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We present two original methods which yield the small-signal response around the dc bias in bulk
semiconductors, using direct numerical resolutions of the perturbed Boltzmann equation. The first
method operates in the frequency domain. An ac sinusoidal electric-field perturbation superimposed to
the dc field produces an ac perturbation of the distribution function which is computed at each frequen-

cy. The second method operates in the time domain. A step electric-field perturbation is superimposed
at time t =0 to the dc field. The resulting perturbations of the distribution function and of the average
velocity are then computed as functions of time. These methods are applied to the case of holes in sil-

icon at T =300 K under hot-carrier conditions and are used to compute the perturbed distribution func-

tion and the differential mobility spectrum.

I. INTRODUCTION

Modern microelectronics is evolving toward a deep
miniaturization (submicron scale length) and a search to
increase the operation frequency of semiconductor de-
vices (terahertz frequency range). As a consequence, the
knowledge of small-signal kinetic coefficients (e.g.,
differential mobility, impedance, admittance, current
spectral-density, etc.) is of relevant importance to model
and forecast device performances. From a microscopic
point of view, a proper modeling should account for
several physical phenomena, such as velocity overshoot,
carrier heating, intervalley transfer, etc., which are in-
herent to the space and time scales mentioned above.

To date the most comprehensive theoretical analysis of
these phenomena is based on numerical solutions of the
Boltzmann equation (BE). For this purpose, the ensem-
ble Monte Carlo (MC) technique has emerged as a very
powerful method, because of its capability to include
many details of the model without introducing approxi-
mations in solving the BE.' However, together with
evident advantages, the MC technique also has inherent
shortcomings mainly related to the stochastic nature of
the procedure. Typically, the standard MC scheme'
meets with difhculties in calculating with high accuracy
quantities on a hydrodynamic time scale, such as the
small-signal coeScients, rare events, space profile and
transient evolution of the free-carrier concentration,
average velocity, average energy, etc. To overcome these
difficulties some refined procedures such as the Price per-
turbative algorithm, direct simulation of the distribution
function gradient in momentum space, weighted MC

method, etc. have been developed. However, as a rule,
these procedures significantly increase the complexity of
MC codes without removing completely the cited
difhculties. Therefore, in recent years some efforts have
been made to develop various deterministic (as opposite
to stochastic) methods of solving the BE in bulk semicon-
ductors and semiconductor devices. ' ' Most of these
methods deal with the steady-state hot-carrier transport,
and often cannot be reformulated in terms of the time-
dependent BE. However, the direct solution of the tran-
sient transport is of great interest since it can provide the
spectral dependence of the small-signal kinetic
coefficients in bulk semiconductors as well as in semicon-
ductor devices.

Linear-response functions around the bias point are
known to play a fundamental role in the investigation of
hot-carrier transport and noise in bulk semiconduc-
tors. ' ' ' In the time domain they reflect both dy-
namic and relaxation processes inherent to the hot-
carrier system, and can be used for the detailed investiga-
tion of kinetic phenomena. In the frequency domain they
provide the differential (ac) mobility spectrum necessary
to evaluate a possibility of amplification and generation,
to calculate the gain or the absorption coefficients, to ob-
tain the noise temperature using the spectral density of
velocity fluctuations, etc.

The aim of this paper is to present two deterministic
approaches which enable us to obtain the ac characteris-
tic of bulk semiconductors around the dc bias point, so as
to obtain the ac mobility which is of great interest since it
can be measured experimentally. The methods are based
on a direct solution of the transient BE in the frequency
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and time domains, and, for validation purpose, are ap-
plied to the case of holes in silicon at T=300 K.

The content of the paper is organized as follows. In
Sec. II the small-signal BE is given. The method for
computing the harmonic response is explained in Sec. III.
The impulse method is studied in Sec. IV. The results of
the calculations, as applied to the case of holes in Si, are
summarized in Sec. V. Finally some conclusions are
given in Sec. VI.

