1+ exp ([E — Epc,ry]/kBT)’

(1)

for all the carriers in the same energy band in all the
quantum dots and barrier. Our conclusion was based
on solution of the population rate equations in which
these processes affecting the quantum-dot bound carri-
ers were included: intraband collisional excitation and
deexcitation as well as collisional ionization® from and
three body recombination into all bound states resulting
from the Coulomb interaction with incident free parti-
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cles, interband spontaneous emission, intraband absorp-
tion and emission as well as photoionization and radia-
tive recombination resulting from a Planck distribution of
photons, ionization from and recombination into weakly
bound states resulting from interaction with an equilib-
rium distribution of LO phonons, and excitation and de-
excitation resulting from an equilibrium distribution of
small energy acoustic phonons.

The use of a quasiequilibrium (1) for all the carriers
within the same energy (conduction or valence) band in
all the quantum dots and barrier is justifiable”%1° when
intraband (mainly carrier-phonon and carrier-carrier)
scattering is much faster than the interband (conduction-
to-valence band) radiative emission. In quantum dots
having typical bound energy separations greater than an
LO phonon energy, intraband relaxation of bound carri-
ers via phonon absorption or emission is insignificant.!!
In a recent paper, a free-carrier concentration in excess
of 10! cm~3 was found to be required to establish a
quasiequilibrium via collisional (de)excitation of bound
carriers? in a typical example taken from the literature®
of 100 A radius GaAs quantum dots whose centers are
separated by 400 A. The typical electron and hole concen-
trations of 3.125x10'® ¢cm~3, which were assumed in the
literature,® are not large enough to establish a quasiequi-
librium via collisional excitation and deexcitation pro-
cesses within the conduction band of these quantum dots.
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The carrier-carrier scattering which helps determine
the quantum-dot bound state populations manifests itself
as Auger processes as well as collisional (de)excitation.
The first purpose of this paper is to distinguish between
the conventional interband Auger process shown in Fig. 1
and what we will define to be the intraband Auger pro-
cesses shown in Fig. 2. The main difference between these
two types of Auger processes is that the former always in-
volves a nonradiative interband transition while the lat-
ter involves only intraband transitions. We will see in
Sec. II that this difference makes intraband much larger
than interband Auger rates, especially for large-band-
gap semiconductors. We also present the application in
both the atomic plasma and quantum-dot literature of
the binary-encounter model to the calculation of Auger
rates. Discussions are available on interband Auger pro-
cesses in conventional”®12715 semiconductors as well as
in quantum dots.!®71® We believe this present work to
be the first discussion of intraband Auger processes in
quantum dots.

The second purpose of this paper is to include Auger
processes in the quantum-dot population rate equations.
We find that intraband Auger processes greatly affect
the quantum-dot ionization balance, as is borne out in
Sec. III. This could have been surmised from the atomic
plasmas literature where it has long!® been known that
Auger and dielectronic processes play an important role.
Though Auger processes are not strong enough to estab-
lish a quasiequilibrium within the conduction band at the
room-temperature carrier concentrations and bound en-
ergy separations commonly assumed in the literature as
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FIG. 1. The energy levels associated with a conventional
Auger process. In a conventional or interband Auger process,
the energy which ejects the bound particle into a continuum
energy state is provided by a nonradiative interband transi-
tion. In the CCCV process shown in this figure, the energy
released when the initial electron 1 drops into the initial hole
state 1’ is absorbed when the initial electron 2 is promoted to
the continuum state 2.
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FIG. 2. The energy levels associated with an intraband
Auger process. In an intraband Auger process, the energy
which ejects the bound particle into a continuum energy state
is provided by a nonradiative intraband transition. In the
CCCC process shown in this figure, the energy released when
the initial electron 1 drops into the lower conduction band
state 1’ is absorbed when the initial electron 2 is promoted to
the continuum state 2'.

discussed in Sec. IIIB, we do find that intraband Auger
processes can place almost as many bound carriers in
states near the band edge as would be predicted erro-
neously by (1). More generally, we discuss in Sec. III B
the critical free-carrier concentration above which Auger
processes can establish a quasiequilibrium within an en-
ergy band.

The third purpose of this paper is to give a simple phys-
ical understanding of what determines the bound state
occupation factors. Knowledge of the nonlocal thermal
equilibrium (non-LTE) bound state occupation factors is
very helpful in the design of quantum-dot lasers. For ex-
ample, the population inversion densities and threshold
gains and currents are conveniently?° expressed in terms
of the bound state occupations. The model which we
present in Sec. III A gives simple, analytical, numerically
reliable expressions for the non-LTE bound state occu-
pations useful in quantum-dot laser design. The model
clearly indicates the dominant processes establishing the
non-LTE bound carrier distribution.

To provide a quantitative example with which to work
in this paper, we will use the materials parameters pre-
sented in previous?! work for GaAs quantum dots sur-
rounded by Aly 3Gag 7As barriers. GaAs has?? a room-
temperature bulk band gap of 1.424 eV, a spin-orbit split-
ting of 340 meV, an LO phonon energy of 35.34 meV, an
index of refraction of 3.3, light hole, heavy hole, and con-
duction band effective masses at the I" point of 0.082m,,
0.45mo, and 0.067m,, respectively, and a low frequency
dielectric of 12.85¢5. Bulk Aly 3Gag 7As has light hole,
heavy hole, and conduction band effective masses at the
I point of 0.096m¢, 0.51m¢, and 0.092m, respectively, a
conduction band edge which lies 289.1 meV above that in
GaAs, a valence band edge which lies 132.7 meV below
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that in GaAs, and a room-temperature?® low frequency
dielectric of 12.01¢p. Unless otherwise specified, we will
assume room-temperature operation of our quantum dot
lasers throughout this paper.

II. INTRABAND AUGER PROCESSES

In an Auger (also known as an autoionizing) process,
the energy released by one of the particles originating
from an initial two-particle bound state as it drops into a
lower energy bound state excites the other particle in the
initial two particle state into a higher energy continuum
state. When the Auger process involves a radiationless
interband transition as shown in Fig. 1, this is the con-
ventional Auger process discussed in the semiconductor
literature.”%12715 When the Auger process involves only
intraband transitions as shown in Fig. 2, we define this
to be an intraband Auger process to distinguish it from
the conventional interband Auger process. We term the
intraband Auger process shown in Fig. 2 as a CCCC pro-
cess by analogy with the common nomenclature of CCCV
for the conventional interband Auger process of Fig. 1.
The Auger process and its inverse can be indicated by the
forward and reverse reactions, respectively, as follows:

X(Z,i,5) = X(Z+1,k)+e, (2)

where the two initial bound electrons in the Auger pro-
cess are in states 7,7 in a quantum dot of initial charge
Z, and one of the final electrons is in the bound state k,
and the other final electron is free.

The interband and intraband Auger processes just de-
fined are analogous to the Auger and super Coster-Kronig
transitions, respectively, defined in the literature?* on
atomic inner-shell processes. In an Auger process as de-
fined in the latter, the two initial electrons whose energies
will be changed by the Auger process are in a princi-
pal subshell different from that containing the initially
vacant state which will be filled by the autoionization.
In a super Coster-Kronig transition, both of the initial
electrons whose energies will be changed by the Auger
process are in the same principal subshell as that con-
taining the initially vacant state which will be filled by
the autoionization.

1
D= (F,Fy;F,F, | ————
[Ty —r2 |
*
z : CKz,-’mLzCKéyJé‘L'z
J2,L2,J3,L)

| Fi, F; F', F;)

J1,Ly,J{,L}
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A. Calculation of Auger rates

Fermi’s golden rule gives the Auger rate as”'%25
2r 1
a,=_1
B Ninitial

| Vis | 8 (E: — Ey), (3)

D>

initial states final states

where Njnitiai is the number of initial states, V;

is the matrix element of the Coulomb interaction
V(ry—ry) = m between the participating elec-
trons, r; and ry are the positions of the two electrons,
€ is the dielectric constant, and E; and E; are the to-
tal initial and total final energies for the Auger process.

