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Ab initio models for Zns surfaces: Influence of cluster size on surface properties
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The feasibility of the cluster method is studied using two-dimensional ZnS surface models. We
used the translational symmetry of electron integrals in the Hartree-Fock valence method as it
enables studies of large systems, containing several hundred atoms. The results show that the
in6uences of boundaries and empty vacancies are limited only to a small area, and thus relatively
small models can be used to simulate in6nite systems. The properties are converging monotonically
as the size of the model increases. However, in some cases small, size-dependent variations exist.
Augmenting the minimal valence basis set with Zn 4p polarization functions decreases the inBuence
of boundaries, and the charge distribution of surface becomes more uniform.

I. INTRODUCTION

In studying bulk and surface properties of crystals,
cluster models have now been widely used. It is expected
that finite models can be used to simulate infinite sys-
tems. Problems arising &om the artificial termination
of the model can be taken into account by special treat-
ments like embedding and localization techniques~ ~ if
necessary. On the other hand, ionic and covalent systems
have fairly localized electronic structures, and thus the
influences of the edges and other local effects are limited
only to a small region of space. This makes it possible to
use rather small models. Few studies have actually de-
fined how large a model should be or how the electronic
structure and the inHuence of local effects change when
the size of the model varies. The aim of our work is to
study the size effects and the inHuence of the edges of zinc
sulfide surfaces as the size of the model increases. ZnS
was chosen because its surface properties and phenom-
ena are used in optoelectronic applications and because
reference studies are available for comparison.

Cluster techniques are often based on ab initio
molecular orbital (MO) methods, where Mo's are con-
structed as linear combinations of atomic orbitals. The
method proves advantageous because no empirical pa-
rameters are included and the accuracy level can be in-
creased in a controlled fashion. The method is based
on the one used in molecular studies, and thus the same
widely used programs can be utilized. Alternative ap-
proaches are the ab initio solid state techniques based on
infinite models. Although these methods give more
accurate results for the bulk properties of crystals, lo-

cal effects cannot be studied easily without repeating
them within every symmetry unit. The common prob-
lem in both cases is the enormous number of many-
particle interactions that need to be taken into account.
In the Hartree-Fock theory, where interactions are self-
consistently averaged, the number of two-particle com-
ponents, the two-electron integrals, necessary for cal-
culating and storing increases as N4, where N is the
number of orbitals. Recently, fast algorithms have been
developed for the integral calculations and the stor-
age problems can be avoided by direct methods, where
integrals are recalculated as needed. Although the in-
crease of two-electron integrals is not necessarily O(N4)
in practice, they still pose a serious limit. In solid state
techniques the translational symmetry of integrals over
lattice vectors is traditionally used to reduce calculations.
Nevertheless, similar treatments in cluster studies have
not been used until recently.

II. THEORY

In this work, the translational symmetry of core-
valence and valence two-electron integrals have been used
in Hartree-Fock (HF) —valence method. As described in
our previous work, it can be shown that only integrals
with at least one basis function on two adjacent edges
of slab need to be calculated. This has a marked effect,
reducing the number of integrals necessary to calculate
from O(N4) to O(Ns). The number of translationally
unique integrals (U) can be obtained from the equation

J

U(i, j, k, m) = Q(ijkm) —Q(ij[k —1]m) —Q(i [j —1]km) —Q([i —1]jkm) + Q(i [j —1][k —1]m)

+Q([i —1]j[k —1]m) + Q([i —1][j —1]km) —Q([i —1][j —1][k —1]m),

where

1 n n
Q(n) = — —(n+1) s —(n+1) +1

2 2 2

I

and m is the number of basis functions in the transla-
tional unit. Integers i,j, and k are the translations to the
three directions in the model. For example, in the case
of a five atoms wide and k atoms long slab of hydrogen

0163-1829/94/49(16)/11185(6)/$06. 00 49 11 185 1994 The American Physical Society



11 186 JUHA MUILU AND TAPANI A. PAKKANEN 49

atoms with one basis function on each atom the num-
ber of integrals increases, U(5, k, 1, 1) = —34+ 145.5k-
231k + 184.5k when translational symmetry is used.
Without translational symmetry the number of integrals
increases as Q(5 xk x 1 x 1) = 1.25k+9.375k +31.25ks+
78.125k . A further reduction in the calculation can be
obtained by estimating the magnitude of the integrals
by the Schwartz inequality. The prescreening works very
well for large models, where the relation of the integrals
to be calculated vs basis functions approaches linear.