Cf(k, t)= fP(k', k)f(k', t)d k'—
(2~)' ' ' r(k)

fP(k', k)d k',
(2~)'

with the proper initial conditions.
In Eq. (1), the term P(k', k) is the sum of all the transi-

tion rates W, (k', k} from state k' to state k associated
with the scattering mechanism number i. Integrals in Eq.
(1) extend over the whole Ikj space. By further integrat-
ing Eq. (1) over the whole IkI space, in the absence of
generation recombination terms, one readily obtains

off(k, t)d'k
(2)=0.

The average value cP(t) of any function qr{k) of state k is
given by

II. SMALL-SIGNAL TRANSPORT
AND DISTRIBUTION FUNCTION

The distribution function f(k, t) of carriers in homo-
geneous nondegenerate semiconductors with a uniform
external applied electric field E(t) is the solution of the
time-dependent BE:

Bf(k, t) + eE(t) Vg(k t)= Cf(k, t ),

The average velocity becomes v(t}=vs+5v(t), where the
small-signal velocity 5v(t) is obtained by expanding Eq.
(4) to first order, which, taking into account Eqs. (2) and
(6), gives

5v(t)= fv(k)5f(k, t)d'k ffs(k)d'k (8)

III.HARMONIC-RESPONSE METHOD

A. De6nitions

When the perturbation is sinusoidal, the response is
also sinusoidal. That is, if

5Ei,„(t)=5Eexp(icot)

then

5f(k, t) =5f(k, co)exp(icot),

and these quantities substituted into Eq. (7) give 5f(k, co)
as a solution of

eEs
ira5f(k, co}+ Vi,5f(k, co) C5f(k, )co—

Vfi(s)k. (10)

Es, this produces a variation of the distribution function
5f(k, t), obtained by setting, in Eq. (1),

E(t)=Es+5E(t) and f(k, t) =fs(k)+5f (k, t ) .

By expanding Eq. (1), the zero-order terms give Eq. (5),
and the first-order terms give 5f(k, t) as a solution of

eEs—5f(k, t)+ Vk5f(k, t) C5—f(k, t)
Bt

ViJ's(k) . (7)

cP(t) = fq(k)f(k, t)d'k ff(k, t)d'k (3) Equation (8) shows that 5v(t)=5v(co)exp(icot), where
5v(co) is given by

In particular, the average velocity v(t) is given at any
time by

v(t)= f (kv)f(k, t)d Ic ff(k, t)d Ic (4)

.V„f~(k}=Cfog(k}.

Analogously, the stationary velocity vs is given by Eq.
(4), where f(k, t) has to be replaced by fs(k):

vs= vk skd k skd k

Now, if a small electric field 5E(t) is superimposed on

where v(k)=(1/iil}V&s(k), s(k) being the energy-wave-
vector relationship.

In a constant electric field E& of magnitude Es f(k, t)
takes the stationary value

fs(k) =fs(k, Es) =lim, f(k, t),
where fs(k) is the solution of the stationary BE:

5v(co) = [p(co, Es)]5E . (12)

B. Calculations

By assuming a spherical syrnrnetry of the band model,
the perturbation term 5f(k, co } can be written 5f(k, 8,co),
where k = ~k~ and 8=(E,k). The same inesh in IkI
space is then used to discretize Eq. {10) and compute
fs(k, 8) After discretizatio. n, the gradient and the col-
lision operators appear as linear combinations of
5f(k, ,8j,co};hence Eq. (10) at any fk,.,8 J can be written
as

e5E c}fs(k)
Bk,

ya, 5f(k, ,8,~)=— (13)

5v(co)= fv(k)5f(k, c0)d k ffs(k)d k

The complex quantities 5v(c0) and 5E are linearly related
through It(co), the ac mobility tensor at frequency co de-
pending on Es as
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where the a& are complex coeScients which depend on
the discretization procedure (such as central difference
schemes to express the collision integrals, the derivatives
involved in the gradient operator, etc).

