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Using the transfer-matrix method, we calculate the transmission coefficient versus the frequency of the

incident electromagnetic waves propagating in photonic-band-gap structures constructed from disper-

sive and highly absorbing materials. We study how the photonic band gaps are afFected by the presence
of polariton gaps and/or absorption. Also, the possible difficulties of their experimental investigation

are discussed.

I. INTRODUCTION

The problem of the electromagnetic (EM) wave propa-
gation in periodic and/or random dielectric structures
has received increasing interest in recent years. The ap-
pearance of forbidden frequency regions —the so-called
photonic band gaps (PBG)—in the spectrum of EM
waves propagating in such composite dielectric materials
can have potential applications' in several scientific and
technical areas such as antennas, filters, optical switches,
design of more efficient lasers, etc. It is, therefore, very
important to find three-dimensional (3D) and two-
dimensional (2D) dielectric structures possessing PBG.
Theoretical calculations of Ho, Chan, and Soukoulis in
3D have shown that periodic dielectric inaterials with di-
amond or diamondlikestructures can indeedhave PBG.
One of these structures, the so-called "3-cylinder" struc-
ture, which consists of three sets of cylinders drilled
along the (110},(101},and (011) directions at each point
of a fcc lattice, has been fabricated in the millimeter
length scale and shown to possess full PBG in the mi-

crowave region in agreement with the theoretical predic-
tions. Very narrow PBG's have been also found for sim-

ple cubic structures. Similar calculations in 2D struc-
tures have shown that a triangular lattice of air
columns in a dielectric background is the best overall 2D
structure, which gives the largest PBG with the smallest
index contrast. As in the case of electrons, lattice iinper-
fections in both 2D and 3D periodic dielectric structures
can create fully localized EM wave functions. ' ' Most
of the fabricated composite dielectric materials' ' ' ex-
hibit PBG s at microwave frequencies, since the fabrica-
tion of ordered dielectric structures in optical length re-
gions is more difficult. However, the creation of such
structures in the optical wavelength region is the most
challenging prospect in that area. '

Most of the theoretical calculations' take into ac-
count the similarity that exists between electronic states
in a periodic potential and the EM waves in a periodic
dielectric medium. Techniques, such as the plane-wave
method (PWM) developed for the electronic case, have
been successfully applied to calculate the band structure
of EM waves propagating in either 2D or 3D periodic

dielectric structures. Using the PWM, the dispersion of
the photon bands in an infinite periodic structure can be
calculated; in other words, the eigenfrequencies co(k) are
calculated for each real wave vector k. An experimental
investigation focuses mainly on the transmission of EM
waves through a finite slab of a PBG material patterned
in the required periodic structure; thus, the comparison
with the results from the PWM is a nontrivial task. Also,
when the dielectric constant e is frequency dependent or
when it has a non-negligible imaginary part, the PWM is
not useful. Recently, Pendry and MacKinnon' intro-
duced a complementary technique of studying PBG
structures. This is essentially a transfer-matrix method
(TMM} which has the advantage that the transmission
and refiection coefficients for incident EM waves of vari-
ous frequencies can be obtained directly from the calcula-
tions. The TMM can also be efficiently used in cases
where the e is frequency dependent, or it has a large
imaginary part. Disordered systems and periodic systems
with imperfections can also be studied using the TMM. '

Finally, the band structure of an infinite periodic system
can be found using the TMM, but this method calculates
all the bands k(co} for a given co.

As we stated previously, the creation of PBG materials
in the infrared and the optical wavelength regions is still
an open and very challenging problem. However, in that
region some materials have frequency-dependent dielec-
tric constants or they are highly absorbing.

