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The infinite- U Anderson model is applied to transport through a quantum dot. The current and densi-

ty of states are obtained via the noncrossing approximation for two spin-degenerate levels weakly cou-

pled to two leads. At low temperatures, the Kondo peak in the equilibrium density of states strongly
enhances the linear-response conductance. Application of a finite voltage bias reduces the conductance
and splits the peak in the density of states. The split peaks, one at each chemical potential, are

suppressed in amplitude by a finite dissipative lifetime. %e estimate this lifetime perturbatively as the
time to transfer an electron from the higher-chemical-potential lead to the lower-chemical-potential one.
At zero magnetic field, the clearest signatures of the Kondo effect in transport through a quantum dot
are the broadening, shift, and enhancement of the linear-response conductance peaks at low tempera-

tures, and a peak in the nonlinear differential conductance around zero bias.

I. INTRODUCTION

The Kondo effect has been a focus of condensed-matter
research for many years. Its essence —the crossover
from weak to strong coupling between a magnetic impur-
ity and a conduction-electron sea as temperature is
lowered —has inspired both theory and experiment.
While most aspects of the problem are now well under-
stood, studies have traditionally been confined to equilib-
rium properties. ' For the case of a magnetic atom em-
bedded in a bulk metal, achieving nonequilibrium may be
daunting, but it is not in the case of "artificial atoms. "
In particular, we predict that a quantum dot weakly cou-
pled to its leads is a Kondo system in which nonequilibri-
um can be routinely achieved. ' More generally, an im-

purity or defect level in a small structure where the ap-
plied bias is dropped over a mesoscopic length ' will be a
nonequilibrium Kondo system.

Anderson's model for a Kondo impurity —a site with
discrete, interacting levels coupled to a band —has al-

ready been used successfully to describe experiments on
quantum dots. ' The discrete spectrum of a single dot
has been observed by transport" ' and capacitance'
spectroscopy, while the strong on-site Coulomb interac-
tion is recognized' as the origin of periodic conductance
oscillations. ' ' ' However, it is only the high-
temperature regime that has been explored experimental-
ly, while it is at low temperatures that the Kondo effect
elnerges.

Since the Anderson Hamiltonian describes the quan-
turn dot, at low temperatures the dot must behave as a
Kondo impurity. In fact, Glazman and Raikh' and Ng
and Lee' have argued that at zero-temperature equilibri-
um the Kondo resonance in the density of states of spin-

degenerate levels will produce perfect transparency of a
quantum dot symmetrically coupled to its leads. More
precisely, for all chemical potentials between eo and
E'0+ U, where eo is the bare-level energy and U is the in-

teraction energy (Fig. 1), the dot will have the conduc-
tance of an open channel, 2e /h. This is to be contrasted
with the situation at temperatures larger than 1, the elas-
tic width of the levels, where the conductance consists of
two resonances, at eo and at co+ U. Since the chemical
potential of a quantum dot can effectively be swept by
changing the voltage on a nearby gate, the Kondo effect
will have a striking experimental signature in low-
temperature transport through a quantum dot.

Until now, however, only qualitative predictions have
been made for experimental observation of the Kondo
effect in transport through a quantum dot. Specifically,
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FIG. 1. Schematic band diagram of a quantum dot coupled
via tunneling barriers to two leads with different chemical po-
tentials. At zero magnetic field, the energy level eo on the quan-
tum dot wi11 be spin degenerate, and a large Coulomb interac-
tion energy U will prevent double occupancy.
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raising the temperature above the relevant Kondo tem-
perature is predicted to suppress the peak in the density
of states, and, consequently, reduce the conductance. ' '
As the Kondo temperature near the conductance peak at
eo depends exponentially on the chemica1 potential,
Tx(p)-exp[ n—(p e—o)/I'], one expects that the Kondo
effect will enhance the conductance mainly for
eo&p so+few I . Accordingly, Ng and Lee' predicted
that the finite-temperature conductance vs gate voltage
will consist of pairs of asymmetric peaks, ' separated by
the Coulomb-interaction energy U. In this work we
present a quantitative calculation of the line shape of
these conductance peaks, via the noncrossing approxima-
tion. We show that at experimentally accessible tem-
peratures the Kondo efFect will leave the conductance
peaks symmetric. The Kondo efFect wi11 manifest itself,
instead, in the broadening of the peaks, the enhancement
of their amplitude, and the shift in their positions to-
wards each other (for each spin-degenerate pair), as the
temperature decreases.

Furthermore, as the leads coupled to a quantum dot
are easily biased to nonequilibrium, new physical ques-
tions which were not relevant to magnetic impurities can
also be raised. In particular, what happens to the Kondo
effect out of equilibrium? ' Since at equilibrium the
Kondo peak in the density of states occurs at the chemi-
cal potential, the presence in nonequilibrium of two
chemical potentials must have a dramatic effect.

In this paper we try to answer the question of what
new behavior is present in the Anderson model out of
equilibrium, and to make quantitative predictions for ex-
periment. Generalizing the noncrossing approximation
to nonequilibrium, using the Keldysh formalism, we find
that a voltage bias between the left and right leads causes
the Kondo peak in the density of states to split, leaving a
peak in the density of states at the chemical potential of
each lead (see Fig. 5 below). The amplitudes of these split
peaks are suppressed by a finite nonequilibrium lifetime,
due to dissipative transitions in which electrons are
transferred from the higher-chemica1-potential lead to
the lower-chemical-potential one. The narrowness of the
Kondo peak in the density of states, and its splitting and
suppression, lead to a rapid decrease of conductance with
increasing bias. The resulting peak in the nonlinear
differential conductance is likely to be the most accessible
experimental signature of the Kondo effect in quantum
dots.