At each frequency, Eq. (13) is a linear system of N
equations with N unknowns, where N is the number of
nodes of the mesh in ]k] space. This system can be
solved using the usual techniques (Gauss procedure), thus
giving the perturbed distribution function. In practice,
the computed quantity is 5' =5f(k, co)/5E, represented
by a column matrix [5' ] with elements 5f(k;, 8/, co)/5E
(N elements), which has a real part [5fz ]„andan imagi-
nary part [5'); . By dividing Eq. (10) by 5E, and
separating the real and imaginary parts, we obtain

where v=co/2m. . Since Eq. (7} is linear with time, Eq.
(18) shows that

5f; (k, t)= f 5f(k, co)exp(icot)dv, (19)

where 5f(k, co) is given by Eq. (9). According to Eq. (8),
the impulse response of the velocity 5v; ~(t) is given by

5v, (t) = fv(k)5f; (k, t)d'k f fs(k)d'k

From the Fourier transform of the Dirac function, Eq.
(16) can be written as

5E; (t)=f 5E exp(i cot )dv,

[A][5']„co[I][—5'); =[g],
~[I)[5'),.+[A][5'); =[0)

(14)
that is, according to Eq. (19),

(20)

where the square matrix [ A ] represents the discretized
operator [(eEs/R) V&

—C], the column matrix [g]
represents the discretized vector (e/fi)V&fs(k), [I] is the
identity matrix. From Eq. (14), one readily obtains

[5fz]..=[A]([A) +co [I)) '[g],

[5fz); = —co([A] +co [I]) '[g] .
(15)

IV. IMPULSE-RESPONSE METHOD

The unknowns on the left-hand side of Eq. (15) are easily
obtained using standard numerical techniques.

In practice, one is generally interested in the longitudi-
nal ac differential mobility, which means 5E~~Es. In addi-

tion, Ez is usually taken along a symmetry axis of the
semiconductor crystal; then vs ~~Es~~5v(co}, and the longi-
tudinal mobility p~~(co, Es ) is a scalar quantity, hence only
the complex value 5U(co) of 5v(co) has to be'calculated.
The quantities of interest are then scalars Es and 5E
which are the magnitude of Es and 5E, and the cotnplex
quantities 5U(co) and p~~~(co, Es).

5v; ~(t)= f 5v(co)exp(icot)dv . (21)

5v(co)= f 5v; ~(t)exp( icot—)dt . (22)

B. Calculations

Now we apply a steplike electric-field perturbation
5E,«~(t), given by

5E„,(t)=5Eu(t), (23)

where u(t) is the step function u(t}=1 if t ~0 and
u(t)=0 if t &0. The step distribution response

5f„,(k, t) is then, from Eq. (7)

eEs—5f„,(k, t)+ V&5f„,(k, t) —C5f„,(k, t)
at

This result is standard since 5v is linear with 5f, and
5f is related to 5E through a linear operator [see Eq. (7)].
Equation (21) shows that 5v(co) is the Fourier transform
of 5v; (t), hence

A. Definitions Vgfs(k), (24)

As is well known from the signal theory for linear sys-
tems, working in the frequency or the time domain is a
matter of convenience, since the sinusoidal response is
the Fourier transform of the impulse response. From a
practical point of view, however, one domain can often
better facilities of calculations. Therefore, in the follow-
ing we exploit the time domain approach.

To this purpose, let us assume that the perturbation in
Eq. (7) is an impulsed electric field:

and the step velocity response 5v„,(t) is given by

5v„,,(t)= fv(k)5f„,(k, t)d k ffs(k)d k

(25)

The partial derivative of Eq. (24) with respect to time
gives

g c}5f«(k, t) eE B5f «(k, t)
5E; &(t)=5E5(t), (16)

where 5(t) is the Dirac function. The response is then

5f; (k, t) given by Eq. (7):

a eEs—5f; p(k, t)+ Vq5f; (k, t) —C5f; p(k, t)

85f„,(k, t)—C
jest

e5E5(t) f (k)

Comparison of Eqs. (26) and (17) shows that

(26)

e5E5(t) .V„f(k) . (17)
c}5f«(k, t)

=5f, (k, t) .
C}t

(27)
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To obtain the transient distribution function

5f„,~(k, t), we first solve (using a direct method's' ') the
transient BE [Eq. (1}]in the constant field Es, so calculat-

ing f(k, t) and fs(k) in the long-time limit t =ts, where

tz is of the order of 3 ps. Then we solve the transient BE
in a constant field Ez+5E, with the initial distribution
equal to fs(k), thus evaluating the transient f(k, t). The
step distribution response is then calculated by difference
as 5f„,&(k, t)=f(k, t) —fs(k). In practice, to save com-
putation time, an original acceleration technique has been
used.