The matrix element of 37, . V(r; —r;) between Slater

determinantal initial and final states is2®

Vir = [ [ andn (@1(r)@5(r) - 8120 83(r0)
XV (£1 — 12) @) (11) 8} (72), ()

where i = 1,2, and ®; and ¥}, denote the wave functions
of the two initial and final electrons, respectively, where
represents both spin and spatial coordinates, 7 = (o,r).
Included in the rates presented in this paper is an average
over all possible initial and a sum over all possible final
total (multiparticle) angular momenta.

The multielectron wave functions used in (4) have
been discussed before in the literature!® and are summa-
rized in Appendix A. Single particle wave functions are
written®®2? in k- p theory?” as linear combinations of
products of a cell-periodic Bloch part and a slowly vary-
ing (over a unit cell) envelope part. The effect of the ro-
tationally symmetric potential formed by the barrier ma-
terial surrounding the quantum dots is then included in
the effective mass approximation in a Schrodinger equa-
tion acting?®2827 on the envelope part of the wave func-
tion. In this rotationally symmetric potential, all wave
functions?®2° are written as total angular momentum
eigenstates. The total single particle angular momen-
tum is the vector sum of the electron spin, the micro-
scopic Bloch angular momentum, and the envelope angu-
lar momentum. Multiparticle wave functions are chosen
to be antisymmetric with respect to all two particle inter-
changes, as well as to diagonalize the total multiparticle
angular momentum.

The direct term in the Auger matrix element (4) is

.
Y CiynCxiar

x> Re(1,2,1,2)85,,5 (L1 || £]| L) [(2F + 1)(2Ly + 1))

=0
XW (LLy FyJy; LiF)85, 5 (L2 || £ ]| L)

x [(2F} + 1)(2Ly + 1)]? W (L, FyJy; Lo Fy)Sp, pibp,p (—1) P+ Fi—F

x [(2Fy + 1)(2F, + 1)]* W(F!F,F,Fy; Ft),
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where J is the quantum number for the vector sum of the
single particle spin plus Bloch angular momentum and L
is the quantum number for the single particle envelope
angular momentum; Fy, F3, F{, F) are single particle an-
gular momenta and F, F’ are multiparticle angular mo-
menta; Ck j: 1; are obtained by diagonalizing the k - p
Hamiltonian; W(;) is a Racah coefficient;2¢ (L||¢||L’) are
reduced®® angular momentum matrix elements; and the
Slater integrals R,(1,2,1’,2') are integrals of the radial
parts of the envelope wave functions, as defined in (A5).
(See Appendix A.) The exchange (the second) term in
the integral (4) above can be obtained from (5) by re-
placing the subscripts 1 by 2 and vice versa.

The computation of conventional interband Auger
rates involves the evaluation”?12715 of the very small
overlap integral of the mostly s-type Bloch wave function
associated with state 1 in Fig. 1 with the mostly p-type
Bloch wave function associated with state 1’ of the same
figure. This overlap integral expresses itself in Eq. (5) in
the Ck, JIL coefficients obtained from the k - p Hamil-
tonian: it is largest for the J =1/2 term for conduction
band states, and it is largest for the J =3/2 terms for
the light and heavy hole states. For intraband Auger
processes, this overlap integral is near unity,”?? as all
Bloch wave functions in intraband scattering have the
same symmetry type (mostly either s or p type). This is
indicated in Eq. (5) by values of the Ck j: ; coefficients
which are near unity for the same J values for all four
states shown in Fig. 2.

The overlap integral of the mostly s- with the mostly
p-type Bloch wave functions in the calculation of con-
ventional interband Auger rates is known”%!% to be
largest for small-band-gap semiconductors. In fact,
the room-temperature, bulk, interband Auger rates are
comparable”!%!® to interband radiative emission only
in semiconductors having band gaps less than about
300 meV. The interband Auger rates in GaAs, with its
bulk band gap of 1424 meV, are known”? to be exceed-
ingly small. For this reason, the interband Auger rates
in our GaAs quantum dots will not be considered in this
work.

The numerical methods used to calculate the intraband
Auger rates are the same as those we have previously'®
used for the conventional interband Auger rates. The
main difference, of course, is that the four wave func-
tions included in the matrix element (5) are involved only
in intraband transitions. Our previous'® work discussed
ways in which we checked our numerical methods.

The numerical example which we discuss in this paper
is taken® from the literature, that of 100 A radius GaAs
quantum dots whose centers are separated by d =400 A.
The materials parameters for GaAs and the Alg 3Gag.7As
barriers were given in the Introduction. The energy lev-
els and symmetries of the bound states in these quantum
dots in the effective mass approximation are discussed in
Appendix A and elsewhere.18:21:28:29 They are summa-
rized in Table I.

The intraband Auger lifetimes given in Table II are
very short: on the order of tens of picoseconds. They are
comparable to the intraband electron-electron scattering
rates in the bulk,® which is to be expected as the intra-
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TABLE I. Ten conduction band single particle bound
states in a 100 A radius GaAs quantum dot. The bound state
symmetries and energy levels, measured from the GaAs con-
duction band edge, have been discussed (Ref. 21) elsewhere.

Level

number Conduction Energy
% band state (meV)
0 151/, 53.7
1 1P 105.9
2 1P3); 105.9
3 1Ds ;2 167.4
4 1D3/2 167.4
5 2512 195.4
6 1F7, 235.6
7 1F5 2 235.6
8 2P1/2 280.2
9 2P;; 280.2

band quantum-dot Auger processes become the same as
the intraband electron-electron bulk scattering processes
in the limit of large quantum-dot radii.

To have enough energy to autoionize, the energy re-
leased by one of the bound particles in the initial two
particle state must be enough to raise the energy of the
other initially bound electron to a continuum state. Thus
the initial two particle state must have at least the energy

E,+ E; = E; + E; > Emin,bound + Vg, (6)

where Emin bound is the smallest possible bound energy
which E! can assume and Vp is the smallest possible
continuum energy which E) can assume. Thus the initial
two particle autoionizing states shown in Table II have
energies of at least 362 meV.

B. Comparison with the binary-encounter model

This section presents the application of the binary-
encounter model31733 to the calculation of Auger rates
in both the atomic plasma and quantum-dot literature.
When the numerically intensive calculation of the Auger
rates by Fermi’s golden rule (3) is to be avoided, we find
the binary-encounter model to be a good estimator (con-
sidering that the bound state degeneracies and symme-
tries are not accounted for) of these Auger rates in the
sense of least-squares fractional error.

The binary-encounter cross sections used here are clas-
sical Coulomb cross sections modified to include an ex-
change term and an interference of the exchange and the
direct terms. The main feature of the binary-encounter
model is its assumption of an independent pair interac-
tion between the incident and target particles. Another
important feature of the binary-encounter model is that
it is very easy to use. The binary-encounter model has
had semiquantitative31 ™33 success in modeling the colli-
sional ionization of electrons from, and to a lesser degree,
the collisional excitation in, and the transfer of electrons
onto, the target ions in an atomic plasma.

The binary-encounter model is expected to be a good
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approximation when the participating electrons come in
close proximity during a Coulomb collision. Since the
inverse Auger process involves a near Coulomb collision
in which the incident particle is captured, the binary-
encounter model should be appropriate. In situations
where significant contributions to the Coulomb cross sec-

TABLE II.
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tion come from distant collisions, such as in collisional
ionization processes involving large incident energies and
small energy exchanges, the binary-encounter cross sec-
tion must be augmented3! to include the effects of distant
collisions.

Since the inverse Auger process is a close Coulomb

The CCCC intraband Auger rates in our 100 A radius GaAs quantum dots surrounded by Aly.3Gag.7As. Included

in these rates is an average over all possible initial and a sum over all possible final total (multiparticle) angular momenta. The
free-carrier concentration obtained from the rate equations and used to compute the room-temperature inverse Auger rates was

1.04x10'® cm

~3. The notation is such that 5.40[12] is equal to 5.40x10'2.