We begin this paper with a general formulation of
nonequilibrium transport through an Anderson impurity
in the limit of an infinite on-site interaction energy U
(Sec. IIA). Short discussions of the mapping into a
slave-boson Hamiltonian and of the Keldysh formalism
are presented. The noncrossing approximation is then in-
troduced (Sec. II B) and the numerical methods outlined
(Sec. II C). Results of the noncrossing approximation are
presented for both equilibrium and nonequilibrium trans-
port (Sec. II D). The theoretical interpretation of the re-
sults is discussed (Sec. III A) as well as the implications
for experiment (Sec. IIIB). An appendix is included to
demonstrate the current-conserving property of the non-
crossing approximation.

II. THE NONEQUILIBRIUM ANDERSON MODEL

A. General formulation

1. The model

rp"(co}=2m y 1 ~k. l'&(~ —~k. ) .
keL(R)

(2)

Our aim is to calculate the current through the quan-
tum dot, J, which for the case of proportionate coupling
to the leads, I (to)=aI (to), can be expressed '"' in
terms of the density of states p (co) as

J=—„gf d [fL, ( )—fg( )]I ( )p ( ), (3)

where I' (to) =I' (to)I (to)/[I (co)+I'"(to)]. The den-
sity of states is given by

p (to)= ——ImG" (to),1
(4)

where G" (to) is the Fourier transform of the retarded
Green function,

G'(t)= i8(t)(, [c (t),c (0—)] ) . (5)

2. The slave-boson Hami ltonian

Diagrammatic techniques are reliable when the expan-
sion parameter is a small quantity. For an Anderson im-
purity with U~ Dc, it is natural to perturb in the hop-
ping strength. However, the standard diagrammatic ap-
proach also requires that the unperturbed Hamiltonian
be noninteracting, i.e., quadratic in the second-quantized
operators. In the limit of infinite U, the bare Hamiltoni-
an can be made quadratic by transforming the Hamiltoni-
an (1) into a new Hamiltonian, expressed in terms of new
local operators. ' These operators create the three pos-

We model the quantum dot and its leads by the Ander-
son Hamiltonian

H= g Ek~ck~ck~+QE C C +~Up g tt n
cr;k GL, R

+ g (Vz cj c +H.c.), (1)
n;k&L, R

where ck (ck ) creates (destroys) an electron with
momentum k and spin cr in one of the two leads, and c~

(c ) creates (destroys} a spin-o electron on the quantum
dot. The spin quantum number cr may also represent or-
bital degeneracies as in the magnetic-impurity problem,
though, experimentally, these degeneracies are likely to
be lifted by disorder in quantum dots. In the following
we will focus on spin-degenerate states. The third term
describes the Coulomb interaction among electrons on
the dot. We assume that U~ Co, forbidding double occu-
pancy. This is appropriate for quantum dots where, typi-
cally, U ( —1 meV} is a hundred times larger than the
coupling to the leads ' I' ( —10 peV). The fourth term
describes the hopping between the leads and the dot, and
determines this coupling strength via
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sible states of the site: a boson operator bf, which creates
an empty site, and two fermion operators, f, which
create the singly occupied states. The ordinary electron
operators on the site, which transform the empty site into
a singly occupied site or vice versa, are decomposed into
a boson operator and a fermion operator,

c (t)=b (r)f (r),
ct(r}=ft(t)b(r) .

(6)

The slave boson in (6) acts as a bookkeeping device which
prevents double occupancy of the site: when an electron
creation operator acts on an occupied site, the boson
part acting on the vacuum annihilates the state,
ctf (Q)=ftbf ~Q)=0. (In these expressions ~Q) is
the vacuum state. )

In the slave boson representation, the Hamiltonian for
the infinite- U Anderson model becomes

Q=bb+gf f

must be equal to unity. We will show below, when we de-

(a) boson propagator

H= g ek&c~k&ck&+ g Ezf f~~

0;k GL, R cr,

+ g (Vk ck b f +H.c. ) .
cr;k E.L,R

The first two terms form the unperturbed, quadratic
Hamiltonian and the last term, which represents hopping
between site and leads, can be handled as a perturbation.
The fermions and boson are treated as ordinary particles
in the perturbation expansion. For example, the lowest-
order diagrams are shown for the boson and fermion
propagators in Fig. 2. While summation of a few low-
order diagrams is possible, ' techniques are also avail-
able to sum whole classes of diagrams. In the end, what-
ever approach is taken, properties of the physical elec-
trons can be constructed from the results for the boson
and fermions.

There is, however, an added constraint, as the site can
only be in one of the states bt~ Q ) and ft

~
Q ). Accord-

ingly, in all physical states, the number of bosons plus the
number of fermions,

scribe the Keldysh diagrammatic approach, how this
constraint is dealt with.

G (t)=i(c (0)c (t)),
(t)= i(c (t—)c (0)),

(9)

as they carry information on the occupation of the site.
For the problem at hand, at the starting point at

t = —~ the Anderson impurity and the leads are uncon-
nected and separately at equilibrium, possibly with
di8'erent chemical potentials. Formally, the hopping is
turned on slowly, and nonequilibrium properties are eval-
uated long after the hopping is fully established, when a
steady state has been achieved, but before current flow
has changed the chemical potentials deep in the leads.