Taking into account Eq. (27), and by comparison with

Eq. (20), the derivative of Eq. (25) with respect to time
gives

d5v„, (t)
=5v; ~(t} .

Hence Eq. (22) writes

FIG. 1. 3D representation of the real part of the perturbation
of the distribution function [5f(k, 8,co)]„(harmonic response

method), in arbitrary scales, at frequency v=co/2m=5X10"
Hz, for holes in Si, T=300 K, E& =10kV/cm, corresponding to
a perturbing field 5E=1 V/cm. Each radial curve gives the
variation of 5f for a given value of the angle 8 between k and E,
and each circle corresponds to one value of k (constant energy).

+.„d5v„,(t)
5v(r0)= f exp( icot)—dt .

dt
(29)

Equation (29) provides a second method for obtaining
the ac longitudinal mobility. Once the steady state in
the dc field E& is calculated, a constant electric-field per-
turbation 5E is superimposed on Es, and 5f„,~(k, t) is
computed. The small-signal velocity response 5v„,~(t) is
computed using Eq. (25), and the small-signal velocity
response 5v; (t) using Eq. (28). Its Fourier transform
gives 5v(ro) [see Eq. (29)]. Finally the longitudinal mobil-
ity in the field Ez is given by

p~~(co, Es)=5v(co)/5E . (30)

V. RESULTS

The above procedures are used to calculate the small-
signal response characteristics of holes in Si at T=300 K.
The microscopic model is based on a single spherical
nonparabolic band, and considers scattering with acous-
tic and nonpolar optical-phonon mechanisms as
developed in Ref. 31. The stationary distribution func-
tion is computed using a matrix method previously de-
scribed

Figures 1 —3 show a three-dimensional (3D}view of the
perturbation of the distribution function obtained with
the methods illustrated in previous sections. Figures 1

and 2 refer to the real and imaginary parts of the pertur-
bation of the distribution function 5f(k, 8, co) calculated
using the harmonic-response method at frequency
v=co/2m= 5 X 10"Hz and Es = 10 kV/cm. The perturb-
ing field 5E is taken equal to 1 V/cm. Each radial curve
gives the variation of 5f(k, 8,co) at a given value of the
angle 8. To provide better evidence of the negative con-
tributions, different perspectives have been used. In anal-
ogy with the Drude model for the ac conductivity, the
real part describes the dissipative contribution which is in
phase with the field while the imaginary part describes
the optical contribution which is in quadrature with the
field.

Figures 3 show the time dependence of the perturba-

tion of the distribution function 5f„,(k, 8, t} calculated
using the impulse-response method in a constant field

Es+5E, with Es =10 kV/cm and 5E=0.1Es. At time
t=0, when 5E is applied, the distribution function is

fs(k) and Figs. 3(a)—3(e) show the transient response.
We remark that at times shorter than the collision time
the perturbation is more pronounced; for longer times it
extends over many momentum states, so that a
magnification of a factor 10 is used to make still visible
the perturbation at times longer than 1 ps.

Figure 4 shows the time dependence of the velocity
response 5v„,(t) at various electric-field strengths. The
perturbing field 5E is taken equal to 1 V/m in the case
Ez =0, and equal to 0.1E+ in all other cases. By assum-

ing that the response is linear for this small perturbation,
the results are normalized to 1 V/m [dividing 5v„,~(t) by
5E/(1 V/m)]. At electric fields higher than 5 kV/cm an

Hz

FIG. 2. 3D representation of the imaginary part of the per-
turbation of the distribution function [5f( k, 8,co) ];
(harmonic-response method), in arbitrary scales, at frequency
v=co/2m=5X10" Hz, for holes in Si, T=300 K, Eq=10
kV/cm, corresponding to a perturbing field 5E= 1 V/cm. Each
radial curve gives the variation of 5f for a given value of the an-

gle 0 between k and E, and each circle corresponds to one value
of k (constant energy).
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FIG. 4. Scaled transient response of the drift velocity

