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Control of plane-wave scattering is examined using designed potential structures in solid-state devices
with dimensions of the electron coherence length. Reflection coefficients at specified incident electron
energies are controlled by exploiting the quantum interference effects associated with the wavelike na-

ture of the electrons through optimally designed manipulation of the solid-generated scattering poten-
tial. This work is motivated by the increasing ability to fabricate semiconductor structures with con-
trolled layer thickness and lateral features, and here the goal is to demonstrate the degree of coherent
electron control achievable through the employment of optimal design tools. We examine the case
where the potential form is restricted to a fixed number of rectangular barriers. Here, the optimization
of the design is performed with respect to the barrier width and spacings in order to achieve the desired

reflection coefficients at one or more incident energies. We also examine the case where the potential is
not restricted to any particular form, and here optimal control theory is employed to optimize the

scattering potential form in order to achieve the desired reflection coefficients over a range of incident
electron energies. The possibility of extending this work to controlling electron wave-packet structures is

also discussed.

I. INTRODUCTION

With the introduction of sophisticated semiconductor
epitaxial growth and fabrication techniques, it has be-
come possible to create devices with dimensions on the
order of the electron wavelength at energies of =1-100
meV. ' For semiconductor devices of this size, quantum
transport is ballistic, i.e., the electrons travel without ex-
periencing collisions and thus quantum-mechanical wave
effects such as diffraction and refraction are observed.
Indeed, the interference effects exhibited in nanoscale
semiconductor devices are analogous to electromagnetic
waves in conventional optical thin-film dielectric devices
(see Ref. 3 and references cited therein). Examples of
such devices include quantum dots, wires, and the two-
dimensional electron gas in GaAs-Al„Ga& „As hetero-
structures. ' This technology allows one to observe and
possibly exploit the wavelike properties of electrons and
opens up the door to electronic devices which are not
governed by diffusive transport (i.e., bulk properties such
as current and voltage) but by the coherent wave-packet
structure of the individual electrons. Ideally, in such de-
vices each electron can be "encoded" with information
through manipulation of the Fourier components of its
wave function and then subsequently decoded elsewhere
in the circuit, thus allowing for a vast increase in
information-transfer capability over what is presently
available.

The work presented here is a first step towards realiz-
ing the goal of electron wave-packet encoding and decod-

ing. Here the physics is limited to plane-wave scattering,
where the physical objective is to optimize the re6ection
coeScients at specified incident electron energies. Since
an arbitrary wave packet g;„,(x, t) moving in one dimen-
sion x (here taken as incident from the left) can always be
expanded in terms of its Fourier components, i.e.,
r/i;„(x, t) = f o"f(k)exp[i(kx cot)]dk—, this work is a
prelude to designing potentials which act as energy
"filters" to allow through only certain specified energy
components of the incoming wave packet. Moreover, the
scattering potential can alter the amplitude and phase of
each Fourier component, thereby allowing one to pro-
duce a wide variety of wave-packet structures. In the
Appendix we explore the question of the existence of a lo-
cal spatial potential which will produce a desired wave
packet from a given primitive wave packet, provided that
there are no laboratory restrictions on the potential form.
Such an analysis is necessary to discern the limitations of
the type of endeavor which the present paper addresses.
In particular, we will see that not every wave packet can
be synthesized, although one could (in principle) come up
with a list of final wave packets which can be synthesized
from the given primitive wave packet (again, with no fur-
ther laboratory restrictions). In all cases, successful ma-
nipulation of the wave packet will depend upon quantum
interference effects.

To obtain a desired wave-packet structure, the poten-
tial in the solid-state device structure must be designed
such that when an injected electron is scattered over this
potential it provides the desired outgoing wave packet.
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The potential might be imposed laterally, e.g., with a
one-dimensional grating potential constructed by
electron-beam lithography, or vertically, as in a superlat-
tice fabricated using epitaxial growth techniques. The re-
quired potential structure will likely not be obvious and
will possibly be counterintuitive. Therefore, it will be
necessary to employ various mathematical design and op-
timization procedures including optimal control theory,
which have been used extensively in the past few years as
a means for designing laser fields to produce desired
molecular objectives such as cleavage of a particular
chemical bond in a triatomic system. Optimal control
theory has proven quite successful because it allows for a
wide latitude of physical goals including laboratory con-
straints and robustness concerns. In this work, optimal
control theory is used to design the potential of the
solid-state device structure. This is a fundamentally
different application from the aforementioned studies in-
volving molecular objectives, in that here we are actually
manipulating the system Hamiltonian (the potential)
rather than some external forcing function (the electric
field) which, through the molecular dipole function, can
couple with the internal dynamics of the system but is
not a part of the molecular field-free (i.e., system) Hamil-
tonian.