Before applying the Keldysh formalism to the slave-
boson Hamiltonian (7), one has to overcome the difficulty
associated with the constraint that the physical states are
restricted to the Q=1 ensemble. Specifically, it is not

3. The Keldysh formalism

Previous diagrammatic calculations using the slave-
boson representation have addressed equilibrium prop-
erties of the Anderson model. Since our focus is on none-
quilibrium properties a different approach is required.
Specifically, we employ the Keldysh ' rather than the
Matsubara formalism. The main complication with
nonequilibrium is that the basis of the equilibrium di-
agrammatic approach, the fact that the state of the sys-
tem at t =+ 00 is identical to the state of the system at
t = —~, up to a phase (Gell-Mann and Low theorem29},
is no longer valid. Since in a nonequilibrium system real
dissipation can occur, the state of the system is in general
not known at t =+ ae and one must relate all quantities
to the state of the system at t= —~. In practice, this
means that instead of having integrals from t= —Oo to
t=+ ~ as in the usual zero-temperature formulation,
all integrals have to be carried out along a path that
starts and ends at t= —~ (Fig. 3). Consequently, a
Green function will depend not only on the times at
which the operators act, but also on the corresponding
branch of the contour. Thus the Green functions carry
additional indices, and the usual perturbation expansion,
or the Dyson equation, takes a matrix form. In all, there
are three independent types of two-particle Green func-
tions in nonequilibrium. It is convenient to choose, in ad-
dition to the retarded Green function (5), the two Green
functions:

+

(b) fermion propagator

+ ~ ~ ~

FIG. 2. Diagrammatic expansion for (a) the slave-boson and
(b) the fermion propagators. The coupling between site and
leads is treated as the perturbation, so each vertex corresponds
to a tunneling event.

FIG. 3. Real-time contour for nonequilibrium Green func-
tions in the Keldysh formalism.
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S ( —oo, —oo )=exp i d—t'H(t') (12)

Importantly, the operator 0 may include parts acting at
difFerent times, e.g. , O=ic (0)c (t) would give the non-
equilibrium expectation value of the "lesser" Green func-
tion 6 (t ). Since the Hamiltonian commutes with the
sum of bosons and fermions Q the projection to the Q = 1

ensemble is accomplished once and for all by the factor
5g t in (10}. It is not necessary to include a chemical po-
tential for the impurity since local expectation values in
the coupled system are independent of the initial state of
the impurity.

To transform to an ensemble where Q is uncon-
strained, one rewrites the Kronecker 5 as an integral
over a complex chemical potential iA, ,

P P t
dg

—ittiL(g —1)

2K —m/p
(13)

Dividing both numerator and denotninator of (10) by
ZQ =D gives"

&O)g, = g ' ~ I 'dXe't"&0)„Z —0

Zg —i 277 —n. /p

(14)

convenient to perform diagrammatic calculations (Kel-
dysh or Matsubara) in a restricted ensemble since
Dyson's equation does not apply. Instead, we introduce a
complex chemical potential, calculate diagrams in an
unrestricted ensemble treating the hopping as a perturba-
tion, and Snally use the complex chemical potential to
project to the Q =1 subspace. In practice, this projection
corresponds to keeping only an easily identi6ed subset of
diagrams.

To formulate the Keldysh diagrammatic theory in
terms of a complex chemical potential, it is convenient to
start with a formal expression for expectation values in
nonequilibrium. In the Q =1 ensemble, the expectation
value of an operator 0 can be written as

(0) 1 T ( ~~ 0 ~L L ~R R~

Q=l

X5g, Tc[Sc(—oo, —oo )0]J, (10)

where Tc orders operators along the Keldysh contour
(Fig. 3) and the partition function is given by

r P(Hp —
pL, NI.

—
pg Ng )

Zg —~ =Tr( 8

X5g Tc [Sc(
—oo, —oo ) ]

with Q = l. In (10), the system evolves under the action
of the Hamiltonian so that

exp( —i') , in (0);&. The important point is that (0);&
in (15}is in the standard form for diagrammatic perturba-
tion theory since the trace in (15} and in the partition
function

t —(btb)(t)+ g ( ft f )(t)
Q=0 a

(17)

The expectation value (0)I&', as well as the expectation
values appearing on the right-hand side of Eq. (17), can
be obtained diagrammatically.

B. Noncrossing approximation

To obtain a well-behaved density of states from the
nonequilibrium perturbation theory, one needs some way
of summing diagrams to all orders in the hopping. In
finite-order perturbation theory there are divergences as-
sociated with the bare levels e and, at T=O, logarithmic
divergences near the chemical potentials due to the Kon-
do efFect. To control these divergences, we employ the
noncrossing approximation, which has been used success-
fully to treat the in6nite-U Anderson model in equilibri-
um. As can be seen from Fig. 2, at lowest order in per-
turbation theory the boson self-energy involves the fer-
mion propagator while the fermion self-energy involves
the boson propagator. By using the two relations self-
consistently —the noncrossing approximation, see Fig.
4—one obtains a set of coupled integral equations, which
can be solved numerically. Solving these self-consistent
equations corresponds to summing a subset of diagrams
to all orders in the hopping matrix element V. It can be
shown2o that all diagrams of leading order in I /N, where
X is the number of spin degrees of freedom, are included

(a) boson propagator

NCA

(b) fermion propagator

(16)

are taken over all states without restriction to Q = 1.
According to (14), the nonequilibrium expectation

value of an operator 0 in the Q=1 ensemble has two
contributions: a normalization factor Zg o/Zg „and
the coefficient of exp( t'P—A)fo,r the same operator in the
ik ensemble. The normalization can be obtained from
the identity ( Q )g &

= 1, which implies

where NCA

NHo Pl. Nl PAN+ + ikg)—
lA.