In this paper we study how these two properties affect
the EM waves propagating in periodic or disordered
structures. We calculate the transmission of EM waves
versus frequency using the TMM. In Sec. II, we study
cases where the structural gap, which is created by the
periodicity of the lattice, is close to the polariton gap
(PG), which is produced by the coupling between the EM
waves and the transverse optical phonons. In Sec. III, we
study how the structural gap is affected when the EM
waves are propagated in highly absorbing PBG materials.
GaAs is used as a prototype material because it has al-

ready been tried, without success, for the developing of
PBG materials with gaps into the infrared region. '

However, the same conclusions can be reached for other
materials with a similar behavior.
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II. POLARITON VS STRUCTURAL GAP

where ep, e„are the dielectric constants for co=0 and 00,

respectively, mz is the transverse optical phonons fre-

quency, and I is the absorption coeScient. For I =0, we
can write Eq. (1) in a more familiar form:

i~2 2

E(co)=&„
Nz. N

(2)

where coL =co&to/e„. The e(co) for GaAs is shown in

Fig. 1, using the following parameters: t.„=10.9,
coL =8.75 THz, and co&-=8. 12 THz. ' Dielectric con-
stants described by Eq. (2) create a forbidden band (polar-
iton gap) between the frequencies coL and coz which has
nothing to do with the periodicity of the lattice.

In Figs. 2(a) —2(c), the transmission vs the frequency is
plotted for EM waves propagating in a 2D square lattice
consisting of GaAs cylinders with filling ratio (f=0.449)
embedded in air; the EM waves are E-polarized (E-field is
parallel to the axis of the cylinders). The dashed lines in
Figs. 2(a}—2(c) correspond to cases where the GaAs has
frequency independent dielectric constant (e=e„), while
the solid lines correspond to cases where e(co} for GaAs
are described by Eq. (2). For lattice constant a =5.655
)Mm [Fig. 2(a}],the first structural gap is above the polari-
ton gap [vertical dotted lines in Figs. 2(a) —(2c)]; for
a =7.540 pm [Fig. 2(b)], the two gaps are overlapping,
while for a =9.425 )tcm [Fig. 2(c)] the first structural gap
is below PG and the second structural gap is above PG.
In all the cases, there is a huge drop in the transmission
inside the PG (the light is totally refiected) as in the

It is well known that the coupling between the trans-
verse optical phonons and the transverse EM waves en-

tirely changes the character of the propagation of EM
waves. This coupling can be described by the following
frequency dependent dielectric constant

2
CO z.

E(co)=E~+(Ep E~) 2 —iI

homogeneous case (f=1). This drop is strongly affected
by the filling ratio of GaAs and, as we expected, the drop
tends to disappear as f~0. But the most interesting re-
sult is the appearance of new gaps in the frequency-
dependent dielectric constant case. For a=5.655 pm
[solid line in Fig. 2(a)], there are two gaps (in addition to
the polariton gap) with midgap frequencies co =7.7 and
12 THz, while for E'=6 there is only one gap at co =11
THz [dashed line in Fig. 2(a)]. The situation is nearly the
same for a =7.540 p,m with differences regarding the size
of the two gaps. In contrast, for a =9.425 pm there are
two relatively wide gaps with cog =5.8 and 13.5 THz, and
two smaller gaps with co =7.7 and 9.4 THz [solid line in
Fig. 2(c)]; notice that the second structural gap is closer
to the PG as compared with the other cases. In the fol-
lowing paragraph, we will try to explain these difFerences
by using a multistep dielectric constant as an approxima-
tion to Eq. (2}.