The balance of the paper is as follows. Section II
presents the optimization algorithm and results for elec-
tron plane-wave scattering where the potential form is re-
stricted to a series of rectangular barriers. In this case
only the widths and spacings of the barriers are opti-
mized in order to drive the reflection coefficient at one or
several incident energies to a specified set of objective
values. In Sec. III optimization of the refiectian
coefficients both at a single energy and over a continuous
range of energies is done using a "free-fiaating" potential,
i.e., one that is not restricted to any particular form.
Here, optimal control theory is employed to design the
scattering potential. The physical interpretation of the
optimal potential and the manifestation of quantum in-
terference effects are discussed. Conclusions and future
extensions are briefly discussed in Sec. IV.
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FIG. 1. Initial guess potential V'= '(x) consisting of five

equally spaced barriers for the potential-barrier optimization.

f(x)= A ioexp(ikox)+B ioexp( ikox—) (x + x io )

(2)

where ko =+2m (E—Vo )IA, k~ =+2m (E —Vz )ii),

( V~ =0.005 eV), and BM =0.0, since the electron wave is
assumed to be incident from the left. By matching the
wave function and its slope at the potential discontinui-
ties, we can salve for the A„and B„coencients and write

T

Ao ~io
=S(x, )S(x2). . .S(x,o } 0

=S~
0

~10

0

where S is the 2X2 transfer matrix connecting the in-
cident and reflected waves with the transmitted wave.
The reflection coefficient is defined as the ratio of the
reflected wave to the incident wave:

d f + [V(x }—E]f(x)=0,
2m dx2

where m =0.067m, is the efFective mass of the electron
and E is the incident energy of the plane-wave electron.
%'e proceed in the standard manners by first solving Eq.
(I}analytically for each piecewise constant potential, i.e.,

P(x)= Aoexp(ikox)+Boexp( iko—x } (x &x, ),
f(x)= A, exp(ikax)+B, exp( iksx—) (x, &x &x2),

H. POTENTIAI BARRIER OPTIMIZATION /Bo/' /Sg /'
(4)

Here we explore the possibility of obtaining a desired
refiection coencient R (E}at one or more incident elec-
tron plane-wave energies through manipulation of the
spacing and widths of a series of rectangular potential
barriers. The scattering potential V(x} is restricted to a
fixed number of barriers (five) of height Vs =0.005 eV
above the ground potential Vo, taken to be 0.0 eV. Only
the positions of the barrier edges x2,x~, . . .,x9 are opti-
mized; the total length of the potential, x,p x] is fixed.
For the initial guess potential we take the width used in
the optimization procedure (see below) of all five barriers
to be 4000 A and the spacing betweeri barriers 6000 A
(see Fig. l).

To compute the reffection coefficient R (E) (within the
efFective-mass approximation) we must solve the time-
independent Schrodinger equation:

To perform the optimization, a cost functional is con-
structed whose minimization corresponds to obtaining
the desired physical goals, i.e., the desired reflection
coefficients at M specified energies:

g [R'(E )—R (E )]

x"+"=x"'—a BJ
xn xn —a

xn
(6)

where R'(E ) and R(E ) are the objective and actual
reflection coe%cients, respectively, at incident energy E
To minimize J we employ a gradient-based steepest-
descent procedure which iteratively optimizes the param-
eters x2,x3 x9.-
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small ositivewhere i is the iteration counter and a is a sma, p
constant. The explicit form of the gradients is

g[ ' —
]~

m=1

S I re uires
the derivative of the 2 X2 transfer matrix S, i.e.,

~ S'=S(x, ) S(x„) S(x„) .
8ax„"' ax„
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E . (5). The value of R(E, ) using the initial guess poten-q. . e
~ ~ ~

as indicated by
h ar

' ' . ' ' sR(E)over

'
1 V' '(x) shown in Fig. 1 |s 0.0057, as

'

h f '
ht arrow in Fig. 2(a) which displays

a range of energies from 0.0075 to 0.010 e
h de Bro lie wavelength of the electron in this range is

547 —462 A and the comphcated structu
' 'g.re in Fi . 2(a) is

due to the resonances created y pb the otential. The op-
hown in Table I.timal potential-barrier parameters are s. own

'

h t the differ by a rather small amount
((150 A) from their initial guess values relat|ve to e
barrier widths (4000 A). The change in R (E), however,

F 2(b) which plots the reflectionis dramatic, as seen in ig.
~ ~

the o timized potential-barriercoefficient vs energy using the p
'

in Fi . 2(b),t rs. Note in particular the arrow in Fig.parameters.
at the tar et en-h' h

' d'cates the re6ection coefficient a e g
ergy, =0.01 eV which now is 0.73. By comp

'
g

Fi s. 2(a) and 2(b), we see that the efFect of the optimiza-
1 to "shift" the refiection peaks, ortion was more or less to s i

E=0.01such that a large reQection occurs at E= .resonances, suc a
This limitedeV using the optimal barrier parameters. is

E is to the barrier height Vz, the higher e re
coefficient one can attain.t '

This is to be expected since the
reQection pea s eck b ome more pronounced at lower ener-
gies.

Next we present results for a more
'

ore interestin case
where the goa now is1

'
to reach specified reflection-

TABLE I. Barrier parameters for init'a g pinitial uess potential (1),
the optimal potential w ere e o

' ' ' 'ent atp
' '

h the objective reflection coeScient at
'fl d (2) and the optimal potential where eone energy is specifle, an

objective reflection coeScient at three energies is speci e
Angstroms).