X Tc [Sc(—oo, —oo )0]] . (15)

In (14), (0),'~ is the coefficient of the term of order

FIG. 4. Diagrammatic representation of the noncrossing ap-
proximation. {a) Dyson's equation for the boson propagator in-

cludes the fermion propagators in the self-energy, and {b)
Dyson's equation for each fermion propagator includes the bo-
son propagator in the self-energy.
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in this subset. Therefore, the noncrossing approximation
is expected to be a quantitative approach in the limit of
large X. For the case, %=2, of interest for quantum
dots, Cox has shown that the calculated equilibrium oc-
cupancy and susceptibility agree with the exact Bethe-
ansatz results to within the 0.5% convergence accuracy
of the noncrossing approximation. (As we will discuss in
Sec. II D, the noncrossing approximation is less accurate
for the conductance due to an overestimate of the Kondo
peak amplitude. At worst, the linear-response conduc-
tance is overestimated by 15%%uo, and this can be taken as a
limit on the quantitative accuracy of our results. ) Here,
we generalize the noncrossing approximation to none-
quilibrium. The equations will involve not only the re-
tarded Green function, but also the lesser and greater
ones, leading to slightly more complicated equations than
at equilibrium.

Since our goal is to calculate the nonequilibrium
current, we will calculate 6rst the density of states for the
Anderson impurity, p (co), and obtain the current from
Eq. (3). To find the density of states for U~ ~, we need
the retarded Green function (4) in the ensemble with
complex chemical potential (14),

The noncrossing approximation is represented diagram-
matically in Fig. 4: the boson and fermion propagators
are each assigned a single self-energy bubble (albeit deter-
mined self-consistently) and the self-energies are iterated
to all orders via Dyson's equation. Standard manipula-
tion of the nonequilibrium Dyson equations then leads
to

D (co)=D "(co)II (co)D'(co),

Gf (co)=Gf" (co)Xf (co)Gf' (co),

where the self-energies are given by

II (co)= — f dco' g iVk i gk (co' —co)
o', k E-L,R

XGf (co'),

(22)

In (23), the lower-case g's are the Green functions of elec-
trons in the leads not coupled to the site,

Xf (co)= f dco' g ~Vk ~
gz+ (co co')D —(co') .

kt-L, R

(23)

ZQ —o
p (co)=

Q=1
——ImG"";i (co) (18)

gq~ (co)= 2ni[—1 f. t. (it )—(co) ]5(co ek~ )—,
g/, (co)=21rift(tc)(co)5(co Ek )

—.
(24)

where

D'( —t )Gf'—(t )], (19)

Within the noncrossing approximation, the retarded
Green function is expressed in terms of the full propaga-
tors for boson and fermion as

G".", ) (t) = —t g(t)( [c.(t),c'.(0)] )(,,"
NCA

i8(t)—[D ( t)Gf (—t)
D "(co)= 1

co —II"(co)

l
Gf" (co)=

co —e —Xf (co)

(25)

Several other relations are required to close the equa-
tions for the noncrossing approximation. The retarded
Green functions for the boson and fermions in (22) are
given by

D'(t)—:—i(b(t)b (0)),"„',
D'(t)—= —i(b (0)b(t))';&',

Gf (t)= i(f (t)ft(—0))IO„),

Gf (t)=i( f (0)f (—t))';I, ' .

(20) II'(co) = d co'
11'(~')

27T —oo CO N +1'g

Xf (co')

CO CO +1'gXf (co)= f dco'

(26)

where the retarded self-energies are Hilbert transforms of
the greater self-energies

Equation (19) is straightforward to obtain by decompos-
ing the electron operators into boson and fermion opera-
tors (6) and then factorizing the boson and fermion parts.
The latter step corresponds to a neglect of vertex correc-
tions. Since each term in (19) contains exactly one lesser
aperator, with a boson or fermion lowering operator act-
ing directly to the right, the overall result is
0 [exp( —i@A, ) ] as required.

Because the Hamiltonian is time independent, it is sim-
plest to evaluate the boson and fermion Green functions
in the frequency representation. The physical density of
states is then given by

1 ZQ=o
p (co)=, f dco'[D (co')Gf (co+co')

4w ZQ=)

D (co) =2i IniD "(co),

Gf (co)=2i ImGf (co),

for the boson and fermion Green functions, and

(27)

The advanced Green functions D' and Gf in (22) are
complex conjugates of the retarded Green functions D'
and Gf . Equations (26) follow because, by definition, all
retarded Green functions and self-energies can be written
as a difference of greater and lesser functions, G "(t)
=0(t)[G (t)—G (t)]. In the iA, ensemble, the lesser
functions for the boson and fermions are 0[exp( i@A)]- .
and must be dropped from the retarded functions which
are 0(1). One therefore has the useful relations:

D(co')Gf (co+co')] . — II (co) =2i ImII "(co),

Xf (co)=2i ImXf (co),
(28)
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for the self-energies.
The closed set of equations for the noncrossing approx-

imation can be solved iteratively. In practice, we start
with an initial guess for the greater boson Green function
D (co), calculate Xf (co) for each spin by combining (23)
and (26), and use (25) to get Gf (co). The values for the
greater fermion Green functions, from Gf (co )

=2i ImGI (co), can then be used in a parallel way to ob-
tain an improved D (co). This procedure is iterated to
convergence. A similar procedure is then followed for
the lesser Green functions. Following an initial guess for
D (co), the fermion self-energies Xf (co) are obtained
from (23), and Gf (co) is determined from (22). The steps
are repeated for D (co), and the process iterated to con-
vergence. Finally, the physical density of states p (co) is
evaluated by the convolution of the boson and ferrnion
Green functions in (21).

C. Numerical methods

In this section, we describe in greater detail the numer-
ical procedures we have used to solve the nonequilibrium,
self-consistent equations for the noncrossing approxima-
tion. Following the equilibrium work, ' we take the
energy dependence of the coupling between the site and
the leads (2) to be Lorentzian

r.""(~)=2~ g ) V,.~'5(~ —&,.)
k &L(R)

—pL(R)
00.