The principles of the valence method have been de-
scribed earlier. The wave function is divided into
valence and core orbitals according to the &ozen core ap-
proximation. Valence orbitals are constructed as linear
combinations of atomic orbitals and treated variationally
in the fixed field of the atomic core. The core-valence or-
thogonality is preserved at two levels. One-center orthog-
onality is explicitly enforced by simple auxiliary functions
representing the core orbitals. Two-center orthogonality
to the neighboring nuclei is maintained by standard pro-
jection operator techniques. The core-valence interac-
tions are described with density matrix approximations,
where densities of core orbitals are expressed as Gaussian
expansions. All approximations can be introduced step-
wise and the uncertainly of each step can be estimated by
error analysis. The Gaussian expansions and contracted
basis functions are taken from previous work. 9 Valence
basis functions for sulfur include 3s and 3p and 48 for
zinc. D functions of zinc are kept in the core because
they have been shown to have negligible inHuence on the
valence electronic structure. The influence of the ba-
sis functions is demonstrated by augmenting the Zn ba-
sis set by 4p functions. The role of the 4p-polarization
functions can be expected to be significant, since they
allow the hybridization of the tetrahedrally coordinated
zinc. The influence of the electron correlation has been
tested with trial calculations on smaller models without
translational symmetry. These studies were carried out
with an effective core potential (ECP) double zeta basis
set (3d, 4s, 4p, 4d, 5s, and 5p valence functions for zinc
and 3s, 3p, 4s, and 4p for sulfur) at MP2 level using the
GAUSSIAN 92 program. The results for 1 x 1 and 2 x 2

Zn3Ss-ring models gave energy lowering of 0.31'%%uo and
0.32% from the total energies, respectively. The qualita-
tive structure of the charge distribution is not influenced

by electron correlation.

III. SURFACE MODEL

In this work two-dimensional ZnS models are studied.
Although the models difFer &om real, multilayer systems,

.' Zn

10

FIG. 1. 10 x 10 Zn12pS1gp-surface model.

it is expected that general, size-dependent trends can be
seen. The slab models are computationally far less expen-
sive than 3D models and can be studied more extensively,
providing a basis for more demanding studies. Models
consist of (ill) cubic zinc-blende surfaces, which have an
increasing number of ZnS rings, maintaining homogenous
edges corresponding to low-index surface planes. Exper-
imental bond lengths [R(Zn-S)=2.341 A.j and angles are
used, and no reconstruction of the surface is considered.
Distances between neighboring Zn (S) and Zn (S) atoms
are 3.824 A. An example of the surface model is in Fig.
1. The integral rejection threshold used is 10 . The
influence of the threshold on the computational accuracy
is demonstrated in Table I for the Zn44S44 sheet. The
long and narrow sheet (2 x 15 ZnS rings) represent the
worst case, where distances between function centers are

TABLE I. The in6uence of different integral rejection thresholds. Number of integrals needed,

total energy per ZnS unit, HOMO energy, and maximum difference of charges are shown.

Threshold Integrals needed Total energy/Zn8 HOMO Charge difference

10-'
10
10
10

10—10

206835
372339
580032
856565

1487474

-10.66947
-10.67061
-10.67103
-10.67106
-10.67106

-0.14057
-0.14318
-0.14341
-0.14331
-0.14331

-0.062
0.007

-0.003
-0.003
0.000
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large and most of the integrals vanish.
Models are labeled according to the number of Zn3S3

rings. For example, the Zny20Sy20 model in Fig. 1 is
10x 10. If Zn 4p-polarization functions are included, then
character "p" is added after the label. The inBuence of
local defects is studied by removing a Zn atom &om the
center of the sheet marked as B in Fig. 1. The charges
in the graphs are taken &om cross section A.