0.90

D.BO

0.70

0.60

o 0, 50

0.40

0.30

0.20

III ~ ~ . ~ II
0.0075 0.0080 0.0085 0.0090 0.0095 0,0100 0.0

Incident Energy E (eV)

0.90

0.80

0.70

0.60

0.50

0.40
tu

0.30

0.20

0. 10

(b)

0.00
0 0 0095 0 0100 0.01050.0075 0.0080 0.0085 0.0090

Incident Energy E (eV)

0.90

0.80

0.70

0.60C4

o 0.50

0.40

0.30

0.20

0. 10

(c)

0.0075 0.0080 0.0085 0.0090 0.0095

eousl at three incident ener-coefficient values simultaneous y = Th ob-ies: E =0.008, Ez=0.009, and E3=0.010eV. T eo-
jec

' '
s at these energies arejective reflection coefficients a e

=0 3 R'(E )=0.4, and R'(E3)=0.2. e
reflection coefficients at target energies &, p 3

as in the revioususing the same initial guess potentia

Position

x, (axed}
x2 (variable)
x3 (variable}
x4 (variable)
x, (variable)
x6 (variable)
x, (variable}
x8 (variable)

x9 (variable)

&o (Sxed)

(1)
(A)

0.0
4000.0

10000.0
14000.0
20000.0
24000.0
30000.0
34000.0
40000.0
44000.0

(2)
(A)

0.0
3 953.5
9 976.2

13 865.3
19 887.9
24 112.1
30 134.7
34023.8
40046.5
44000.0

(3}
(A)

0.0
3 988.2

10015.9
14055.1
19965.3
24034.7
29 944.9
33 984.1

40011.8
44000.0

Inciderft Energy E (eV)
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c) Same as (a) except using e(0.73) is indicated by the arrow. (c) e

ed for achieving reflection coe cien soptimal potential designed
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and are indicated by the three arrows.
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case are 0.83, 0.16, and 0.0057, respectively, as indicated

by the three arrows in Fig. 2(a). As noted in the Intro-
duction, this multiple-reSection-coefficient objective can
be viewed as a first step towards the ultimate goal of
wave-packet encoding, in that we may think of the target
energies here as corresponding to three Fourier com-
ponents of the incident wave packet. Controlling the
reffection coefficient of these energies is analogous to con-
trolling the corresponding Fourier component amplitudes
of a wave packet, but there is no provision here for con-
trolling their phases since the reffection coefficient is the
absolute value squared of the incident wave over the
reflected wave.

The optimized barrier parameters are shown in column
3 of Table I. Again, as in the previous case, the change in
barrier parameters from their initial guess values is very
small compared to the barrier widths. Figure 2(c) shows
R (E) using the optimal potential; the refiection
coefficients for the target energies indicated by the three
arrows all match the goals to within 0.1% of the objec-
tive values. Although the potential optimization proved
very adequate in this case, the solution is evidently some-
what unstable, given that the optimized reffection
coefficients at E, and Ez reside on the sides of the
reflection peaks in Fig. 2(c), thereby indicating that a
small error in the barrier parameters would result in very
different reflection coeScients at these energies.
Significant uncertainties in the incident electron energies
may also lead to substantially different reflection-
coefficient values than one expects. To make the solution
more stable, we would need to resort to some form of
robust control, which will be examined in future work.

Finally, we note that the sharp edges of the rectangular
barriers shown in Fig. 1 are responsible for the quantum
interference effects, which manifest themselves here by
the complex structure of the reflection coefBcient over a
range of incident energies in both the initial guess and op-
timized potentials. In practice, however, it wi11 be very
difficult to construct heterostructure devices which pos-
sess abrupt lateral potentials. Rather, the edges of the
potential barriers in such structures will have a finite
width, of the order of the distance from the surface to the
two-dimensional electron gas. The smoother the edges
relative to the electron de Broglie wavelength, the less the
"diffraction" of the electron waves, thereby resulting in
damping of interference patterns. This is demonstrated
in Fig. 3, which presents scattering calculations using the
same general potential form as that shown in Fig. 1, ex-
cept that here the barriers are trapezoids, i.e., the width
at the top of the barriers is 4QOO A but the width at the
bottom is 4400 A. As expected, the reflection pattern
here is less pronounced compared to that with the rec-
tangular barriers in Fig. 2(a), and thus optimization of
trapezoidal widths to maximize the reflection coeScient
at a particular incident energy (not shown here) was not
as successful as the rectangular-barrier case. However,
we stress that in the case of vertical structures it is easier
to fabricate sharp-edged potentials. One must keep in
mind that in the case of vertical structures higher ener-
gies and shorter length scales (of structures) are more
relevant.
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FIG. 3. Reflection coefBcient vs incident energy using five

equally spaced trapezoidal barriers. Note that the reflection
peaks are much less intense than in the case using rectangular
barriers shown in Fig. 2(a).

HI. FREE-FLOATING POTENMAL
DESIGN OPTIMIZATION

Now we extend the same problem of optimization of
the reffection coefficients by allowing the entire potential
function to be optimized. Here V(x) is no longer re-
stricted to a particular form as in Sec. II where it was
composed of five rectangular barriers. Since we are now
optimizing a function rather than a small set of parame-
ters, optimal control theory is employed to design the po-
tential. As one might intuitively expect, the freedom to
modify the entire potential provides one with better con-
trol.

Before describing the optimal control formalism used
in this problem, we outline the method used to calculate
the reflection coefficients R (E) for an arbitrary potential
form such as that shown in Fig. 4. First, it is assumed
that the incoming electron waves are incident from the
left of the scattering potential V(x). For the asymptotic
region x (x&, the solution of Schrodinger s equation is (at
a given incident energy E)

f(x)= A exp(ikox )+Bexp( ikox ), —

V (x)

Z
1

FIG. 4. Schematic of the "free-floating" potential used to
optimize R(E) with the optimal control algorithm. Only the
potential in the region x E [x&,x„] is optimized; for x (xq and
x &x„ the potentia1 is fixed at 0.0 eV.
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where ko =+2m (E—Vo ) /R, and Vo =0.0 eV is the con-
stant ground potential, i.e., the potential outside the
range x E [x&,x„]. The constants A and 8 are obtained,
as usual, by equating the values at xI of the wave function
and its derivative to those of the function on the right-
hand side of Eq. (9). The reflection coefficient is the ratio
of the probability amplitude of the reflected to the in-
cident wave:

R(E} (10)

Computation of R(E) requires the knowledge of P(xl)
and g'(xl) at incident energy E; these are computed by
numerically integrating the time-independent
Schrodinger equation "backwards" from the upper
boundary x„ to xI with the Numerov algorithm. Since
we are solving a second-order differential equation, two
boundary conditions, P(x„) and P'(x„) must be specified.
These are determined by the solution of the wave func-
tion in the asymptotic region x & x„:

P(x ) =F exp( ikox ) .