(co eL(R)) + W
(29)

11"(co)=g g f dco'H ' )(co' co)G—f (co'),
a I., R

mth the kernels

(30)

The finite width W rejects the finite bandwidth in the
leads and is necessary to prevent ultraviolet divergence of
the results. In principle, the bands in the leads can be
centered at different energies, but the validity of Eq. (3)
for the current requires I' (co)=al "(co), so we take
eL =eR =so=0, throughout. [An expression (Al) for the
current in the absence of this condition is given in the
Appendix. ] The choice of a Lorentzian form allows a
simplification of the self-consistent equations. In gen-
eral, to iterate the noncrossing approximation equations,
the retarded self-energies for the boson and fermions (26)
must be evaluated by double integrals over the greater
Green function of the other species. For the Lorentzian
coupling, however, one of these integrals can be per-
formed analytically. First, combining Eqs. (23) and (26),
the boson retarded self-energy can be written as a single
integral,

L(R) 1 P[ W —i(EL(R) PL(R))]—+
2 2m

eL(R) m . 1 p[ W ~(eL(R) PL(R))]
l . —+Im % —+

W 2 2 2' (31)

In (31), p is the inverse temperature and %(z) is the Digamma function. Second, the fermion retarded self-energies
can be written as single integrals

Xf (co) —g f dco K (co co )D (co ),
L, R

(32)

with the kernels

lt L'"'(co)= I L'"'(co) m[1 fL(„)(co)]+i—Re PL(R) ) 1 P[W i(eL(R) PL(—R))]—2' 2'
T

~L (R) 7T 1 P[W '(~L(R) PL(R))]——Ir 0 —+
W 2 2 2' (33)

Since the greater Green functions and self-energies are
just the imaginary parts of the corresponding retarded
functions (27) and (28), the above equations, together
with the relation (25) between the retarded Green func-
tions and self-energies, form a closed set. In practice, we
make an initial guess for the greater boson Green func-
tion and then iterate the equations to convergence. Typi-
cally the results converge within five iterations. We have
checked the accuracy of the results by comparing to the
sum rules on the boson and fermion Green functions

de ——Irrd) ' a) =1,

a)f dco ——ImGf (co) =1 .
oo 7r

(34)

These relations are always satisfied to better than 0.5%%uo

by the converged numerical solutions.
A separate iterative loop is required to evaluate the



11 046 NED S. WINGREEN AND YIGAL MEIR 49

lesser Green functions and self-energies. Equations (23)
for the boson and fermion lesser self-energies can be
rewritten as

and

(35)

II (ro)= — g g f d ~o'I ' (co' —co)
fr L, R

X [1 fi—(~)(ro' ro)—]6~~ (ro')

D. Results of the noncrossing approximation

In this section, we present numerical results of the non-
crossing approximation for an Anderson impurity in and
out of equilibrium.

1. Linear-response conductance

The equilibrium properties, calculated by the noncross-
ing approximation, can be used to predict quantitatively
the line shape of the linear-response conductance peak.
To our knowledge, this is the first detailed prediction of
the conductance peak evolution in the Kondo regime.
From Eq. (3) the linear-response conductance is given by

Xfl (gl(co co )D (co ) tT =2m g f dco[ —f'(w)]I" (co)p, (co), (40)

Together with Eqs. (22), these form a closed set of equa-
tions for the lesser Green functions and self-energies.
Again, following an initial guess for the boson lesser
Green function, these equations are iterated to conver-
gence. Since the lesser Green functions have an arbitrary
overall normalization, to check the convergence it is
necessary to monitor a normalized quantity. We choose,
for simplicity, to monitor the occupation of each spin
state

where p (to) is calculated at equilibrium, and f '(w ) is the
derivative of the equilibrium Fermi function. In Fig. 5
we plot the equilibrium density of states (21}of an Ander-
son impurity with two degenerate spin states, for one
value of chemical potential (p —co=21'). There is a
sharp Kondo peak at the chemical potential. Its
amplitude increases with decreasing temperature
down to the Kondo temperature, Tx —W( I"/
2'(p eo))' —exp[ —tr(p —eo)ll'], where it saturates. In

dN Gy~ N (37)

0.3

where the normalization is provided by the ratio of parti-
tion functions, which from Eq. (17) is given by

f de D (to) —g Gf (a))
Zg —0 2' (38)

Typically, within five iterations the occupations converge
to better than 0.01%. However, one cannot expect the
accuracy of the results to be better than the accuracy of
0.5% found for the retarded Green functions, from which
the lesser functions are constructed via (22}. The final ac-
curacy is verified by the sum rule for infinite U relating
the total density of states of one spin state to the occu-
pancy of all the other spin states

0.25

ff) 0.15

0

equilibrium
p, =p, =2I

none quilibrium

p, =2.4I' p,„=21

I

0.8

0.6

04

0.2

I
[

I

f d to p (to) = 1 —Q ( n ). ~

O' W(J

(39) 0.05

This relation is always satisfied to within 0.5%.
The procedure has also been checked by comparing to

the equilibrium results, and excellent agreement is
found. This is an independent check since much of our
numerical procedure differs from that used in equilibri-
um. Importantly, because there are multiple sharp
features in the nonequilibrium density of states (discussed
in the following section), we have used a self-adjusting
mesh for the numerical integrations rather than the loga-
rithmic mesh used in the equilibrium case. ' We have
also found that evaluating the Green functions on the
range [ —10W, 10M] is sufficient for numerical accuracy.
The wider range used previously ' is unnecessary be-
cause the kernels (31) and (33) contain all the efFects of
the long band tails in the leads.