Roughly speaking, the conditions for the appearance of
the gaps can be described by the relation

13.26, co &6 THz
20.47, 6 THz & co & 8. 12 THz

e(co }= —60.00, 8. 12 THz & co & 8.75 THz

6.54, 8.75 THz & co & 11 THz
10.13, 11 THz&co,

(4)

~,"a&a
=k„, n =1,2, 3, . . . ,

Cp

where co is the velocity of light in the air, e is the average
value of the dielectric constant over the space, cog is the
midgap frequency of the nth gap, k„ is a constant charac-
terizing the nth gap, and a is the lattice constant. Know-
ing the constant k„, F, and a, we can approximately esti-
mate the frequency, co=kg, in which the nth gap will ap-
pear. For the polariton case, we can approximate the
dielectric constant described by Eq. (2) with a multistep
dielectric function (see the dashed line in Fig. 1):
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FIG. 2. The transmission vs the frequency
for E-polarized EM waves propagating in a
perfect 2D square lattice consisting of nonab-

sorbing iI =Oj GaAs cylinders with f=0.449
lattice constant a =5.655 pm (a), 7.540 pm (b),
9.425 pm (c), and the slab thickness is Sa for
all the cases. The dielectric constant of GaAs
is given by Eq. (2) (solid lines) or it is assumed
constant a= e„(dashed line). The vertical dot-
ted lines are the limits of the PG.

-60
4

I I I I i I I
I' I: I I I I I I I I I I

6 8 10 12

Frequency (THz)

10
I

'
I

'
I

'
I

0—

-10

CQ

-20
O
ch
V)

E
-30V)

cU

I-

/

/

/

I

I

l

/

/

/

/

/

/

/

/

/

I

-50—
(c)

-60
4

I I I I I I I I: I

'

I I I I I I I

6 8 10 12

Frequency (THz)



49 ELECTROMAGNETIC-WAVE PROPAGATION THROUGH. . . 11 083

where the approximate values of e'(co } have been calculat-
ed by averaging e '(co) (for co&8. 12 THz) or e(co} (for
co & 8. 12 THz) over the certain frequency regions. Using
the previous averaging procedure, we get the best overall
agreement between the multistep model and the results
from Eq. (2) (compare solid and dashed lines in Fig. 1).
Also, by averaging the dielectric constant given by Eq. (4)
over the volume, we find

r

6.505, co &6 THz

9.742, 6 THz &re) &8.12 THz

e(co) = —26.389, 8. 12 THz & co & 8.75 THz

3.488, 8.75 THz&co&11 THz

5.099, 11 THz &co,

where for the frequency independent case (e=e „}
V=5 445 .for f=0.449. Using the previous value for F,
we can find from Eq. (3) with the help of Fig. 2 that
k&=0.48. We are now able to calculate the predicted
values of co' from our multistep model [Eq. (5)].

For co & 11 THz and a =5.655 pm, the multistep model
predicts cog =11.4 THz, which is close to the value of co

calculated from the TMM (cps =12 THz}. But more in-

teresting is that this simplified model predicts that the
conditions for the appearance of the first gap can be also
fulfilled in the region 6 THz & co & 8. 12 THz. In particu-
lar, the model predicts that cog =8.2 THz and, as we can
see from Fig. 2(a} for the TMM calculation, there is a gap
in that region with cog 7 5 The validity of the mul-

tistep model is further supported from similar compar-
isons for a =7.540 pm.

From the previous arguments, we can reach the con-
clusion that for frequency dependent dielectric constants
described by Eq. (2), gaps can be found at two different
frequency regions. For this reason, we call them "twin"
gaps. The concept of "twin" gaps is further supported by
the results presented in Fig. 2(c) for a =9.425 pm. Using
the value of k, =0.48 and Eq. (3), the multistep model
predicts that the first gap will appear in two different fre-
quency regions with co'=5.4 and 8.7 THz, while the
TMM gives kg=5. 7 and 9.1 THz. For the second gap
k2=0. 96, so the multistep model predicts "twin" gaps
with cog =7.3 and 13.9 THz, which are very close to the

calculated values from the TMM (ars=7. 8 and 13.5
THz). TMM calculations with smaller frequency steps
around the PG, where the dielectric constant changes
rapidly, have shown there are additional sharp drops in
the transmission which, according to the previous
prescription, are the "twin brothers" of the other higher
gaps.