Note the absence of the exp( ikox—) term in Eq. (11),
since the incoming electron waves are assumed to be in-
cident from the left. The initial conditions g(x„) and
g'(x„) must, of course, be consistent with the asymptotic
solution in Eq. (11). The (complex) value for F is com-
pletely arbitrary for the purposes of computing the
reflection coeScient. In practice, we chose F= 1.0.

We now turn to the optimization problem at hand.
First, a cost functional whose minimization corresponds
to achieving the desired physical goal of plane-wave
reflection over a continuous range of energies is con-
structed:

EJ= EWE R'E —R E (12)
I

where R'(E) and R (E) are the objective and actual
reflection coefficients defined previously, EI and E„are

the lower and upper bounds of the incident electron ener-

gy for which the reflection coefBcients are to be opti-
mized, and W(E) is a weighting function. The minimiza-
tion of J is constrained by the time-independent
Schrodinger equation,

g"(x;E)+b(x,E)g(x;E)=0, (13)

where b(x, E)=—(2m/A' )[V(x) E].—Following the
general quantum-mechanical optimal control formula-
tion, an unconstrained objective functional is formed via
Lagrange multiplier function A,(x;E):

E XJ=J— E x x E "xE
E XI

+b (x,E)g(x;E)]+c.c. (14)

where c.c. denotes complex conjugate and xI, x„are the
lower and upper boundaries of the spatial region where
the potential is to be modified, as shown in Fig. 4.

Now an extremurn (minimum} is found when an arbi-
trary first-order variation of Jwith respect to the A,(x;E),
A, '(x;E), P(x;E},f'(x;E), and V(x) are zero, i.e.,

5J=J[A+M, , A, "+M,",P+5$, $'+5/", V+5V]
—J[A, , A, ', g, g", V]

=0. (15)

For arbitrary variations in A, and A, ', 5J is zero since
5J/5A, =5J/5A, ' =0, because Schrodinger's equation (13)
is satisfied by construction. The Lagrange multipliers
can be chosen such that the variation of Jwith respect to
g and g' is zero. Integrating the term A( xe)f"( xE) in
Eq. (14}and its complex conjugate by parts twice gives

E„J=J— f dE Q'(x„;E)A(x„;E )
—f(x„;E}A,'(x„;E)+g(xI,'E)A, '(x(', E) Q'(xI', E)A(xI &E—)

g

+ f dx[f(x;E)A,"(x;E)+A(x;E)b(x,E)g(x;E)] '+c.c.
XI

(16)

A,"(x;E)+b(x,E)A(x;E}=0, (17)

with the boundary conditions

A(xI,'E) =2W(E)[R'(E) R(E)]-
ay'(x, ;E) ' (18a)

For the first-order variation of J with respect to P(x;E}
and f'(x;E) to be zero, i.e., 5J/5$(x;E) =5J/
5$'(x;E)=0, the Lagrange multiplier functions must
satisfy the difFerential (Schrodinger's) equation

A, '(x„E)= —2W(E) [R '(E) R(E)]-BR (E)
B@(x(',E)

(18b)

and similarly for choosing A, '(x;E) such that the varia-
tion of J with respect to g'(x;E) and P"(x;E) is zero.
Note that in deriving Eqs. (17) and (18) we have assumed
that 5$(x„;E)=5''(x„;E)=0; this is true since

p(x„;E),f'(x„;E) (and their complex conjugates) are
fixed by the boundary conditions on them derived from
Eq. (9). [In practice, in order to prevent instabilities in
the Nuxnerov algorithm, it was necessary to scale the
boundary conditions Mxl, E) and A, '(XI,'E) by =10 ].
The explicit forms of the derivatives in Eq. (18) are
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BR (E)
dg'(xg, E}

BR(E)
ay(x, ;E)

i [kc@"(x(,E) i—@'(x, ;E)]I
3 Iz+ i [kc@'(xi,'E)+ i@"(x(,E)]IB I2

[kc[kc@'(xg,'E)—&'@"(xg', E)]I& I' —kc[kcP'(xq', E}+if"(xi,E)]IBI2

I
~ l4

(19a)

(19b}

V'+"(x)= V"(x)—a 5J
5V"(x)

(21)

Finally at a minimum of J we require that the variation
of J with respect to the potential V(x) be zero, which
leads to the condition

5J 5J db(x, E)
5V(x) 5b(x, E) 8V(x)

J dE Re[A(x;E)f(x;E}]=0 . (20)
I

Now Eqs. (20), (17), and (13) form a set of coupled
equations which must be solved iteratively. The algo-
rithm employed in this work is as follows.

(1) Choose an initial guess potential V'= '(x) where
x E [x,,x„].

(2) Set up the boundary conditions g(x„;E) and
f'(x„;E) and integrate P(x;E) backwards from x„ to xi
via Eq. (13).

(3) Set up the boundary conditions A(x&', E) and
A, '(xI', E) from Eq. (18) and integrate A(x;E) forwards
form x& to x„via Eq. (17).