0'
-2

)

2

energy (I')

FIG. 5. Equilibrium and nonequilibrium density of states

p (co) for an Anderson impurity symmetrically coupled to two

leads of Lorentzian bandwidth 2W and chemical potentials pL

and p„.The impurity has two degenerate spin states at energy
F0=0, and an on-site interaction U~ ~. With all energies in

units of the total coupling to the leads I, the band half width at
half maximum is W= 100 and the temperature is T=0.005. At
equilibrium (solid curve) there is a single Kondo peak in the
density of states at the chemical potential pL =pz =2 (see in-

set). Out of equilibrium (dashed curve), the peak splits into two

suppressed peaks, one at each chemical potential, pL =2.4 and
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Fig. 6(a), the resulting linear-response conductance ob-
tained from (40) is plotted as the chemical potential is
swept through the bare-level energy at three difFerent
temperatures. Several features are noteworthy. First, as
the temperature is initially lowered, the width of the con-
ductance peak decreases proportionally to k~T, because
the peak line shape is determined by the derivative of the
Fermi function (40). As the temperature is lowered below
I, the peak width is expected to be dominated by I and
to saturate. Here, however, for k~T &0.0751, the con-
ductance peak begins to broaden again. This broadening
is entirely due to the appearance of the Kondo peak in
the density of states, and is therefore a signature of the
Kondo effect. Second, as temperature is lowered, the
peak amplitude increases and finally saturates. The sa-
turated open-channel conductance o =2e /h is only
achieved for a dot symmetrically coupling to its leads;
otherwise, the conductance is reduced by the asymmetry
factor 4I c I'c /(I c +I c ). Third, the peak maximum
shifts to higher chemical potential' and the tails become
power law (roughly Lorentzian) rather than exponential
as at higher temperatures. It is interesting to note that
the conductance peak remains nearly symmetric with de-
creasing temperature despite the very asymmetric
behavior of the density of states, which has a Kondo peak
only for p) eo. For comparison, the total occupancy of
the site is plotted as a function of chemical potential in
Fig. 6(b). Unlike the conductance, the total occupancy is
not sensitive to the behavior near the Fermi surface, and
therefore does not show any obvious signature of the
Kondo effect.

The temperature dependences of the main features of
the conductance peak are plotted in Fig. 7. Over a broad
range of temperatures the peak width, amplitude, and po-
sition increase roughly logarithmically with temperature.
This reflects the logarithmic scaling of interactions which
is the mell-known signature of the Kondo effect in pertur-
bation theory. For k~T&0.005I, the peak amplitude
saturates while the peak position and width continue to
increase.

The results for the equilibrium conductance obtained
from the noncrossing approximation are almost entirely
consistent with the predictions of Glazman and Raikh'
and Ng and Lee. ' The primary prediction that the con-
ductance peak should broaden and increase in amplitude
to o =2e /h with decreasing temperature is certainly
borne out. The broadening is also observed to occur only
on the high-chemical-potential side, where the Kondo
effect enhances the conductance. However, the specula-
tion by Ng and Lee that this one-sided broadening would
lead to a noticeably asymmetric peak shape is not sup-
ported by our results down to k~ T=0.005I . The rough-
ly logarithmic one-sided broadening of the peak is com-
pensated by a logarithmic shift of the peak maximum.
The final result is a nearly symmetric peak centered at a
higher chemical potential. At lower temperatures the
peak may still become asymmetric, but the numerical
convergence of the noncrossing approximation becomes
unreliable in this regime.

Note that the noncrossing approximation is known to
overestimate the Kondo peak amplitude somewhat for
chemical potentials within a few I of the bare-level ener-
gies. The true magnitude of the conductance peak for a

2
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FIG. 6. (a) Linear-response conductance cr through an Ander-
son impurity for three different temperatures as a function of
chemical potential. The impurity has two degenerate spin states
at F0=0. The conductance peak first narrows and then
broadens with decreasing temperature. (b) Total site occupancy
n ~ +n ~ as a function of chemical potential for the same temper-
atures.

FIG. 7. (a) Temperature dependence of the linear-response
conductance peak position. (b) Temperature dependence of the
conductance peak amplitude. (c) Temperature dependence of
the conductance peak full width at half maximum. In all three
panels, the noncrossing approximation results are the data
points and the solid curve is a guide to the eye. For compar-
ison, the dashed curves are the exact results for noninteracting
levels.



11 048 NED S. WINGREEN AND YIGAL MEIR

symmetric structure is therefore not expected to ap-e, unti temperaturesproach the maximum value 2e /h '1

e ow those shown in Fig. 6. For example, taking the sa-
turated low-temperature value for ( ) f F' .n rom ig. 6(b),
which is known to be reliable and

' Lan using angreth's ex-
act relation for zero temperature

2

o=2 sin'(m(n )), (41)

2. Wonequilibrium

e at t epeakofone obtains a conductance o =1.63 /h h
the lowest temperature curve in Fig. 6(a). The observed

the ex e
peak value of o =1.90e /h is therefore 15% hi h h

e expected zero-temperature value, and must be an
overestimate. However, at higher chemical potentials

exact result for the conductance a-
p aches o =2e /h at zero temperature. In this regime,

lt 39
the noncrossing approximation faithfull re rod
exact result.
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brium d
There are qualitatively new features in the n '1'-e nonequal s-

rium density of states compared to equilib
' I F' .' '

rium. n ig.
e ensity of states (21) of an Anderson impurity with

two degenerate spin states is plotted both for equilibrium
and for nonequilibrium, where the two leads have
different chemical potentials. There are striking
differences between equilibrium (solid curve) and none-
quilibrium (dashed curve). In equilibrium there is a sin-

g e Kondo peak at the chemical potential. Out of '1'b-

rium , the Kondo peak splits into two smaller peaks, one
u o equii-

at each chemical potential. With decreasing tempera-
ture, the amplitudes of these peak do not increase to the
unitarity limit, but saturate at a much lower value. This
saturation occurs at a temperature ab T, dove z, an results
from dissipative processes in which an electron is
transferred from the lead with higher chemical potential
to the lead with lower chemical potential. The noncross-
ing approximation speci6cally includes these processes
since it has contributions from all orders

'
th h

However, from the numerical results of the noncrossing
approximation it is difBcult to extract the magnitude of
this dissipative lifetime. Instead, in the next section, we
present an analytical estimate of the dissipative lifetime
obtained via a perturbative approach.