Another consequence of the frequency dependence of
the dielectric constant is the narrowing of the gaps. In
particular, for a =5.655 pm the widths of the first gap
over the midgap frequency (b,co/co ) for a dielectric func-
tion E described from Eq. (2) [solid line in Fig. 2(a)] are
0.286 and 0.108 for each of the "twin" gaps, which are
smaller as compared with the hen/cog(0. 386) for constant
e=E„[dashed line in Fig. 2(a}]. Also, as we can see in
Figs. 2(a) —2(c), for the other two lattice constants, the
gaps which are closer to the PG are narrower than their

"twin" gaps. Since the dielectric constant [Eq. (2}]
changes rapidly for co around the PG, the bands directly
above the certain gap "see" higher (or lower) dielectric
constants as compared with the bands below the gap, de-
pending on the location of the gap relative to the PG. As
a consequence of this, the higher (or lower) bands move
to lower (or higher) frequencies; thus, the gap becomes
smaller. Notice there is an additional reason which is re-
sponsible for the differences between the frequency-
dependent and the frequency-independent dielectric con-
stant cases: For the frequency-independent case, we as-
sume e=e„=10.9, which is always higher (smaller) than
the frequency-dependent dielectric constant [Eq. (2)] for
frequencies above (below) the PG, so the gaps will appear
in slightly smaller (higher) frequencies for the e=e„
cases [see Figs. 2(a) —2(c)].

The concept of the "twin" gaps is quite general and it
appears for any kind of structure in one-, two-, and
three-dimensional systems. However, for the 2D lattice
consisting of GaAs cylinders embedded in air, the EM
waves with frequencies inside the PG exhibit different
behavior depending on the polarization of the waves. For
E parallel to the axis of the cylinders, the wave is actually
totally reflected, since the transmission is very small in-
side the PG region (see Fig. 2). On the other hand, for E
perpendicular to the axis of the cylinders, there are fre-
quencies inside the PG region where there is transmis-
sion. We can compare the present case with what hap-
pens in a system consisting of infinite conducting wires
forming a 2D lattice [the dielectric constant of the wires
described by e(co)=1—co /co, where co is the plasma
frequency] for co&co; in both cases, the dielectric con-
stant is negative. It is well known that the conducting
wires system can be used as a polarizer, since the waves
with E(H) parallel to the axis of the cylinders are almost
totally reflected (transmitted).

The transmission versus frequency is shown in Fig. 3,
for a case where two second neighboring cylinders have
been removed from an otherwise perfect 2D square lat-
tice consisting of 6X6 GaAs cylinders with f=0.449
embedded in air; the EM waves are E-polarized and the
lattice constant is a =9.425 pm. As we can see in Fig. 3,
each of the "twin" gaps has a different behavior regard-
ing the appearance of the localized states inside the gaps.
In particular, for the first gap around 6 THz, there are
several localized states close to the lower edge of the gap
(see the solid line in Fig. 3) which do not appear in its
"twin" gap at around 9.5 THz; but the localized states in
the middle of the gap are a common feature for both
"twins. " Also, for both "twins, " the transmission close
to the upper edge of the gaps is nearly the same as in the
periodic case (dashed line in Fig. 3). The differences are
more obvious for the two gaps which correspond to the
second structural gap. For the gap at around 13.5 THz,
there are two well-defined localized states at co=14 and
14.2 THz, while its "twin" gap at co=7.75 THz is nearly
unaffected from the disordering procedure, as we can see
from the transmission, which is nearly the same for both
the disorder (solid line in Fig. 3) and the periodic (dashed
line in Fig. 3) cases. It seems that for the gaps which lie
close to the PG—where the e(co) change rapidly —the



11 084 SIGALAS, SOUKOULIS, CHAN, AND HO 49

I I I

]
I I I

f
I; I I

J

I I I
f

I I I

]
I I I

-10—

CO

-20—
0
V)
vj

E
c -30—
GJ
1I-

-40—

i I

I

I

I

I

I

I

I

I

I

I

I

f
I

I

FIG. 3. The transmission vs the frequency
for E-polarized EM waves propagating in a 2D
square lattice consisting of 6X6 nonabsorbing
(I' =0) GaAs cylinders with f=0.449,
a =9.425 pm. The dashed line corresponds to
the perfect lattice while the solid line corre-
sponds to the case where two second-
neighboring cylinders have been removed.