(4) Repeat steps (2) and (3) for all (discretized} incident
energies in the range EE[E&,E„]and compute the gra-
dient 5J/5V(x) from the integral expression Eq. (20).

(5) Update the potential using the steepest-descent
method:

0
tory potential is that its "wavelength" is 335 A, exactly
one-half of the de Broglie wavelength of an electron at an
incident energy of 0.01 eV passing over a constant
potential barrier of 0.005 eV. This form can be
interpreted in the following way. The general solution
of Schrodinger's equation, assuming a constant
potential, is a linear combination of the degenerate
eigenfunctions $(x)=A exp(ikx)+B exp( ikx—), where
k =+2m(E —Vc)/fi and E=0.01 eV and Vs=0.005
eV in this case. If we write the optimal potential as
V(x)= Vc+ Vcos(k'x), then Vcos(k'x) can be con-
sidered as the potential perturbation. The degenerate
eigenfunctions exp(ikx) and exp( ikx—) of the unper-
turbed potential Vc Hamiltonian are therefore the most
natural choice for the basis functions for determining the

0.008

0.006

0.004

0.002

where a is a small, positive constant.
(6) Repeat steps (2)-(5) until a convergence criterion is

met, i.e., J[V'+"(x)]—J[V"(x)]&y, where y is a
small, positive number.

In the Srst optimization example, we seek to maximize
the re5ection coeScient at a single energy, E=0.01 eV.
Thus we set W(E)=5(E E) and R'(E—)=1.0 in Eq.
(15). The initial guess potential is assumed to be a con-
stant (0.005 eV) with a length of x„—x&=8188 A. The
potential outside this region is fixed at 0.0 eV. An upper
bound (0.007 eV) was imposed on the height of V(x) dur-
ing the optimization in order to prevent it from becoming
too large; this was necessary because any potential form
with a height significantly greater than the target incident
energy E would result in the required high reflectivity.
The optimal potential is shown in Fig. 5(a} and a
plot of R (E) using this potential over the range
0.008 &E &0.012 eV is shown in Fig. 5(b). Note that the
objective R(E)=1.0 is clearly reached, and that the op-
timal solution appears to be "robust" in the sense that
R (E)= 1.0 over a fairly wide range about the target ener-

gy 0.01 eV.
The optimal potential in Fig. 5(a) is essentially a cosine

wave with a mean energy of the initial guess potential,
0.005 eV. The important point to note about this oscilla-

0.000
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FIG. 5. (a) Optimal potential for maximizing 8 (E) at a sin-
gle incident energy E=0.01 eV. The characteristic "wave-
length" of the oscillatory potential structure is exactly one-half
of the de Broglie wavelength of an electron with incident energy
0.01 eV passing over a constant potential region of 0.005 eV. (b)
Refiection coefBcient vs incident energy using the optimal po-
tential shown in (a).
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(first-order) wave functions of the full potential. Now, in
a periodic potential, the eigenfunctions of the Hamiltoni-
an must satisfy Bloch's theorem Pk(x)=uk(x)exp(ikx),
where uk(x} possesses the same periodicity
as the potential V(x ). If we write g(x ) as
[ A +B exp( —2ikx)]exp(ikx), we see that uk(x) = A

+B exp( 2—ikx), which oscillates with the same frequen-
cy as the optimal potential shown in Fig. 5(a) where
k'=2k. This suggests that maximum control is obtained
when the eigenfunctions (to flrst order) of the Hamiltoni-
an with the optimal potential possess the same periodicity
as the eigenfunctions of the Hamiltonian with the unper-
turbed (initial guess) potential. Apparently, the control
algorithm employed finds an optimal potential such that
the eigenfunctions are closely related to those corre-
sponding to the initial guess constant potential.

This similarity between the optimal and initial guess
potentials is indicative of the particular control algorithm
employed in this work. Here, the algorithm relies on a
gradient-based optimization procedure and is therefore
only capable of finding a solution corresponding to a lo-
cal minimum of the objective functional. Also, due to the
local nature of gradient-based methods, the solution is
heavily dependent upon the initial guess, so it is not
surprising that there are similarities between the initial
guess and optimal potentials as described above. Indeed,
as was noted in the previous section where the potential
was restricted to a fixed number of rectangular barriers,
the optimal potential does not wander too far away from
the initial guess potential due to the local nature of the
optimization algorithm. It will be valuable to explore the
use of more global algorithms which may reveal other
good quality design solutions.

It is also worth noting that the perturbation Vcos(k'x)
causes a splitting (to first order) of the degenerate states
proportional to V x cos 'x cos kx; this integral is a
maximum when k'=2k. Apparently, maximum control
is obtained when the energy splitting is the greatest. This
is somewhat analogous to the nearly-free-electron model
used to explain the origin of the energy gap in infinite un-
bounded crystals, in which the potential is proportional
to cos(2nxla), where a is the lattice constant and the
stationary (standing-wave) states split by this perturba-
tion are 2cos(nx/a) and 2i sin(mx/a). The only
difFerence in our case is that although the reflection is
(nearly) 1.0 transmission must be (nearly) zero. This
means that we must have F/A =0.0, where F is the
coefficient of the outgoing plane wave [see Eq. (11)].
Thus the amplitude of the calculated wave function,
~P(x}~, using the optimal potential (not shown here}
behaves as sin (kx) as in the nearly-free-electron model,
but here increases in amplitude exponentially from x„ to
xr in order to achieve (nearly) zero transmission. (At a
surface or at a junction, solutions with complex wave vec-
tors can exist, and then the analogy between the results
presented here and the origin of the energy gap is more
exact. }