IV. RESULTS

A. Ideal surfaces

As the size of the model increases, the electronic prop-
erties should converge and the infiuence of the edges on
the central site of the model should vanish. In principle,
the convergence should be monotonical, if the symmetry
and the topology remain the same.

The infiuence of cluster size on the charge distribution
was studied using the Mulliken charges of atoms. Fig-
ure 2 gives the charges of the 7 x 7 and 7 x 7p surfaces,
including the differences of the charges from the mean
value. The magnitude of the difference is indicated as
size of a circle and the sign of the difference as a shade.
Figure 2 shows that the infiuence of the boundaries de-
creases soon after moving away from the edges toward the
center, and a relatively large area in the middle remain
constant. The Zn 4p-polarization functions decrease the
magnitude of charges by about 50%%up. This effect may be
partially due to the uncertainties in the Mulliken popu-
lation analysis. The improvement in the basis set makes
the charge distribution more uniform and the inQuence of
the edges becomes smaller. Figure 3 gives the charges of
atoms in cross section A of surface models containing one
to one-hundred zinc sulfide rings. In all cases the charges
change considerably &om the edge atom to the next atom

layer, and after this first large jump, they are converging
rapidly while decreasing a little. The influence of size on
the inner atoms is small and after the 4 x 4 model the
charges remain almost constant. On the edges, there are
minor and slightly converging variations between mod-
els. The variation is closely related to the oscillation of
the charges along the boundaries, existing on all models
larger than 3 x 3. This wavelike oscillation can be seen
in Fig. 4, where the point charges of boundary atoms
of models 1x15-5x15 are fitted into spline curves. Fig-
ure 4 shows that the oscillation exists on all except the
smallest 1 x 15 and 1 x 15@ models. Qtherwise, the size
of the model has only a slight infiuence on the oscillation
and only the frequency" seems to change a little. In
addition, the oscillation decreases when moving from the
edge to the inside of the model as already seen on neigh-
boring sulfur atoms. A better basis set also decreases the
magnitude of the variation indicating the importance of
the fiexibility of basis set.

When the size of the model is increased, the propor-
tion of the edge atoms atoms becomes smaller and the
average energy of the ZnS unit should become more neg-
ative. This can be seen in Fig. 5. The energies converge
monotonically but not as rapidly as the charge distribu-
tion. The infiuence of relative number of edge atoms is
also seen at more negative energies of the 1 x 1-10 x 10,
1 x 1p-7 x 7p models as compared to the linearly grow-
ing models. The zinc 4p basis lowers energies by about
0.1 a.u. The effect is more pronounced on larger models.
The eigenvalue spectrum and the density of the states
for models 1 x 1-10 x 10 are shown in Fig. 6. As the
size of the model increases lower s and upper sp bands
become sharper, and the band structure becomes more
evident. No sharp band gaps exists, because the orbitals
on top of the bands are formed mainly from atomic or-
bitals centered on bare boundaries and are thus higher
in energy. These boundary states are also responsible for
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FIG. 6. Eigenvalue spectrum and density of states of
1x1-10x10 ZnS models.
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FIG. 4. Charges of boundary (Zn-edge) Zn and S atoms in
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charges are 6tted to a spline curve.