Initial two Final Initial two Final

particle state bound particle state bound

state state

Single Single single Inverse Single Single single
particle particle particle Auger Auger particle particle particle Auger Inverse
level level level rate rate level level level rate rate
number number number (1/s) (1/s) number number number (1/s) (1/s)
1 8 0 5.40[11] 2.98(8] 5 9 1 8.23[11] 2.16[8]
1 9 0 1.54[12] 1.70[9] 5 9 2 5.14[11] 6.75[7)
2 8 0 8.88[11] 9.80[8] 5 9 3 1.24[10] 1.17[7]
2 9 0 7.85[11] 1.73[9] 5 9 4 3.65[11] 5.15(8]
3 5 0 2.57[11] 1.05(9] 6 7 0 5.66(11] 1.40(8]
3 6 0 3.07[11] 1.06(9] 6 7 1 1.65[12] 3.07[9]
3 6 1 3.91(10] 1.02[9] 6 7 2 2.21[12] 2.06[9]
3 6 2 1.30{12] 1.69[10] 6 7 3 5.25[12] 3.49(10]
3 7 0 9.09[11] 2.35(9] 6 7 4 4.87[12] 4.87[10]
3 7 1 5.08[11] 9.91[9] 6 8 0 2.32(11] 3.41[6)
3 7 2 2.43[12] 2.37[10] 6 8 1 6.52[11] 7.24(7)
3 8 0 2.89[11] 4.46(7] 6 8 2 3.50[11] 1.94([7]
3 8 1 6.56[11] 7.64(8] 6 8 3 2.58[12] 1.03[9]
3 8 2 1.75[12] 1.02[9] 6 8 4 3.45[11] 2.05(8]
3 9 0 8.99(10] 2.78(7] 6 8 5 2.55[12] 8.95[9]
3 9 1 1.12[11] 2.60(8] 6 9 0 1.69[11] 4.96[6]
3 9 2 1.53[12] 1.78[9] 6 9 1 1.53[11] 3.39(7]
4 5 0 2.89(11] 7.88(8] 6 9 2 5.33[11) 5.91[7)
4 6 0 9.93[11] 2.29(9] 6 9 3 4.22(12] 3.35(9]
4 6 1 2.10[12] 3.64[10] 6 9 4 1.81[12] 2.16(9]
4 6 2 2.14[12) 1.86[10] 6 9 5 1.47(12] 1.03[10]
4 7 0 2.06[11] 3.56(8] 7 8 0 9.70[10) 1.07[6]
4 7 1 5.48[11] 7.13[9] 7 8 1 2.00[11] 1.67[7]
4 7 2 9.76[11] 6.35[9] 7 8 2 2.07[11] 8.63(6]
4 8 0 6.56[10] 6.75(6] 7 8 3 2.59(12] 7.72(8]
4 8 1 2.76[11] 2.14[8] 7 8 4 1.28[12] 5.72[8]
4 8 2 1.51[12) 5.86(8] 7 8 5 1.86[12] 4.91[9]
4 9 0 3.06[11] 6.30(7] 7 9 0 2.08[11] 4.59[6]
4 9 1 1.68[12] 2.61[9] 7 9 1 2.61[11] 4.34[7)
4 9 2 2.20[12] 1.70[9] 7 9 2 9.09[11] 7.57[7]
5 6 0 4.42[11] 1.72[8] 7 9 3 5.05[12) 3.01[9]
5 6 1 9.79[11] 2.889) 7 9 4 2.85[12)] 2.54[9)
5 6 2 4.72[11) 6.95[8] 7 9 5 1.39[12] 7.35(9]
5 7 0 3.56[11] 1.04(8] 8 9 0 4.60[11) 6.06(5]
5 7 1 7.16[11] 1.58[9] 8 9 1 7.78[11] 7.736]
5 7 2 5.43[11] 5.99(8] 8 9 2 1.02[12] 5.06[6)
5 8 0 9.88[11] 1.72[7] 8 9 3 4.38[10] 1.56[6]
5 8 1 3.79[11) 4.99[7) 8 9 4 6.94[11] 3.70(7]
5 8 2 4.17(10) 2.74[6] 8 9 5 2.43[12] 7.63(8]
5 8 3 1.55(10) 7.27[6) 8 9 6 3.67[10 1.36(7)
5 8 4 1.58[10] 1.12[7] 8 9 7 6.64[10] 3.30[7)

5 9 0 9.75[11] 3.40[7]
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collision, we follow Vriens3! in assuming that both the

incident and target particles have kinetic energies that
are measured relative to the potential in the quantum
confined region (from the quantum-dot band edge), as
it the relative velocities during the close collision which
are most important. The target electrons are assumed to
have a velocity distribution appropriate for their bound
state. This velocity distribution is assumed to be spheri-
cally symmetric, which is a reasonable if one is consider-
ing averages over degenerate angular momentum eigen-
states.

Vriens31:32

and Gryzinski®® have given the differential
|

Q~ogAFE
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cross section og for the collision in which an energy E
is exchanged between two identical particles interacting
via the Coulomb interaction. For the discrete energies
involved in a collisional excitation of a bound particle or
in the transfer of an electron from an incident atom to a
particular state in the target, Vriens3! and Gryzinski®®
integrate this differential cross section over a range AF
of the exchanged energy, where AE = (E;), — (E1)n—1is
the energy separation near the energy F; of the final state
involved in the excitation. The analogous total cross sec-
tion @ for a collision involving an incident particle and a
target electron in a quantum dot is

2 2 '
oy [ 1, 4B 1
=’ (47reQDR) [(E * 3E3) * {(E; “E-EZ T

where R is the radius of the quantum dot, eqp is the low
frequency dielectric constant in the quantum-dot mate-
rial, the energies (as shown in Fig. 2 and measured from
the quantum-dot band edge) of the two initial particles
are F| (bound) and E} (free) and of the two final bound
particles are F; and E2, (7) assumes that the energy ex-
change E = E, — E; is defined to be positive, (7) also
assumes that E, > Ef, and®3132 &' ~ 1. The term in
parentheses, the term in curly brackets, and the &' term
inside the square brackets in (7) are, respectively, the di-
rect, exchange, and interference terms in the Coulomb
interaction between identical particles.

Though we have not been able to find in the liter-
ature the application of the binary-encounter model to
an Auger process, we have observed use of the binary-
encounter model in similar problems involving a spec-
ified energy exchange in a Coulomb collision: the col-
lisional excitation and electron transfer problems men-
tioned above. We follow the example of Vriens31:32 and
Gryzinski®® to write the Coulomb cross section as (7),
which we propose to be appropriate for the inverse Auger
process considered in this paper. The Auger rate is then
obtained from the proposed cross section (7) and detailed
balance,

A = Qupg(E;)AE, (8)

where v} = (2E}/m,,)? is the velocity of the free particle
and

3
1 2myp \ 2 1
o) = o5 (53) (B - Vet ©)
is the density3* of states per unit volume per unit energy.

Figure 3 shows the dependence on the final unbound
particle energy E) (measured from the quantum-dot
band edge) of the Auger rates calculated from Fermi’s
golden rule (3) (circles) and those obtained from the
binary-encounter model (8) (squares) for a 200 A radius
GaAs quantum dot surrounded by Alg3Gag7As. The
numbers in this figure correspond to all Auger processes
for which the final bound particle [1’ in (7)] is a 15 1 state
at 13.8 meV and for which the energy exchanged in the
direct term in (7) is 265.8 meV. The Auger rates calcu-

AE) @' AE -
3(E;—E -E)?*| E(E;-E -E)| E’

-
lated from Fermi’s golden rule (3) are averaged over all
initial autoionizing states which are energy degenerate.
The solid line in Fig. 3 is the best fit curve, which has
the form of a fourth order polynomial times the func-
tional form of the binary-encounter Auger rate, to the
circles in Fig. 3 in the sense of least-squares fractional3®
error. The agreement between this best fit curve and
the binary-encounter numbers (the squares in the fig-
ure) is better than 10%. This indicates that the binary-
encounter Auger rates are roughly an arithmetic mean of

)
s

:

3
1

Auger Rate (10°/s

1 T T T
200 300 400 500 600

Free Particle Energy (meV)