Sv„,~{t}=[u{tl—u, ] {1V/m}ISE, when a field step 5E is intro-
duced at time t =0. At the initial time the system is in a station-
ary regime at the considered electric field Ez (mean velocity u& ).
Calculations refer to holes in Si with T=300 K, 5E=1 V/cm
for Ez=O, and 5E=0.1Ez otherwise. (1) Ez=0, (2) Ez=5
kV/cm, (3) E&=10kV/cm, and (4) Ez =20 kV/cm.

tric fields, the shape of the velocity-response function is
practically exponential, with a characteristic time con-
stant which corresponds to momentum relaxation. At
higher fields the shape becomes more complicated by ex-
hibiting a negative part which is understood as fol-
lows. ' At the initial stage of the velocity relaxation,
carriers obtain extra velocity (see Fig. 4}, since their ini-
tial momentum relaxation time ~~ is somewhat longer
than that in the new steady state. Then, the energy relax-
ation affects r (i.e., ~ becomes shorter) and this extra
velocity is lost. Therefore, the energy relaxation is re-
sponsible for the negative contribution of the velocity-
response function.

The harmonic- and impulse-response methods are fur-
ther used to calculate the difFerential mobility spectrum
which is reported in Figs. 6 and 7.

Within the first method (reported by circles in different
figures), the computed perturbation 5f(k, 8, co) is substi-
tuted into Eq. (11},thus giving the perturbed complex ve-
locity, and the complex mobility after division by 5E [Eq.
(12)). Within the second method (reported by continuous
lines in difFerent figures), the mobility is given by Eq. (30).
The circles in figures 6(a)-6(f) show the real part ju„and
the imaginary part p; of the ac mobility computed as de-
scribed above. The circles in Figs. 7(a) —7(fl show the
modulus ~p~ and the argument y=argp for the ac mobili-
ty, in the same conditions as for Figs. 6(a)—6(fl, respec-
tively. The solid lines in Figs. 6(a)—6(f) show the real part
p„and imaginary part p; of the ac mobility computed as
the Fourier transforID of the step response for various
values of the applied electric field. The solid lines on
Figs. 7(a}—7(f) show the modulus ~p~ and the argument

FIG. 5. Time derivative of the transient response of the drift
velocity 5v; „(t)=d(5v„,~(t) )/dt. Calculations refer to holes in

Si with T=300 K, 5E=1 V/cm for Ez=O, and 5E=0.1Ez
otherwise. (1) Eq=0, (2) Ez=5 kV/cm, (3) E&=10kV/cm, and

(4) Ez =20 kV/cm.

q =argy for the ac mobility, in the same conditions as for
Fig. 6(a)-6(f), respectively. As can be seen from Figs. 6
and 7, the agreement between the two techniques
developed in this paper for obtaining the ac mobility is
excellent, thus validating the present approach.

In particular, from Figs. 6 and 7 a deviation from the
simple Drude slope of p, and p; is evidenced. This pecu-
liarity is explained as follows. At zero and low dc electric
fields, the time dependence of the step velocity response
5v„,(t) is near exponential (see Fig. 4), hence the im-

pulse velocity response 5v; (t) decreases monotonously
with increasing time p,„,~ p ~, and p decrease with increas-
ing frequency, and p; is negative. The characteristic re-
laxation time involved is then the momentum relaxation
time.

At higher fields, the energy relaxation time begins to
play a role. This results in a transient velocity overshoot
for 5v„,(t) and in a negative value of 5v, (t), which, as
seen in Figs. 6 and 7, corresponds to a bump in {u„,~p~,

and y. %ith increasing electric field, these quantities in-
crease in low-frequency region, which implies a positive
value of p;, then decrease resulting in a negative value of
IJI ~

Now, from Eq. (22}, taking into account that the im-
pulse response starts at t =0, one obtains