Finally, regarding the optimal potential in Fig. 5(a) we
note that there is a strong similarity between this poten-
tial form and quarter-wave stacks used in bandpass filter
designs in optics when broadband reflectance about a

particular wavelength is desired. A quarter-wave stack is
composed of alternating layers of high- and low-
refractive-index materials, and the thickness of each layer
is one-quarter of the wavelength that is to be reflected.
When light of the desired wavelength passes through the
stack, alternate reflections are phase shifted by 180 due
to transmittance from low- to high-refractive-index ma-
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eV for the "free-floating" results.
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is quite good. Figure 6(c) plots R (E) using the initial
guess potential; note the dramatic difference between this
and R (E) in Fig. 6(b) using the optimal potential, even
though the magnitudes of the potentials do not differ by
more than 0.0015 eV. As in Fig. 5(a), there is a charac-
teristic "wavelength" associated with the optimal poten-
tial, although here it is slightly more complicated due to
the more demanding objective. However, as in the previ-
ous case, the "wavelength" of this potential is roughly
one-half of the de Broglie wavelength of electrons corre-
sponding to incident energies in the range of 0.01-0.014
eV, i.e., the range of the target incident energies, passing
over a constant potential of 0.005 eV.

One serious drawback of the optimal potential charac-
teristic "wavelength" which is one half the electron de
Broglie wavelength is that, as one goes to higher incident
energies where better coherent transport is possible, the
optimal potential structure will possess a higher structur-
al resolution. From the perspective of fabrication, the
lower the device resolution the better, and in many cases
there will be a limit to the structural resolution that one
can build, especially in the case of lateral heterostruc-
tures. In order to comply with these demands, we use an
alternative gradient-filtering optimization procedure.
Here we use the same objective reflection R'(E) and ini-
tial guess potential as in the previous case but restrict the
"bandwidth" of the optimal potential so that it wi11

not contain "wavelength" components smaller than
1000 A. This is accomplished by removing the unwanted
high-frequency components from the gradient at each
iteration (see Ref. 9 for details). Figure 7(a) displays the
optimal potential. Note that to compensate for the reso-
lution restriction the magnitude of the potential increases
from the last case. As expected, the achieved reAection
coef6cients do not match their objective values as closely
as in the previous case without any filtering [compare
Figs. 7(b) and 6(b)], but they are still a vast improvement
over those obtained using the initial guess potential [Fig.
6(c)].

Finally we examine the case where R'(E) is two nar-
row Gaussian functions centered at 0.011 and 0.013 eV.
Figure 8(a) displays the optimal potential and Fig. 8(b)
shows the resulting reflection coefficients R (E) (solid
line) superimposed on the objective reflection coefficients
R'(E). No restriction on the potential form was im-

posed here. Note that there is an overall slow "beat" in
the potential; this can be explained by examining the
"power spectrum" of the optimal potential in Fig. 8(c).
In articular, note the two peaks at 0.0236 and 0.0205
A which correspond to the two "wavelengths" 266 and
306 A, respectively. In line with the previous examples,
these two "wavelengths" are one-half of the electron de
Broglie wavelength at incident energies of 0.011 and
0.013 eV passing over a constant potential of 0.005 eV.
The slow "beat" here is simply the difference between
these two major components in the potential, i.e., it
possesses a "frequency" of 0.0236—0.0205 =0.0031 A

IV. CONCLUSIONS

In this paper we have demonstrated that a high degree
of control of electron plane-wave re6ection amplitudes

through manipulation of the scattering potential is possi-
ble. Provided one has complete freedom in designing the
scattering potential, one can achieve a wide range of
reflection-coeScient objectives through delicate manipu-
lation of the quantum interference effects. In the Appen-
dix an algorithm is presented which will, given an initial
wave packet and a final time ~, provide all possible final
wave packets that could be created provided one has
complete freedom in choosing the potential form. The
method also yields the potential which will create a
desired wave packet. The practical obstruction to this al-
gorithm, however, is that in the process one has to solve
several equations, which are transcendental in general,
symbolically. The results presented in this paper should
be viewed as a first step towards the goal of wave-packet
"encoding, " i.e., the coherent control of the wave-packet
structure through optimal design of the scattering paten-
tial. Ultimately, the "encoding" process will be viewed in
a time-dependent manner, where the initial incoming
wave packet is scattered by the optimal potential and the
desired outgoing wave packet is produced. Such an ap-
proach would allow for the manipulation of both the am-
plitude and the phase of the wave-packet Fourier com-
ponents, thereby providing greater design versatility.

In this work we have neglected deleterious effects
present in real solid-state devices such as lattice imperfec-
tions and phonons. These will adversely affect the ballis-
tic transport properties and should be accounted for in
more realistic designs. However, existing ultra-high-
mobility two-dimensional electron system. s have demon-
strated ballistic ranges exceeding 10 pm at liquid-helium
temperatures. ' Therefore, the design methodology
presented here is applicable to real systems. It should be
noted that the general optimal control can be expanded
to incorporate the effects of undesired scattering.

Finally, we reiterate that the major obstacle to over-
come in order to implement the ideas presented here in
the laboratory is the required structural resolution of the
solid-generated potentials. The optimal potential struc-
tures presented here call for devices with resolutions of
one-half the de Broglie wavelength of the incident elec-
tron in order to achieve maximum control. At present,
this fine resolution is not possible in lateral heterostruc-
tures, and future work must therefore incorporate fabri-
cation limitations into the theoretical design process.
However, resolution on this scale is feasible for vertical
structures.
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APPENDIX

In what follows, we will examine the question of the
existence and the synthesis of an external potential V(x)
which will enable one to produce a desired wave packet
at a prescribed final time ~, given that the primitive wave
packet traverses this potential.