FIG. 3. Comparison of the dependence on the final un-
bound particle energy (measured from the quantum-dot band
edge) of the Auger rates calculated from Fermi’s golden rule
(3) (circles) and those obtained from the binary-encounter
model (8) (squares) for a 200 A radius GaAs quantum dot sur-
rounded by Alo.3Gao.7As, whose band edge is at 289.1 meV.
The solid line is the best fit curve, which has the form of
a fourth order polynomial times the functional form of the
binary-encounter Auger rate, to the circles in the sense of
least squares fractional error. The numbers in this figure cor-
respond to all Auger processes for which the final bound par-
ticle [1' in (7)] is a IS% state at 13.8 meV and for which
the energy exchanged in the direct term in (7) is 265.8 meV.
The Auger rates calculated from Fermi’s golden rule (3) are
averaged over all initial autoionizing states which are energy
degenerate.
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the circles in Fig. 3 which have nearly the same abscissa.
This makes sense, since in the limit of very large quan-
tum dots, the nearly degenerate states used to calculate
the circles in the figure would be precisely energy degen-
erate, and Fermi’s golden rule would then average over
all the circles in Fig. 3. Thus, if the numerically intensive
calculation of the Auger rates by Fermi’s golden rule (3)
are not done, then the binary-encounter model appears
to be a good estimator (considering that the bound state
degeneracies and symmetries are not accounted for) of
the Auger rates in the sense of least-squares fractional
error.

Figure 4 shows the dependence on the final unbound
particle energy FEj (measured from the quantum-dot
band edge) of the Auger rates calculated from Fermi’s
golden rule (3) (circles) and those obtained from the
binary-encounter model (8) (squares and solid line) for
a 100 A radius quantum dot. The numbers in this fig-
ure correspond to all Auger processes for which the final
bound particle [1’ in (7)] is in one of the states 0 in Ta-
ble I and for which the energy exchanged in the direct
term in (7) is £=226.5 meV. The Auger rates calculated
from Fermi’s golden rule (3) are taken from Table II after
an appropriate average over the initial states which are
accidentally degenerate (see Table I).

As with the use of the binary-encounter model in the
literature3133 for calculating collisional excitation and
electron transfer rates in atomic plasmas, the numerical
accuracy of the binary-encounter model for estimating
Auger rates in quantum dots is limited by the some-
what arbitrary choice of energy range AFE (because of
the discrete nature of the bound energies) for integration
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FIG. 4. Comparison of the dependence on the final un-
bound particle energy (measured from the quantum dot band
edge) of the Auger rates calculated from Fermi’s golden rule
(3) (circles) and those obtained from the binary-encounter
model (8) (squares and solid line) for an 100 A radius GaAs
quantum dot surrounded by Alo.3Gao.7As, whose band edge
is at 289.1 meV. The numbers in this figure correspond to all
Auger processes for which the final bound particle {1’ in (7)]
is in one of the states 0 of Table I and for which the energy
exchanged in the direct term in (7) is 226.5 meV. The Auger
rates calculated from Fermi’s golden rule (3) are taken from
Table II after an appropriate average over the initial states
which are accidentally degenerate (see Table I).
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of the differential cross section, and by the way in which
bound state degeneracies are not accounted for. These
difficulties probably give rise to the discrepancies shown
in Figs. 3 and 4 between the Auger rates obtained from
Fermi’s golden rule and those obtained from the binary-
encounter model. No attempt was made to find a best
fit curve to the circles in Fig. 4, as too few points are
available from this small radius quantum dot.

C. Inverse Auger rates

The inverse Auger rate n.I'; in Table II were obtained
from the principle of detailed balance,

Ga Mc Eaj
nde = Ag™——exp | — 10
o= A8t exp (22 ). (10)
where the initial autoionizing state a and the final state
J (having one fewer electron) have degeneracies of g, and
gj, respectively, and an energy difference between them

of E,j, where n. is the free electron concentration and
3/2 .
is

the room temperature Nc=2(27rmpos,ckBT/h2)
6.73x10'7 cm ™3 in Al 3Gag 7As. The inverse Auger pro-
cess, which we have thus defined to be the inverse of that
shown in either Fig. 1 or Fig. 2, is known in the literature
on atomic processes in plasmas as a radiationless electron
capture and is the first step in the two-step dielectronic
recombination process discussed by Burgess.!®

Large inverse Auger rates are required in order for a
quasiequilibrium to exist within an energy band, as dis-
cussed in Sec. III B. The inverse Auger rates will be large
if the Auger rates are large or if the temperature is appro-
priate. The binary-encounter model of Sec. III B allows
one to quickly estimate the largest Auger rates.

The temperature dependence of the inverse Auger
rates (10) is shown in Fig. 5, where the E,;=43.3 meV
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FIG.5. The temperature dependence of the inverse Auger
rates of (10) for n.=1.04x10'® cm™3. The E,;=43.3 meV and
E,.;=104.8 meV curves correspond to the first and twelfth en-
tries of Table II. As would be expected from the occupation
statistics of the initial free particle, the inverse Auger rates
drop exponentially at low temperatures and drop as T-3/2
at high temperatures. Thus, the inverse Auger rate is largest
at T = %Eaj, where Eg; is the initial free particle energy as
measured from the continuum (barrier) band edge. Large in-
verse Auger rates are required in order for a quasiequilibrium
to exist within an energy band, as discussed in Sec. III B.
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and E,;=104.8 meV curves correspond to the first
and twelfth entries of Table II, respectively, for
1n.=1.04x10'® cm~3. As would be expected from the oc-
cupation statistics of the initial free particle, the inverse
Auger rates drop exponentially at low temperatures and
drop as T~2/2 at high temperatures. Thus the inverse
Auger rate is largest at T = %Eaj, where E,; is the ini-
tial free particle energy as measured from the continuum
(barrier) band edge.

ITII. IONIZATION BALANCE

This section discusses the effect of intraband Auger
processes on the ionization balance in quantum dots. The
population rate equations are solved for the example of
the preceding section of 100 A radius GaAs quantum dots
whose centers are separated by d=400 A. Since typical
bound hole states are separated by only a few?! meV in
our 100 A radius GaAs quantum dots, we will assume
that fast phonon processes maintain the valence band in
a quasiequilibrium (1). Thus, in this section, we are only
interested in the rate equations describing the popula-
tions in quantum-dot conduction band states.

The time rate of change of the concentration of quan-
tum dot ions is?36

d—]:;t(_I—) = Z[AG(I,J) +C(I,J) + A (1,J)
J#I
+P(L, J)|N(J)
—N(I) Y[ Aa(J, 1) + C(J, 1)

J#I

+A(JI)+ P(J,I)], (11)

where I,J are particular ion configurations (Z,{%})
and Aq(I,J)N(J), C(I,J)N(J), A.(I,J)N(J), and
P(I,J)N(J) are the fluxes contributing to a decrease
in N(J) and an increase in N(I) resulting from all
bound-bound and bound-free transitions caused by, re-
spectively, Auger, collisional, radiative, and phonon pro-
cesses. The set of equations (11) differs from the ones
we have previously? solved in that we have included on
the right hand side of (11) those fluxes which result from
intraband Auger processes. A detailed discussion of the
rate coefficients for the bound-bound and bound-free col-
lisional, radiative, and phonon processes in quantum dots
is given??® in the literature.

Equations (11) are solved in the steady state subject
to the boundary conditions that the total concentration
of carriers in each band and the total concentration of
ions are fixed. The total concentration of ions is

S N{I) = > N(Z{j}) = Nion=d"?
{1} (2,45}
because the spacing d between quantum-dot centers is
fixed by the fabrication procedure. The total concentra-
tion n. 1ot of conduction band electrons is

(12)

Tc,tot = Me + E N4,

bound 2

(13)

the sum of the concentration of the free electrons n. and
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of the electrons in all bound states 7. In (13), n; is the
number of electrons in the bound state ¢, averaged over
all quantum-dot ion configurations,

> naN({I})
o _m

SIN{ry
An

where n; 1 is the known number of electrons in the single
particle state 7 in the particular quantum-dot ion config-
uration I.