A clear signature of the Kondo effect is expected in the
nonlinear current. For chemical potentials above the
bare-level ener gy, the linear-response conductance is
dominated by the narrow Kondo peak in the da in e ensity of
s a es. n nonlinear response, at low temperatures, the
current J is determined by an integral of the density of
states between the two chemical potentials (3). There-
ore, as soon as the chemical-potential differe dnce excee s

e wi t of the Kondo peak, the differentia1 conduc-
tance will fall off dramatically. Moreover, the Kondo
peak will split and the split peaks decrease in amplitude
with increasing chemical potential (Fig. 5). The net effect
is a sharp maximum peak in the differential conductance
around zero bias, for p)e. ' In Fig 8 h 1ig. , we ave plotted
the differential conductance as a function of chemical-
potential difference, or equivalently voltage bias, at two

FIG. 8.
a lied

G. 8. Differential conductance e dJ/d5 '
hp, wit pq =1.9 vs

app ie bias, at two temperatures, k T=0.005 d 0.
eakint e

an 0.05. The
pea in the differential conductance at zero b' 6zero ias re ects the
Kondo peak in the density of states.
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0

eav = gs„—y,„(I')
FIG.

for = 1.9 soli
G. . Differential conductance e dJ/d5 vs a li

or pz = 1.9 (solid curve) and pz =2.9 (dashed curve) at
e on oe ectappear for~T=0.05. Zero-bias peaks due to th K d ff

both curves despite the very different Kondo temperatures.

temperatures. The expected peak is clearly resolved at a
temperature k~T=O. OSI . This is substantially higher
than the temperature, ks T=Q. 025I, at which the
linear-response conductance peak has broadened unambi-
guously (+10%)over the minimum width. The peak in
he nonlinear differential conductance is therefore likely
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FIG. 10. Differential conductance e dJ/dip vs applied bias
for p&=1.9 (solid curve) and p&=2.9 (dashed curve) at
k&T=0. 1. Both zero-bias peaks in Fig. 9 have become shoul-
ders.

III. DISCUSSION

A. Theoretical results

The most important result of this paper is a better
qualitative and quantitative understanding of the low-
temperature nonequilibrium properties of an Anderson
impurity. The nonequilibrium characteristics, in particu-

to be the first signal of the Kondo effect in transport
through a quantum dot.

It is worth noting that the observability of the Kondo
peak in the differential conductance depends only on the
ratio kttT/I, not on the Kondo temperature Tz. To
demonstrate this, the differential conductance is plotted
at difFerent temperatures in Figs. 9 and 10, for level
depths difFering by I, and, consequently, Kondo temper-
atures difFering by a factor of exp(m ~be'0~/I ) =23. If the
presence of a zero-bias peak depended on the Kondo tem-
perature one would expect the peaks to mash out at tem-
peratures difFering by a factor of 23. Indeed, both the
zero-bias peaks are clearly visible at kz T=O.OSI (Fig. 9),
but by ktt T=0.1I (Fig. 10) both peaks have washed out.
This behavior of the differential conductance reflects the
temperature dependence of the Kondo peak in the densi-
ty of states. While the final saturation of the density of
states peak occurs at temperatures below the Kondo tem-
perature Ttt exp( —n-(p, —eo)/I'), the temperature at
which the Kondo peak first appears depends only on the
coupling strength I . Since the peak first appears below
kz T=0.1I, the difFerential conductance develops a
zero-bias peak just below this temperature.

lar the transport properties, follow from the form of the
nonequilibrium density of states p (t0). In this section,
we discuss the main features of the density of states using
both the results of the noncrossing approximation and
other methods. ' '

The most obvious features in the low-temperature equi-
librium density of states for an Anderson impurity with
p&ep are the sharp peak at the chemical potential and
the low, broad peak around the bare-level energy (Fig. 5).
To understand these features it is useful to recall how, at
equilibrium, the density of states depends on the eigen-
states of the system. At T=O, the density of states,
p~(to)= —(1/n ) ImG" (t0), involves transitions from the
N-particle ground state to all (N+1) or (N-1)-pa—rticle
states. Since the correlated ground state of an Anderson
impurity has a finite amplitude to have an empty site, the
density of states includes a narrow peak due to transi-
tions from the N-particle ground state to the ground state
with one more or one less electron. By definition the
ground-state energies differ by the chemical potential, so
this Kondo peak in the density of states occurs at the
chemical potential. The weight of the Kondo peak is
small, however, since the probability that the site is unoc-
cupied in the ground state is much less than 1. The
remaining weight, associated with transitions to excited
states, forms the low, broad peak around the bare-level
energy ep. For finite interaction energy U, there is an ad-
ditional broad feature in the density of states near E'p+ U;
this feature does not appear in Fig. 5 because of the limit
U —+ oo.

Out of equilibrium, there is no true ground state of the
system, but quantum fluctuations still produce a finite
probability of an empty site. As at equilibrium, these
fluctuations involve electrons hopping between the site
and states in the leads near each chemical potential. '

The N~N+I and N~N 1 transition—s which deter-
mine the nonequilibrium density of states therefore in-
clude some excitations which change the system only by
adding an electron or hole near one of the chemical po-
tentials. These low-energy transitions produce the Kon-
do peaks near each chemical potential in the nonequili-
brium density of states.