Let f;„(x)be the primitive wave packet and let f,«(x)
be the desired wave packet at time ~. We expand both
with respect to an eigenbasis of some operator of interest.
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The choice of the operator of interest will depend on how
the external potential (if one exists) is to be implemented.
One appropriate choice is the position operator. Next,
we truncate this eigenbasis to a finite number (N) of
eigenfunctions of interest. Thus, for instance, if the posi-
tion operator is the operator of choice, then these N
eigenfunctions would be 5 functions centered at some
suitably chosen N points on a grid. Another natural
choice is the eigenbasis consisting of eigenfunctions of the
momentum operator. Of course, the choice of the opera-
tor should not infiuence the existence (or nonexistence) of
the "designer" potential V(x).

Suppose, therefore, that the expansion of the above two
wave packets with respect to this finite eigenbasis

g, , ...,Pz can be expressed as:

and

Clearly then the vectors a;„=(a „.. . , a;„)' and

a,„,=(a,'„„.. . , a,„,)', being probability amplitudes, lie
on the 2N 1 dimen—sional sphere. We will utilize this
fact to examine the existence of V(x) in the following
steps.

(1) Show that there is always a unitary matrix which
transforms a;„ to produce a«, .

(2) Obtain an explicit expression for the most general
such unitary matrix.

(3) Find the functional form of the logarithm of the un-
itary matrix in the above step. This logarithm is
guaranteed to be a skew-Hermitian matrix.

(4) Divide the skew-Hermitian matrix in the preceding
step by ilk and subtract from it the (Hermitian) matrix
representation of the internal Hamiltonian.

(5) Examine when the Hermitian matrix obtained in
the penultimate step can be expressed as (the matrix rep-
resentation of) a local spatial potential.

We now carry out each of the above steps in greater
detail. Before doing so, however, we mention that steps
(1}-(3)can be succinctly stated using notions from the
theory of smooth actions of Lie transformation groups.
More precisely, steps (1)-(3) amount to stating that the
group of order N unitary matrices, denoted U(N), acts
transitively on the 2N 1sphere with iso—tropy U(N —1).
However, to state things in such a fashion says nothing
about the constructive aspects of the aforementioned re-
cipe, which is what is required by us. We now resume
our analysis of the various steps involved in the construc-
tion of the putative potential.

(1) We construct the unitary matrix U which takes a;
to a,„, as the product of two unitary matrices UzUi
(thereby ensuring that U is unitary too), with U, denoting
the conjugate trans ose of some unitary matrix U,
(thereby rendering U i unitary also). To that end we first
denote the vector (1,0, . . . , 0}'by v~ which clearly lies on
the (2N —1)-dimensional sphere. The matrix U, is
formed in the following fashion. Let the first column of

U, be the vector a;„and the remaining columns be any
choice of unit norm vectors in C which, together with

a;„,form an orthonormal basis for C . Two observations
are to be noted. (i) U, is a unitary matrix. Indeed, any
nonsingular matrix whose columns (or rows) form an
orthonorinal basis for C is unitary (and vice versa). (ii)
U 1 vp a;„. Therefore, it fo11ows that v~

= U 1
'a;„. But

U1, being unitary, satisfies U1
' =- U1, and this latter ma-

trix is (by the properties of unitary matrices) also unitary.
As for U2, it is constructed in exactly the same manner as

Ui, with the difference that in its construction we replace
a;„everywhere by a,„,. We thus have that Uiv =a,„„
and therefore Uz U,a;„=a,„„asclaimed.

(2) It is apparent that the unitary matrix U in the step
above is not the only unitary matrix which will yield a,„,
upon multiplying a;„. To analyze the degree of indeter-
minacy in the matrix U we first note that if V and 8'are
two matrices which yield a,„, when multiplying a;„, then
the matrix VtWfixes the vector a;„,i.e., VtWa;„=a;„(we
will adopt the expression "fixes" to mean this last equa-
tion). Likewise, IVVt fixes a,„,. Thus the most general
unitary matrix which produces the vector a,„, from a;„ is
of the form NUI. , where N is any unitary matrix which
fixes a,„„Lis any unitary matrix which fixes a;„, and U,

of course, is the unitary matrix constructed in the step
prior to the present one. Thus, it remains to examine
which unitary matrices fix the vectors a;„and a,„,. For
this, it is convenient to determine the unitary matrices
which fix the vector v . Clearly, by the special structure
of the vector v~, the only such matrices are N XN unitary
matrices with both the first row and the first column
equal to the vector v itself, and with the other elements
constituting any arbitrary (N —1)X(N —1) unitary ma-
trix. We will denote a typical such matrix by A. Now
clearly all matrixes admitting an expression of the type
U, AU, leave a;„ fixed. Conversely, one can show that
any unitary matrix which fixes the vector a;„necessarily
admits such an expression. Indeed, if V be any such uni-

tary matrix, then the unitary matrix Ut1VU1 leaves v

fixed and hence must be of the form described above.
Consequently, U1VU1=A. Thus V equals U1AU1. By
the same reasoning every unitary matrix which fixes ao
can be written as Uzb, Uz, where b, is any unitary matrix
which leaves v fixed. One can easily show that the ma-
trices which leave v fixed form a group [which is, in fact,
isomorphic to U(N —I )]. Therefore, b,A is also a unitary
matrix which fixes v . In order to avoid introducing too
many new symbols, we will denote this matrix also by A.
Therefore, putting all of the foregoing analysis together,
one concludes that all matrices (and only they) expressi-
ble as U2A U i