The total concentration of electrons and holes was
chosen to be the same as that discussed before in the
literature,+2: nc,tot=3.125><1016 cm~3. This choice of

(14)
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FIG. 6. Comparison of the predictions of various models
for the bound state occupation probabilities in the conduc-
tion band of our 100 A radius GaAs quantum dots whose
centers are separated by 400 A. The occupation probabilities
predicted by the rate equations (labeled as stars) are seen
to be in good agreement with the predictions of the Corona
(squares) and Fokker-Planck (boldfaced circles) models. Both
the Corona and Fokker-Planck models assume that the states
differing in ionization which are connected by fast Auger or
LO phonon processes are in Saha-Boltzmann equilibrium. In
the corona model, all other electronic states are assumed to
have zero occupation. These states which are not affected by
fast Auger or LO phonon processes are assumed in the Fokker-
Planck model to have nonzero occupations determined by a
Fokker-Planck equation modeling diffusion of electrons in en-
ergy. In spite of predicting occupation probabilities vastly
different from the quasiequilibrium distribution function (1)
commonly assumed in the literature for all conduction band
electrons [Fermi-Dirac (all e’s) with Er.=56.7 meV], the rate
equations do predict the occupation of the bound states at
53.7 meV to be almost the same as that obtained by as-
suming a quasiequilibrium for all conduction band electrons.
Electrons in quasiequilibrium with the free electrons would
have the distribution labeled Fermi-Dirac (free e’s only). The
electrons in the bound states at 280.2 meV, which is well
within an LO phonon energy of the Alg.3Gao.7As band edge
at 289.1 meV, are seen to be in quasiequilibrium with the
free electrons and all other bound electrons have occupations
which are less than that predicted by the upper solid curve
in this figure. The steady state total concentration of con-
duction band electrons was assumed to be 3.125x10'® cm™3.
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total carrier concentration is optimal for quantum-dot
laser studies: a much smaller total carrier concentration
would result in very small bound state occupations and a
much larger concentration would result in sizeable occu-
pations for many bound states which do not contribute
to the intended laser line.

At a total concentration of nc,tot:3.l25><1016 cm
conduction band electrons, three ionization stages were
included in our model: nonionized (with Z=0 and 2
bound conduction band electrons per quantum dot),
singly ionized (with Z=1 and 1 bound conduction band
electron per quantum dot), and doubly ionized (with
Z=2 and no bound conduction band electrons per quan-
tum dot).

The quantum-dot bound state occupation factor plot-
ted in Fig. 6 is defined to be

T
fC(Ei) - giNion

-3

: (15)

where n; is the average number of electrons in the bound
state ¢ (14).

The bound state occupation probabilities for our 100 A
radius GaAs quantum dots predicted by the rate equa-
tions in (11) are shown in Fig. 6 as stars. The rate
equation occupation probabilities differ vastly from the
quasiequilibrium distribution function (1) commonly as-
sumed in the literature for all conduction band electrons
[Fermi-Dirac (all e’s) with Ep.=56.7 meV]. In spite of
this, the rate equations do predict the occupation of the
bound states at 53.7 meV to be almost the same as that
obtained by erroneously assuming a quasiequilibrium for
all conduction band electrons. These rate equation occu-
pation probabilities are seen to be in good agreement
with the predictions of the corona and Fokker-Planck
models, which are discussed below.

The solution of the rate equations (11) predicts a
free electron concentration of n.=1.04x10'® cm™3 out
of a possible 7. t0t=3.125x10® cm™3 total conduction
band electrons. The free electrons are assumed to be in
quasiequilibrium and thus can be described by a quasi-
Fermi level of 170 meV above the GaAs bulk band
edge. Electrons in quasiequilibrium with the free elec-
trons would have the distribution labeled “Fermi-Dirac
(free e’s only).” The electrons in the bound states at
280.2 meV, which is well within an LO phonon energy
of the Alg3Gag7As band edge at 289.1 meV, are seen
to be in quasiequilibrium with the free electrons. All
other bound electrons have occupations which are less
than that predicted by the Fermi-Dirac (free e’s only)
curve in this figure.

A. Simple models

Before discussing some simple models which help us to
understand the numerical answers given by the rate equa-
tions we first show that the Fermi-Dirac (all e’s) model
which assumes (1) with the same quasi-Fermi level Ep.
for all conduction band electrons could not possibly be
correct at room temperature and the total carrier concen-
tration assumed above. If one were to assume, by way of
contradiction, that (1) is valid for all 3.125x10'% cm™3
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conduction band electrons, then the Fermi level for all
electrons is Fp.=56.7 meV and only’? 8.5x10'3 cm™—3
electrons remain free. Using the numbers presented in
this paper, the inverse Auger lifetimes at such a small free
carrier concentration are on the order of microseconds
and are much longer than the interband spontaneous
emission lifetimes. Thus the assumption of (1) for all
the conduction band electrons at room temperature and
N tot=3.125x10'® cm~3 yields intraband Auger rates (as
well as collisional? ionization and excitation rates) which
are too weak to be consistent with the assumption of (1).

With the exception of our previous? work, we have
not been able to find any discussion of rate equations
modeling the ionization balance in quantum-dot lasers.
With a view towards numerically checking the rate equa-
tion solutions as well as developing physical understand-
ing, we now propose two models which may be of use in
the design of quantum-dot lasers. Both of these mod-
els are conceptually the same as the statistical theories3”
commonly used in the literature on atomic processes in
plasmas to describe the excited-level and ionization-state
populations. Such statistical equilibrium (steady state)
approaches reduce the full set of rate equations (11) to a
much smaller set by observing that states connected by a
fast (e.g., Auger) process have steady state populations
which are related. The smaller set of rate equations are
then solved for the level populations which change more
slowly in time.

1. Corona model

To emphasize a similarity between quantum dots and
atomic ions, we have borrowed the name of our first
model, the corona model, from the atomic plasma3?® lit-
erature. In both the corona model of atomic plasmas
and the corona model which we are about to propose
for quantum dots, the excitation and ionization balance
problems may be separated. In atomic ions of increasing
nuclear charge, the excitation processes which are studied
occur at a rate much faster than that of the ionization.
Consequently, once the ionization balance is known, the
atomic ion states with the same ionization can be as-
sumed to have a Saha-Boltzmann distribution. In the
literature on the corona model in high temperature plas-
mas, it is well known3® that a crucial role in determining
the populations of the variously charged ions is played
by those autoionization processes which result in placing
ions in their various excited states. Such autoionization
processes are analogous to the intraband Auger processes
discussed here, since the latter place electrons in the var-
ious conduction band excited states.

In quantum dots, the fast and slow processes are re-
versed. This paper has already shown Auger rates to be
on the order of tens of picoseconds and inverse Auger
rates to be on the order of tens of nanoseconds. From
previous work,? intraband collisional excitation, intra-
band spontaneous emission, and interband spontaneous
emission lifetimes are on the order of 100 ns, 10 us, and
10 ns, respectively. In the corona model of quantum
dots, processes (ionization and recombination through
Auger and LO phonon processes) faster than the inter-
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band spontaneous emission determine the distribution of
the population among the different ionization sequences,
and slow processes (intraband collisional and radiative
processes) determine the distribution of the population
among states with the same ionization.