the low energies of unoccupied orbitals. Figure 6 also
shows a small regular variation between models, which
can be seen as a broadening of bands in cases having
an even number of ZnS rings. Because highest occu-
pied molecular-orbital (HOMO) energies are lower and
lowest unoccupied molecular orbital (LUMO) higher in
those cases, there are also fairly large fiuctuations in the
HOMO-LUMO gap, which changes within 0.04-0.1 a.u.
(1.1 eV—2.7 eV). An augmented basis set decrease the
HOMO and LUMO energies about 0.07 a.u. , but it does
not have much infiuence on the variation. The explana-
tion to the variation might be the slightly different topol-
ogy between the adjacent models. In real clusters
there are also size dependent effects, which arise from the
node structure of the wave function confined within the
potential walls of the finite system. This quantum size
effect can lead to a stepwise variation in corresponding
states as the size increases, because there is not neces-
sarily an exact correspondence between the number of
nodes and the dimensions of different models, and thus
a small frequency shift is obtained. It is evident that the
same kind of phenomenon is also seen in the current ZnS
models. In Fig. 7 are the HOMO and LUMO energies
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FIG. 7. HOMO and LUMO energies as functions of chain
length.



49 AS INITIO MODELS FOR ZnS SURFACES: INFLUENCE OF. . . 11 189

1.3

0.9

0.5

0
0.1I

g -0.3
4
(if
A -0.70 It-i iI tIi

1xlp-7x

1400

1300

1200

1100

1000

900

800

700

600

500

400

/
/

+
/

/

/
/

/
/

+

+
----+ - 2x2p-7x7p

2x2-10x10

-1.5 I I I I

1x1 3x3 4x4 5%5 6x6
size

W V

1xl-10x10

7x7 8x8 9x9 10x10
of the model

FIG. 8. Charges of sulfur atoms after Zn is removed.
Charges of models 1 x 1p-7 x 7p and 1 x 1-10 x 10 are taken
from cross section A.

300
20 40 60 80

number of ZnS units
100 120

FIG. 9. Dissociation energies Eq = E(Zn q S )
+E(Zn) —E(Zn S ) as the function of size of the model.

of models 2x2-2x30 along with the charge map of mod-
els with different chain lengths. Figure 7 shows that the
variation in energies corresponds with the variation in
charges at the edges. HOMO energies are lower in cases
where the chain is cut, in places where the charges are
close to the mean value. Again, the polarization basis set
decrease the variation as it did for the charges.

ure 8 shows that the influence of the Zn vacancy on the
entire surface is quite small, especially on the augmented
model.

Dissociation energies E~ = E(Zn 1S,) + E(Zn)—
E(Zn S ) are in Fig. 9. Energies converge as the size
of the model increases showing the increased difficulty
of removing the zinc atom until the model has grown to
a certain limit. The polarization basis set increases the
stabilization energy about 250—400 kJ/mol, which seems
to reach the final level in smaller models.

B. Surface defects: The influence of vacancies

As already seen, the electronic structure is fairly local
in ZnS systems, and thus the in8uence of vacancies like
other local efFects should converge rapidly as the model
increases.

The effect of a vacancy was studied by removing the
zinc atom from the center of the model. Figure 8 gives the
charges of sulfur atoms in cross section A of Zn-deficient
models 2 x 2-10 x 10 and 2 x 2p-7 x 7p. Figure 8 shows
that the in8uence of the vacancy reaches, at most, to the
nearest sulfur atoms only and has only a weak influence
on the rest of the atoms. The in8ueace is also becoming
smaller as the model increases and remains almost con-
stant after the model has reached the 4 x 4 size. The
augmented basis set decreases the efFects near vacancies
ia all cases, otherwise, the results are almost similar, dif-
fering the most in smaller models. The charges of the
entire surfaces of 7 x 7 and 7 x 7p are also in Fig. 8. Fig-

V. DISCUSSION

In this work the feasibility of the cluster method is
demonstrated on zinc sulfide models. The in8uences of
local efFects like vacancies and boundaries are shown to be
limited to a small region and thus quite reasonably sized
models can be used to simulate infinite systems. How-
ever, properties do not necessarily converge smoothly,
and in some cases, small, size-dependent variations ex-
ist. This effect, more pronounced by a poor basis set,
may need attention ia cases where models of difFerent
sizes or difFerent sites are compared. The additioa of the
4p-polarization fuactions to the valence basis set of the
Zn atom stabilizes the models. The charge distribution
becomes more uniform, and the in8uences of local effects
and boundaries decrease. The energies also seem to con-
verge more rapidly to the final values.
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