-50—

-60
4 6 10

Frequency (THz)

12
I I I

14 16

defect states are more well localized and one expects the
localization length to be smaller in that frequency region.

In all the previous cases, we have assumed nonabsorb-
ing materials [I =0 in Eq. (1)]. But, frequency-dependent
dielectric constants are always accompanied by rather
high absorption. In Fig. 4, the transmission vs the fre-
quency is shown for a 2D square lattice consisting of
GaAs cylinders with f=0.449. The EM waves are E-
polarized, a =7.540 pm, and the thickness of the slab is
8a. The dielectric constant of GaAs is described by Eq.
(1) with I =0.5 and 0.1 THz. The value I =0.5 THz fits
fairly well with the experimental values for the dielectric
constant of GaAs. 's For small absorption (I'=0. 1 THz;
dashed line in Fig. 4), the results are comparable to the
nonabsorbing case [Fig. 2(b)] except for a small drop in
the transmission around the PG. At co=7.5 THz, the

transmission for I =0.5 THz is —35 da, while for
I =0.1 THz it is only —10 da. This strong drop in the
transmission for I =0.50 THz makes the experimental
investigation of the "twin" gaps diScult because of the
drop due to the absorption becomes comparable to the
drop due to the periodicity of the structure. For even
higher I', the "twin" gaps and the PG become one wide

gap because there is no recovering of the transmission at
edges of the "twin" gaps which are closer to the PG.

III. HIGHLY ABSORBING PBG STRUCTURES

In the optical wavelength region, the dielectric con-
stant of most of the materials has an appreciable imagi-
nary part. In the following section, we examine how the
gaps are affected by the absorption. We choose GaAs as
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a PBG material, since it is a possible candidate material
for the development of PBG "crystals" in the optical
wavelength region, although the same conclusions can be
reached for other absorbing materials. Recently, Yablo-
novitch' tried to develop a PBG "crystal" consisting of
an array of inicroscopic crisscrossing holes, 0.5 p,m in di-
ameter and 0.7 pm apart, drilled into GaAs; this "crys-
tal" has the "3-cylinder" structure described previously.
His trial was not successful, since no transmission data
were shown with a true gap. Theoretically, the first gap
is expected to be between 200 and 270 THz, which is in
the infrared region. As we can see from Fig. 5, the imagi-
nary part of the dielectric constant is negligible in that re-
gion; but, as the frequency approaches the optical region,
the imaginary part of the dielectric constant increases
and it becomes appreciable above 340 THz.

Using the experimental values of the GaAs dielectric
constant, ' we have calculated the transmission vs the
frequency for three difFerent lattice constants, a=0.4,
0.5, and 0.6 pm (Fig. 6). In all cases the structure is the

"3-cylinder" structure with air holes in GaAs; the filling
ratio of GaAs is 0.221 and the thickness of the slab is 4a.
For a =0.6 pm (dotted line in Fig. 6) the first gap appears
between 270 and 330 THz; since the imaginary part of e
is negligible in that region, the gap is not affected by the
absorption. But above 340 THz, there is a continuous
drop of the transmission as a result of the increase of the
imaginary part of e. For a =0.5 pm (dashed line in Fig.
6}, the first gap starts to become affected by the absorp-
tion. The transmission at the upper edge of the gap is
—20 dB while for a =0.6 pm it is —2 dB. The effect of
the absorption is even stronger for a =0.4 pm (solid line
in Fig. 6};in that case, the transmission at the upper edge
of the gap is —36 dB, while it is —44 dB in the center of
the gap; thus, the drop due to the absorption becomes
comparable with the drop of the transmission due to the
underlying structure. For even smaller lattice constants
there is no recovery of the transmission at the upper edge
of the gap and the transmission is continuously dropping.
So, one must be very careful in designing photonic band