Figure 7 shows as stars the relative populations of the
two particle states xgiglgféﬂzggf):(l g;'(‘f% obtained
from the rate equation solution. The two particle states
with energies satisfying (6) are seen to be in Saha-
Boltzmann equilibrium with each other because they are
connected by fast Auger processes to singly ionized quan-
tum dots. The two particle states with energies less than
what is required in (6) are seen to have populations much
less than that predicted by a Saha-Boltzmann equilib-
rium. We will see in Sec. III A 2 that the two particle
states which are energetically incapable of autoionizing
are populated by slow intraband collisional and radiative
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FIG. 7. The relative occupation of the two particle states
Zg:ggféﬂ?ﬁ;:g:&eg The relative occupations pre-
dicted by the rate equations (labeled as stars) are seen to be
in good agreement with the predictions of the Fokker-Planck
model (solid curve). The Fokker-Planck model takes all elec-
tronic states connected by fast Auger or phonon processes
to be in Saha-Boltzmann equilibrium and all other electronic
states are assumed to have nonzero occupations determined
by a Fokker-Planck equation modeling diffusion of electrons
in energy. For our 100 A radius GaAs quantum dots sur-
rounded by Alg.3Gao.7As, the two particle states which par-
ticipate in Auger processes have energies exceeding 362 meV.
As indicated in (18), those two particle states with energies
just less than 362 meV are populated by the diffusion of car-
riers from higher energy states. The characteristic energy of
this diffusion in energy is determined by the ratio of typical
interband radiative rates to typical collisional (de)excitation
rates. The populations of two particle states with energies
much less than 362 meV are determined by the ratio of the
three body recombination influx to the interband radiative
outgoing flux. The corona model of Fig. 6 also assumes that
electronic states connected by fast Auger or phonon processes
are in Saha-Boltzmann equilibrium, but all other electronic
states are assumed to have zero occupation. The dashed curve
indicates the relative occupations that would be predicted if
all two particle states were in Saha-Boltzmann equilibrium.
The numbers in this figure were used to compute those in
Fig. 6.
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processes. These ideas are now used to propose a corona
model for quantum dots.

The deviation of the ion populations from Saha-
Boltzmann equilibrium is defined through the coefficients
b(Z = 1,i) in

N(Z=1,i) = N(Z“)%(z%%em(kzi )

xb(Z = 1,3), (16)

where i is a bound state in the conduction band. For a
Saha-Boltzmann equilibrium, all the coefficients b(Z =
1,i) are equal to unity.

In the corona model of quantum-dot ionization bal-
ance, the ratio of the ion populations are taken to be
(16) with

b(Z,i) =1 17)

for all states connected by a fast Auger or a LO phonon
process. (This is only a rough approximation, as the in-
verse Auger processes are comparable to and not greater
than the interband radiative processes for our numbers.)
In the corona model, all other states are assumed to have
zero population because the intraband collisional and ra-
diative processes populating them are much slower than
the interband spontaneous emission. The concentrations
of each ion and of the free carriers are then found by
requiring that the total concentrations of ions and free
carriers are fixed by (12) and (13).

Figure 6 shows good agreement between the results
of the rate equations and the corona model. This is a
corroboration of the main features of the corona model:
most of the lower energy single particle bound states in
Fig. 6 are populated by electrons in singly ionized quan-
tum dots and the higher energy single particle states are
populated by electrons in unionized quantum dots. By
lower energy single particle bound states, we mean those
with energies less than half of (6). The setting to zero of
the populations of those two particle bound states which
do not participate in fast processes (those in Fig. 7 with
energies less than 362 meV) in the corona model is a
good rough approximation because the occupation of the
low energy single particle bound states in Fig. 6 comes
mainly from singly ionized quantum dots rather than
from unionized quantum dots with total energy less than
362 meV.

The rate equations predict the occupation of the bound
states at 53.7 meV in Fig. 6 to be almost the same as that
obtained by assuming a quasiequilibrium for all conduc-
tion band electrons. The reason is that the singly ionized
quantum dots are in Saha-Boltzmann equilibrium with
each other and with the unionized quantum dots which
have energies satisfying (6), and the Saha-Boltzmann dis-
tribution (17) predicts quantum dots having a single elec-
tron at 53.7 meV to have the highest occupation. The
quantum dot conduction band still cannot be described
by (1) because many of the two-particle states with ener-
gies less than that required by (1) have populations much
smaller than in Saha-Boltzmann equilibrium.
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2. Fokker-Planck model

The Fokker-Planck model of this subsection is an ex-
tension of the corona model of the preceding section. As
in the corona model, the populations of states which are
connected by processes much faster (mainly Auger and
LO phonon) than the interband spontaneous emission are
modeled to be in Saha-Boltzmann equilibrium. Unlike
the corona model, the Fokker-Planck model prescribes
finite populations for states which are affected only by
processes slower than the interband spontaneous emis-
sion. Good numerical agreement is found between the
rate equations and Fokker-Planck solutions.

The most important processes determining a bound
state population in our simple models were found by de-
termining the dominant fluxes on the right hand side of
the rate equations (11). The populations of bound states
not affected by a fast Auger or LO phonon process were
found to be determined by the size of the interband radia-
tive emission relative to intraband collisional excitation,
ionization, and their inverse processes. The recombina-
tion of a conduction band electron with a valence band
hole with the simultaneous emission of a photon consti-
tutes an interband radiative process. A collisional exci-
tation or ionization process denotes the transition of a
bound particle to a higher energy bound or continuum
state, respectively, with the transition energy provided
by an incident free particle. As in our previous work,?2
our simple models make use of the fact that intraband
radiative processes are much weaker than intraband col-
lisional processes because of the relatively small size of
the typical transition energies involved.

We will assume that groups of degenerate or nearly
degenerate states are separated by more than an LO
phonon energy so that the interaction of bound particles
with phonons is not important. Moreover, we assume as
in our previous work? that the energy density of bound
states, the collisional (de)excitation rates, and the inter-
band spontaneous emission rates do not vary much for
the different bound states. We also invoke the fact® that
the collisional ionization rate n.q§ for a quasiequilibrium
distribution of projectiles has roughly the exponential de-
pendence exp (—U;/kgT) on bound state ionization po-
tential U;.

The standard form (B4) of the steady state Fokker-
Planck equation was first used by Pitaevskii*® to describe
the diffusion in energy of bound particles via collisional
excitation and deexcitation processes. In a recent? pa-
per, we have added to (B4) the fluxes of bound particles
resulting from the faster interband spontaneous emission
and the slower intraband collisional ionization and three
body recombination processes. Thus states which are not
affected by a fast Auger or LO phonon process have pop-
ulations which are determined by the modified Fokker-
Planck equation (B8) of Appendix B. Appendix B gives
a version of the Fokker-Planck model which differs from
our previous? discussion in that simple analytical expres-
sions for the deviation from Saha-Boltzmann equilibrium
are given. These analytical expressions easily show the
regimes where the different physical processes are domi-
nant.
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Appendix B shows that the deviation from Saha-
Boltzmann equilibrium b(Z, E) of states which are not
affected by fast Auger or LO phonon processes can be
found from a Sturm-Liouville equation obtained from the
Fokker-Planck equation,

b(Z2,E) = (1 . "—%E—'E—)

X exp[(Ek;fc)
» (;+;{1+4ACU§BT>2}%)}

nqg
bl
Agy

+ (18)
where A, and B/(kpT)? are, respectively, the interband
spontaneous emission and collisional (de)excitation rates
and F. is the energy of the lowest two particle state
which is in Saha-Boltzmann equilibrium with higher en-
ergy states. We have imposed the boundary conditions

CC
b(Z,E.) =1 and b(Z,E — Emin) = —2£ (19)
AC'U
because we require that two particle states with energies
greater than or equal to E, are in Saha-Boltzmann equi-
librium and that very small energy two particle states
have populations determined by the ratio of the three
body recombination influx to the interband radiative out-
going flux. This second boundary condition was found!-?
to be exhibited by the rate equation solution. Based
on the numerics of our previous paper,? we have cho-
sen the parameters in equation (18) to be A., ~ B and
A 0.1
. - =0.L

Figure 7 shows good agreement between the rate equa-
tion solution and the Fokker-Planck model for the occu-
pations of the two particle states. The errors in Fokker-
Planck model come from variations with respect to the
different bound states of the energy density of bound
states, and interband radiative and collisional transition
rates. Figure 6 shows the rate equation solution to be
in better (in the sense of mean squared error in occu-
pation probability) agreement with the Fokker-Planck
model than with the corona model. This is a result of
the more careful modeling of the populations of the two
particle states which are not affected by fast LO phonon
or Auger processes.