5v(co)t = —f sin(cot )5v; (t)dt

(n+1)T .= —g f sin(cot')5v; „(t')dt', (31)
p NT

where T=co/2n. Cutting the pe. riod T in two half parts,
then setting t'=t in the first half period and t'=I+ T/2
in the second half period gives, taking into account the
symmetry of the sin function,

(5v(co))1= —g f sin(cot')[5v; u(t') —5v; u(t'+T/2)]dt' .
p &AT

(32)
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Equation (32) shows that, if 5v; ~(t) is a monotonously
decreasing function of time, the integral in each time in-
terval is positive or null, then (6v(co))1~0. (5v(co))i
tends toward zero only if cu tends toward zero or infinity.
Therefore we see that at intermediate frequencies
(5v(co))1=0 can occur only if, after decreasing, 5v; (t)

increases, which means that 5v; ~(t) has a minimum
value. This occurs in particular when 5v;m&(t) becomes
negative then increases; that is, the step velocity 5v„,~(t}
exhibits an overshoot.

We have thus established that the step velocity
overshoot, the negative impulse velocity, and the vanish-
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FIG. 6. Real part p, and imaginary part p; of the ac mobility for holes in Si at various values of the applied dc electric field Eq. (a)
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response to a step electric field 5E superimposed on the dc field Ez (impulse-response method). 5E=1 V/m in case (a) and 0.1E& in
all other cases.
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FIG. 7. Modulus
~ p~ and argument Ip=argp, of the ac mobility for holes in Si at various values of the applied dc electric field Es.

(a) Ez=0 (ohmic mobility), (b) Ez =5 kV/cm, (c) Ez =10kV/cm, (d) Ez =20 kV/cm, (e) E& =30 kV/cm, and (f) Ez =50 kV/cm. Cir-
cles: ac mobility derived from the computation of the perturbed distribution function corresponding to a perturbing electric field
5E=1 V/cm superimposed on the dc field Ez (harmonic-response method). Solid line: ac mobility derived from the velocity
response to a step electric field 5E superimposed on the dc field E~ (impulse-response method). 5E =1 V/m in case (a), and 0.1E& in
all other cases.

ing imaginary part of the mobility all describe the same
microscopic phenomena.

VI. CONCLUSION

.We here have presented two methods for calculating
the sma11-signal response around the dc bias in bulk semi-

conductors, using direct numerical resolutions of the per-
turbed Boltzmann equation.

The first method operates in the frequency domain. An
ac sinusoidal electric-field perturbation is superimposed
on the dc field. This produces an ac perturbation of the
distribution function 5fit, co },which is computed at each
frequency. After multiplication by the velocity v(lt} and



11 152 J. C. VAISSIERE et al. 49

integration in IkI space, one obtains the ac longitudinal
mobility p~~(to) versus frequency.

The second method operates in the time domain. A
step electric-field perturbation is superimposed at time
t =0 on the dc field. This produces a time-dependent per-
turbation 5f(k, t) and 5v„,v(t) of the distribution func-
tion and of the average velocity. The Fourier transform
of the time derivative of 5v„,(t) gives the ac longitudinal
mobility p~~(to).

Both methods have been validated for the case of holes
in silicon, and proven to give exactly the same results.
Comparing the harmonic and impulse-response methods,
we can state the following.

(i) Both methods are deterministic and therefore over-
come the difficulties of the stochastic methods (such as
Monte Carlo simulations) in calculating with high accu-
racy transport parameters on a hydrodynamic time scale.

(ii) The former can use very small perturbations of the
electric field, while it is necessary to take a few percent of
electric field in the impulse-response method.

(iii) The advantage of the last method is to use directly
the code developed for solving the transient Boltzmann
equation (without modification).

(iv) The former method requires solving the perturbed
Boltzmann equation for each frequency of interest, while
the latter gives the whole mobility spectrum by a simple
Fourier transform of the velocity-response function.

The calculation of the differential mobility spectrum
for holes in silicon shows that at increasing dc fields, a
bump in the real part of the ac mobility is observed at
very high frequencies ( »1000 GHz). This bump is as-
sociated with a negative impulse response of the velocity,
corresponding to a small-signal step velocity overshoot
due to the rapid increase of the scattering rates as a func-
tion of the carrier energy.
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