I I I I
I

I I I 1

I

I l I I

I

I I I I

I

I I I I
I

i I I I

I

I I I I

I

I I I I

0 J

-10—

CQ

L -20—
0
M
M

E
c -30—
CC$

-40—

FIG. 6. The transmission vs the frequency
for EM waves propagating along the (001)
direction in a "3-cylinder" structure construct-
ed of GaAs with f=0.221 and lattice con-
stants a =0.4 pm (solid line), 0.5 pm (dashed
line), and 0.6 pm (dotted line). The slab thick-
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gap materials in regions where e is frequency dependent.
In nonabsorbing cases, it is commonly accepted that

the examined PBG "crystal" must be as thick as possible
because the transmission inside the gap is thickness
dependent. So, for the thicker "crystal, " the transmis-
sion will be lower and the gap more well developed. In
Fig. 7, the transmission vs the frequency is given for a
PBG "crystal" with a "3-cylinder" structure consisting of
holes in GaAs with filling ratio f=0.221, a =0.5 pm,
and three different thicknesses, 1=2a,4a, 8a. At co=300
THz, which is close to the lower edge of the gap, the
transmission is —5 dB for I =2a and 4a, but it is —25 dB
for 1=8a. At co=320 THz, which is well inside the gap
but still not affected by the absorption, the thickness
dependence of the transmission is more obvious; in par-
ticular, the transmission is —10, —30, and —60 dB for
l =2,4, and 8a, respectively. These results support the
previous statement for nonabsorbing PBG "crystals. "
But, above the upper edge of the gap (co=400 THz}, the
transmission is also thickness dependent because of the
absorption; it is —10, —20, and —30 dB for I =2, 4, and
8, respectively. Assuming an experiment in which the
background noise is —40 dB, the transmission at the
upper edge of the gap cannot experimentally be dis-
tinguished from the noise; in contrast, for l=2 and 4a,
the transmission at the lower edge of the gap can be well
measured and distinguished from the noise. So, for ab-
sorbing PBG materials, the thicker slabs are not the best
candidates for giving gaps in contrast with the nonab-
sorbing cases, where the thicker slabs give better photon-
ic band gaps.

IV. CONCLUSIONS

We have calculated the transmission coeKcient versus
the frequency of the incident electromagnetic (EM) waves
propagating in photonic-band-gap (PBG) structures con-

structed from dispersive and highly absorbing materials.
In particular, we have studied cases where the polariton
gap (PG}, which was created from the coupling between
the transverse optical phonons and the transverse EM
waves and can be described from a frequency-dependent
dielectric constant [Eq. (1)], is close to a structural gap,
created from the periodicity of the lattice. In that case,
for each gap of the frequency-independent case corre-
sponds two ("twin"} gaps in the frequency-dependent
case, one above and one below the PG.

We have also studied how the absorption afFects the
structural gaps and the possible difficulties of their exper-
imental investigation. We have found that, for absorbing
cases, the transmission becomes thickness dependent for
every frequency (for nonabsorbing cases, the transmission
is basically thickness independent, except for frequencies
inside the structural gaps). This thickness dependence in-
creases as the frequency increases. As a consequence, for
a very thick absorbing system, the transmission in the
upper edge of a structural gap could become so small that
it could be impossible to find the recovery of the
transmission at the upper edge of the gap in an experi-
ment where there will always be a lower bound for a
transmission measurement (noise level). Thus, for ab-
sorbing PBG materials, the thicker slab is not necessarily
better in contrast with what is commonly accepted for
nonabsorbing PBG materials.
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