Our analytical solution (18) gives a good physical de-
scription of how the two particle states are populated.
The states with energies greater than E. are in Saha-
Boltzmann equilibrium because of fast Auger or LO
phonon processes. Those two particle states with en-
ergies just less than E. are populated by the diffusion of
bound carriers from higher energy states, as indicated by
the exponential term in (18). Equation (18) shows the
characteristic energy of this diffusion in energy to be de-
termined by the ratio of typical interband radiative rates
to typical collisional (de)excitation rates: a large ratio
indicates that electrons do not diffuse very far in energy
before combining with a valence band hole. Diffusion re-
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sulting from collisional (de)excitation does not affect the
populations of two particle states with energies much less
than E.. The population of these latter states is shown in
Eq. (18) to be determined by the ratio of the three body
recombination influx to the interband radiative outgoing
flux.

B. Critical free carrier concentration for LTE

As mentioned in the Introduction, the use of a
quasiequilibrium (1) for all the carriers within the same
energy (conduction or valence) band in all the quantum
dots and barrier is highly questionable!? over a wide
range of temperatures at the typical bound energy sep-
arations (greater than an LO phonon energy) and free
carrier concentrations (10'® cm~3) commonly assumed
in the quantum-dot literature. The reason is that the in-
traband relaxation of bound carriers via phonons!! and
collisional® (de)excitation is slower than the interband
spontaneous emission in such quantum dots. How do
Auger processes affect this discussion?

When the total number of conduction band electrons
is very large, many of the quantum-dot ionization stages
have sizeable occupations, and many are connected by
large fluxes resulting from Auger and inverse Auger pro-
cesses. A sufficient condition for Auger and inverse Auger
processes to establish (1) for all the carriers within the
same energy band is that the free carrier concentration
be large enough in order for the slowest inverse Auger
process to be faster than the interband spontaneous emis-
sion. The minimum free carrier concentration n. it to
satisfy this criterion is

nc,critrc = ]-OAcv . (20)

The slowest inverse Auger rate given in Table II is
(1.66 us)~!, and Eq. (20) yields a nccri¢ ~10'° cm™3
for this I'.. This latter value of 7 cri¢ is probably pes-
simistically large, as the states connected by a very slow
inverse Auger rate may also be connected to other states
by much faster inverse Auger rates.

A more realistic value of n. ¢rit ~10'7 cm™3 comes from
using the median value of I'. given in Table II. This free
carrier concentration corresponds to a Ep.=241.1 meV
(48 meV below the Alg.3Gag 7As conduction band edge).
Using (13), the total conduction band population is then

Te,tot,crit = Tle,crit

. gz
+Nion Z 1+ exp ([E; — Erc]/ksT)

bound %

~5.37 x 10'7cm ™3, (21)

where we have explicitly used (1) and Ep.=241.1 meV for
all quantum-dot and barrier conduction band electrons.
Thus, for a quasiequilibrium within the conduction band,
Eq. (21) requires a much larger total (bound plus free)
conduction band population than the 3.125x10'¢ cm—3
assumed in the example of this paper.

It is most likely that practical quantum-dot lasers will
not be operated with free-carrier concentration greater
than n. it for reasons of efficiency. At the free-carrier
concentration of 7 crit, the quasiequilibrium carrier dis-
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tribution shows too many bound states to have large
occupations. For example, at nc ¢ in our 100 A ra-
dius quantum dots, the Fermi energy of Ep.=241.1 meV
shows that 34 of the bound states in Table I (including
the angular momentum degeneracies) have occupations
greater than one-half. Thus the injected current sup-
plies a population inversion over a wide spectral region,
of which much is at frequencies away from the intended
laser line. This is undesirable.

IV. CONCLUSIONS

We have reported the importance of intraband Auger
processes in determining the ionization balance in quan-
tum dots. Though intraband Auger processes are not
strong enough to establish a quasiequilibrium within the
entire conduction band at the room-temperature free-
carrier concentrations (10'® cm™3) and bound energy
separations (greater than an LO phonon energy) com-
monly assumed in the quantum-dot literature, they are
capable of placing almost as many bound carriers in
states near the band edge as would be erroneously pre-
dicted by a quasiequilibrium Fermi-Dirac distribution.
Such large bound state occupations are important for
quantum-dot laser design.

The binary-encounter model for a Coulomb collision
between identical particles is found to be a good estima-
tor (considering that the bound state degeneracies and
symmetries are not accounted for) of intraband Auger
rates and is thus useful when calculation of the lat-
ter by the numerically intensive Fermi golden rule is to
be avoided. Intraband and the conventional interband
Auger processes differ in that the former involve only
intraband transitions whereas the latter always involve
a radiationless interband transition. Intraband Auger
rates do not involve the evaluation of the very small over-
lap integral of a conduction band with a valence band
Bloch wave function. Thus intraband Auger rates are
much larger than interband Auger rates for large-band-
gap semiconductors like GaAs.

A sufficient condition for a quasiequilibrium to exist
within all of an energy (conduction or valence) band is
found to be the existence of inverse Auger processes much
faster than interband spontaneous emission, which occurs
for total (bound plus free) electron concentrations greater
than 5x10'7 cm™3 at room temperature in 100 A radius
GaAs/Alg 3Gap 7As quantum dots. A particular inverse
Auger process is strongest when the temperature kgT is
on the order of the free particle energy. Quasiequilibrium
within all of an energy band is probably not desirable
for practical quantum-dot lasers, as many bound states
would then have occupations close to unity and the pop-
ulation inversion would be wasted in spectral regions of
no interest.

The non-LTE quantum-dot bound state occupations
can be understood from a simple model in which states
connected by fast Auger or phonon processes are in Saha-
Boltzmann equilibrium. All other states have occupation
factors which are determined by the ratio of intraband
collisional to interband radiative lifetimes, as described
by a Fokker-Planck equation modeling diffusion of bound
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particles in energy. A simple model for the non-LTE
occupation factors is useful for obtaining quantities im-
portant in quantum-dot laser design, such as population
inversion densities, threshold gains, and currents.

APPENDIX A: THE MULTIPARTICLE STATES
USED IN CALCULATING THE AUGER
MATRIX ELEMENTS

In the k - p energy band theory with total angular mo-
mentum eigenstates as a basis, the energy eigenstates®®
in a quantum sphere must also be eigenstates of the total
angular momentum

F=J+L=S+Lg+L, (A1)

where S, Lg, and L are the spin, Bloch, and envelope
angular momenta quantum numbers, respectively. Thus
the energy eigenstates ®,(7) are

@ (1) = (7 | F, F},)

= Cxgpifu(Kr)(on, Q| Ji, L; Fi, F,),
JiLj
(A2)

where fr,(Kr) is the radial part of the envelope func-
tion for each different angular momentum term, K is the
magnitude of the bound carrier wave vector, and

Cx,ai,L; = (Ji, Li; F, Fl; K | F{, Fi,; K)

1z 1z)

(A3)

are determined by diagonalizing the k - p Hamiltonian in
the | F!, F},; J!, L) basis.

There are two requirements on the form of the multi-
particle states: antisymmetry with respect to the inter-
change of any two particles and all multiparticle states
must be eigenstates of total multiparticle angular mo-
mentum. In atomic physics, these two requirements
are met through the use of*!*? recoupling coefficients
and?43 coefficients of fractional parentage. When there
are no more than two particles in each single particle
energy level, as in the case computed in this paper, the
formalism of the coefficients of fractional parentage is
not needed. Antisymmetry with respect to two particle
interchanges is already ensured by the use of a Slater de-
terminant in (4). For our two particle states, we use a
linear combination of Slater determinants to ensure that
the initial and final two particle states are eigenstates of
total angular momentum,

lFlaFZ;Fsz>

- ¥

Fy.\(F2:=F.—Fy.)
X(Fy, Fy,; Fy, Fy, | F1, Fz;F,Fz)-

|F17F12> I FZanz)

(A4)

The Slater integrals in (5) are
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R(1,2,,2) = [ rtars [ rtang,
0 0
X (Karz) fry (K3r2)

4m T<
X f (1(1’1)
¢+17JL
2/ 1 5 1 1

X fr; (K171),

where R is the radius of the quantum dot.