= 0 take a;„ to the vector a,„,.
(3) The next step is to find the logarithm of the unitary

matrix 0 obtained in step (2). It is a standard fact that
the logarithm of a unitary matrix is skew Hermitian. To
find the logarithm explicitly we first diagonalize the uni-
tary matrix. The diagonalizing matrix may also be taken
to be unitary. Since the eigenvalues of a unitary matrix
are all of the form exp(iy k ), k = 1,... ,n, we obtain

O=P diag(e ")P
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with P being the (unitary} matrix which diagonalizes 0.
We define the logarithm of 0 to be the matrix 0 defined
as PI Pt, where I is a diagonal matrix with diagonal en-
tries iyk, k=1, . . . , n .One can verify that exp(S)=0.
Hence the matrix 1'=(AS)l(iw) is Hermitian, a fact
which will be used in the step immediately below.

(4) We want exp[i (H;„+H,„,)~le] to equal the
desired unitary matrix 0. Here, r is the final time, the
matrix representation of the internal Hamiltonian is
denoted by H;„„and that of the external or interaction
Hamiltonian is denoted as H,„,. Both these Hamiltoni-
ans are assumed to be time independent. If we subtract
from 1' (with f' given by the preceding step) the Hermi-
tian matrix H;„„we get another Hermitian matrix. Now
any Hermitian operator represents a valid quantum-
mechanical perturbation operator. However, not every
quantum-mechanical perturbation operator is a local spa-
tial potential operator.

(5}Further conditions are needed to render the pertur-
bation operator of the preceding step a local spatial po-
tential. Let us analyze these additional conditions, as-
suming that the eigenbasis chosen consists of eigenfunc-
tions of the position operator. The analysis for other
bases is the same, and the existence of a potential opera-
tor ought not to depend on the choice of the eigenfunc-
tions. Eigenfunctions of the position operator have been
chosen since, in practice, one of the most common tech-
niques for constructing a local potential consists of
prescribing its putative values over a finite grid of points.
The matrix representation of the putative potential, H,„„
is diagonal, with diagonal elements being precise1y the
values of the potential at the points of the chosen grid.
The matrix representation of the internal Hamiltonian
need not be diagonal but is certain to be Hermitian. For
instance, if the internal Hamiltonian is the kinetic energy
of a free electron, one can obtain its matrix representa-
tion by inverting the fast Fourier transform (e.g., see Ref.
10}. If H,„, is to be a spatial potential, it is clear that a
necessary and sufBcient condition is that the off-diagonal
elements of f' and H&„, should be the same. Before exam-

ining this stipulation any further, we first note that if it is
met then the diagonal elements of H,„t will automatically
be real, since they are the difFerences of the correspond-
ing diagonal elements of f' and the matrix H,„„both of
which are Hermitian and are thus guaranteed to have
real diagonal elements.

It is, in general, diScult to characterize situations un-
der which the diagonal elements of f'and H;„, will be the

same in a succinct fashion. What one can do, however, is
to carry out a dimension count to examine the restric-
tions that one must place on g,„, for the existence of a
potential. The number of independent, ofF-diagonal ele-
ments is X —N. This is because a Hermitian matrix,
with complex entries, has a total of N rea1 independent
elements, of which N are diagonal elements. We have,
therefore, N —N real equations to be satisfied. Let us
now examine the number of free parameters available to
us. Recall that the unitary matrix 0 has an arbitrary fac-
tor of (N 1)—X (N —1) unitary A in it. Now the number
of independent real parameters in such a unitary matrix
is (N 1} . —This follows because unitary matrices form a
Lie group and their dimension is the same as that of their
Lie algebra, the Lie algebra of skew-Hermitian matrices,
and the latter has the above dimension since
Nz N (N—1—) =N— 1. H—ence, we will require N 1—
more real parameters which are free. This will limit the
choices of the vector g„,. Recall that P,„, appears in 0
(explicitly) since it appears explicitly in the unitary ma-
trix Uz, which is one of the multiplicative factors in the
"designer" unitary matrix. Now f,„, consists of N com-
plex numbers (thus 2N real numbers) with one constraint.
Thus it provides one with (2N —1) free parameters, out
of which we need N 1, thus le—aving a total of N parame-
ters which can be prescribed a priori. This then gives us
the possible choices for the final wave packet. We em-
phasize that this is only a dimension argument. Not all
real equations have real solutions, and when they do
these need not be unique. Furthermore, in practice, one
will be usually forced to impose further restrictions on
H,„,. The upshot of the foregoing analysis is that even
without any practical restrictions on the potential form
one cannot synthesize any desired wave packet via a local
spatial potential. In the parlance of control theory, the
problem of synthesizing a desired wave packet starting
from a given primitive wave packet, via an external local
spatial potential, is not controllable. However, in princi-
ple, one can via the preceding recipe determine the final
wave packets which can be produced from a given primi-
tive wave packet through the use of an artificial local spa-
tial potential. In the language of control theory, we can
determine the reachable set from a given primitive wave
packet. We remark, however, that the problem under
consideration here is not of the type studied traditionally
in control theory, because our external control, namely
the local spatial potential, is not time varying, as is the
case for traditional applications of control theory.
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