(A5)

APPENDIX B: FOKKER-PLANCK
DESCRIPTION OF THE DIFFUSION
IN ENERGY OF BOUND CARRIERS

The use of a Fokker-Planck equation to describe dif-
fusion in energy was first discussed by Pitaevskii,*® and
is appropriate to model collisional-radiative?* recombi-
nation in plasmas. The purpose of this appendix is to
review the diffusion in energy of bound carriers in a
quantum dot as described by a Fokker-Planck equation.
The use of a Fokker-Planck equation is appropriate when
there is one process [collisional (de)excitation in this pa-
per] which dominates the random walk among the bound
energy states. We will be modifying the Fokker-Planck
equation to account for strong interband radiative emis-
sion and three body recombination (the inverse of colli-
sional ionization). Assuming that the energy density of
states and the collisional deexcitation rates do not vary
much for the different bound states, which is appropriate
for our quantum dot, we can obtain analytical expres-
sions for the deviations from Saha-Boltzmann equilib-
rium.

The use of a Fokker-Planck equation to model the ran-
dom walk of electrons among the bound energy states
can be understood from expressions for the steady state
flux of particles into and out of the different bound en-
ergies. The steady state solution of the rate equations
must satisfy

> [X;iN(Z,5) - Xi5N(Z,4)] = 0, (B1)
Jj#i
where Xj; is the sum of the rates for all processes in
which a carrier goes from state j to state i. It has the
general solution®®44

DY A XG+o,6-9N(Z, (G + 0)]

£=1 i=0

~X(-i,G+oN[Z, (G —1)] } = —J,

where —J is the downward flux of carriers past state
(G+3)-

When only terms with small £ and i contribute signif-
icantly in (B2), and when X;; and Xj; are related by
detailed balance,

gi E;j; )
X;i==X;jex )
J 9 j €Xp (kBT

then the difference in Eq. (B2) can be approximated by
a derivative in the limit of quasicontinuous bound states.

(B2)

(B3)
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The total downward flux (B2) can be written as a Fokker-
Planck equation?4%44 for a steady-state problem,

dF Fdp F)

—J = B(E) (E - BT (B4)

where the  energy density of  states is
(AE; = Ejy1—E;_4)
p(ZaEJ') =g(ZaEJ')/AEJ'a (B5)

where the energy density of the population distribution
is

F(z,E;) = V%9

AE,
_ p(Z,E;) n. _Ej
=N(Z+ 1)g(Z +1) N¢ xp kT
xb(Z, E;), (B6)

where b(Z, E;) is the deviation from Saha-Boltzmann
equilibrium, and where the diffusion coefficient in the
Fokker-Planck equation is

B(E;) = 3 3 X(E;)E: (87)
Ej;

Equation (B4) is valid whenever one process and its
inverse completely dominate the random walk in energy
and must be modified if other processes are involved. For
quantum dots, the dominant process, whose rate is Xj;,
maintaining the random walk among conduction band
bound states is collisional (de)excitation. However, an
electron, whose collisional deexcitation is to be modeled,
may begin its random walk, not with a collisional de-
excitation from the continuum, but with a three body
recombination into a bound state. Further, the random
walk of any specific electron is terminated by an inter-
band radiative transition.

Thus the total downward flux past the quantum dot
bound energy F in (B4) must be augmented to include?
interband radiative emission, collisional ionization, and
three body recombination,

dF Fdp F
‘J-B(E)(E*;JE —kBT)

Emax
+/ dEIIF(EII)Acv(EII)
E

E F(E"
+ /!‘57..,;., dE" b((E”)) [1-b(E")]ngs, (BS8)
where E,, and Ena.x are, respectively, the lowest and
highest energies in the ionization sequence, A.,(F) is the
sum of all rates originating at the conduction band en-
ergy E and terminating in the valence band, n.qg, is the
collisional ionization rate, and the three body recombi-
nation rate coefficient has been related to the collisional
ionization rate coefficient by detailed balance. We have
assumed that Auger and phonon processes do not sig-
nificantly affect the states whose populations are to be
found from (B8).

The first three terms in the parentheses in (B8) are
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the downward flux resulting from collisional excitation
and deexcitation only. The first integral in (B8) is the
interband radiative flux originating from states with en-
ergy greater than E. The second integral in (B8) is the
three body recombination flux terminating in states with
energy less than or equal to E.

As in our previous? work, we now assume that

B(E),p(Z, E) ~ constant in E, (B9)

since the typical degeneracies, bound energy separations,
and dominant collisional rate coefficients do not vary
much for each of the different bound states. Thus

d (F(Z,E)\ _ 1 F(Z,E)
dE (b(Z, E) ) ~ kBT b(Z,E)

(B10)

and we can differentiate (B8) with respect to E to obtain

2 1 db b Z,E)  ngE
a7 kpTap  A«(E) +nedEl Bt =~ prgy
(B11)

Often, it is only necessary to solve (B11) for b(Z, F)
for those quantum dot ions which contain strongly bound
electrons, since quantum dot ions which contain weakly
bound electrons are in Saha-Boltzmann equilibrium and
are already accounted for in the corona model. The colli-
sional ionization rate coefficients are usually very small®
for strongly bound electrons. Thus we can often assume

neqs < B(E) (B12)

in (B11). If we further assume that A.,(F) is roughly a
constant, which we have found to be true? for our 100
radius GaAs quantum dots, then (B11) has the homoge-
neous solutions

b(Z,E) = exp[(Ek;fC)

9 (% N % {1 n 4Acv(gBT)2}§):| (B13)

b(Z,E) = exp[(Ek;f°)

x (% - % {1 + 4—AW(;BT)2}%>J ’

where E, is the ion energy above which quantum dot ions
of charge Z are in Saha-Boltzmann equilibrium.

When A., is roughly independent of energy, and when
the collisional ionization rate coefficients have the follow-
ing typical® exponential dependence on energy:

gy ~ ex E- B
cqE P ’CBT ’
both the homogeneous and particular solutions of the

differential equation (B11) can be found. With the sub-
stitution,

(B14)
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E—-F
w(E) = kpT exp <1, (B15)
ksT
the homogeneous part of Eq. (B11) can be written explic-
itly as a Sturm-Liouville equation, with n g g, €qual to
the collisional ionization rate evaluated at the energy E.,

d2b ksT\? wer (kBT b(w)
dw? ~ [Aw (T) * el e, (T) B "
(B16)
whose solutions are modified Bessel functions*®
homogeneous b(w) ~ w%Il, (/\w%)
or (B17)
1 1
homogeneous b(w) ~ w? K, (sz) ,
where
2 nedglg kBT 5 Acy(kBT)?
)\—4———~B , 1/—1+4——————~—B .
(B18)

When the arguments of the Bessel functions in (B17) are
small, (B17) reduces to (B13).

The particular solution of (B11) is easily found when
the collisional ionization rates are known to have the ex-
ponential dependence of (B14) and when the interband
radiative lifetime is either much larger or much shorter
than the collisional ionization lifetimes involved in Eq.
(B8). A particular solution of (B11) is

cc
% for Acy > ncgss

particular b(Z,F) = {1 for Au < mogle (B19)
cv (o § O}
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as can be verified by direct substitution. When collisional
ionization lifetimes are much shorter than interband ra-
diative lifetimes, we expect that collisional processes are
fast enough to establish a Saha-Boltzmann equilibrium
among ions of charge Z, as indicated by the lower equa-
tion in (B19).

The complete solution for b(Z, E) is a linear combina-
tion of the homogeneous and particular solutions. For our
quantum dots, the numbers in our previous paper? show
that the collisional ionization rates for the states which
do not participate in Auger or LO phonon processes are
much smaller than typical collisional excitation and in-
terband radiative rates. For our quantum dots, we can
thus write the complete solution for b(Z, E) as

CcC
b(Z,E) = (1 — MLE&)
Acy

Xe"p[<Ek;fc>
y (% . 4ACv<§BT)2}%>]

nedis B20
T (B20)
where we have imposed the boundary conditions
b(Z,E.) =1, b(Z,E — Emun) = "Z‘IE. (B21)
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