Unlike equilibrium, the configurations of the system
out of equilibrium are not true eigenstates, but have a
finite lifetime ~. The energies of transitions are therefore
broadened by 1/r, and all features in the density of states
are broadened an equivalent amount. This is the origin
of the suppression of the Kondo peaks out of equilibrium
(Fig. 5). The finite lifetime is due to real processes in
which an electron is transferred from the higher-
chemical-potential lead to the lower-chemical-potential
one. An estimate of this lifetime can be obtained from
straightforward perturbation theory in the coupling
strength. One assumes that the site is initially occupied
by an electron of spin o and calculates the decay rate us-
ing the golden rule. ' The only complication is that, at
T=D, the lowest-order, energy-conserving process in-
volves two separate tunneling events (the site electron
hops out, and another electron hops in), and therefore
occurs at 0( V ). Allowing for two, possibly nondegen-
erate spin states, we find
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A =L,R A, B=L,R
o'

1 1

(6 E+1'r)) (E~ 6 17))
2+ -2

(42)

PB Pa +&+
X

(P a ~~)(Pa
(43)

which explicitly shows that the lifetime is only nonzero
for finite bias, or finite level splitting. The results of the
noncrossing approximation are consistent with a
broadening of Kondo peaks by the inverse of the none-
quilibrium lifetime A/r . In effect, A'/v is a new cutoff
energy for the logarithmic scaling of interactions in the
Kondo problem.

B. Relation to exyeriment

Since a quantum dot weakly coupled to its lead is an
Anderson impurity, the results of the previous sections
have practical significance. Specifically, at sufticiently
low temperatures, transport through a quantum dot will
be dominated by the Kondo effect. We discuss the practi-
cal requirements for the Kondo effect to be observed in
quantum dots, and suggest possible experiments.

There are two general classes of transport experiments
to study the Kondo effect in quantum dots: linear
response and nonlinear response. While detection of the
Kondo peak in the density of states is possible in the
linear-response conductance, the nonlinear conductance
offers a clearer signature and one that persists to higher
temperatures. Figures 6 and 7 indicate the appearance of
the Kondo effect in linear response. The sweep of chemi-
cal potential indicated in the figures can be accomplished
by sweeping the voltage of a separate gate which couples
capacitively to the dot. ' In fact, conductance peaks with
Lorentzian tails have already been observed in transport
through a quantum dot by this method. ' The long tails
of the peaks imply that coherent transport of electrons is
taking place. However, so far no broadening of the con-
ductance peaks at zero magnetic field has been observed
down to T=50 mK. This is consistent with the predic-
tion of the noncrossing approximation that noticeable
broadening (+ 10%) occurs by k~ T=0.025I', since the
largest resonance width in the experiment is I -40 JMeV

for which 10% broadening is not reached unti1 T=10
xnK.

The appearance of the Kondo effect in nonlinear
response is shown in Figs. 8, 9, and 10. The sharp drop
of the differential conductance around zero applied bias
rejects the sharpness of the Kondo peak in the density of
states. ' Furthermore, the peak in the differential con-
ductance persists to kB T=O.OSI and therefore shou1d be
observable in existing quantum dots up to T=20 mK.

For a deep level, eo &pL, pR, so at zero temperature and
for constant I, Eq. (42) reduces to

1 I "I 8(pz —p,„+e e—)

A, B=L,R

The magnitude of this zero-bias peak is optimized by per-
forming the differential-conductance measurement at the
half-maximum point of the linear-response conductance
peak (as we have done in Fig. 8).

An additional, striking signature of the Kondo effect in
nonlinear response is the evolution of the peak in the
differential conductance with magnetic field. From per-
turbation theory, and from an equations-of-motion ap-
proach, ' it can be shown that a finite magnetic field
shifts the Kondo peaks in the nonequilibrium densities of
states by the Zeeman energy, and consequently splits the
peak in the differential conductance by twice the Zeeman
splitting of the levels.

Unfortunately, the behavior of the differential conduc-
tance in a finite magnetic field is beyond the scope of the
noncrossing approximation. Specifically, when the level
degeneracy is broken, the noncrossing approximation
produces, in addition to the peaks found by the other
methods, spurious peaks in the density of states. These
peaks are due to a false interaction of each level with it-
self, brought on by the neglect of vertex corrections.
While self-interaction effects are unimportant in the
large-1V limit, for finite N the corrections can be
significant. An extreme example is the noninteracting
case N=1, where the noncrossing approximation in-
correctly predicts a Kondo peak in the density of states.
Because of this false self-interaction, the noncrossing ap-
proximation produces additional Kondo peaks at the
chemical potentials for nondegenerate levels, and there-
fore is unreliable for transport properties in a magnetic
Geld. Interestingly, the noncrossing approximation con-
tinues to produce reliable results in a magnetic field for
thermodynamic quantities (e.g., magnetization } which
depend on the entire density of states and not just on the
behavior near the Fermi surface.

IV. CONCLUSION

In summary, we have analyzed the low-temperature,
nonequilibrium properties of an Anderson impurity in
the limit of infinite on-site interaction. The model corre-
sponds to a quantum dot, weakly coupled to two leads
with different chemical potentials. The Kondo effect,
which dominates transport through the impurity, is
modified by two new energies present in nonequilibrium:
the chemical-potential difference Ap, and the inverse of
the dissipative lifetime fi/r (42). These energies are ap-
parent in the nonequilibrium density of states, which we
obtain via the none rossing approximation. The
chemical-potential difference appears in the density of
states via the splitting of the Kondo peak into two peaks,
one at each chemical potential. The amplitudes of these
peaks are suppressed by dissipative processes in which an
electron is transferred from the higher-chemical-potential
lead to the lower-chemical-potential one.
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Experimentally, we predict that the Kondo effect can
be observed in transport through a quantum dot by either
linear or nonlinear measurements. The emergence of the
Kondo peak in the density of states at low temperatures
wi11 cause the linear-response conductance peaks vs gate
voltage to broaden, shift, and increase in amplitude
roughly 1ogarithmically with decreasing temperature.
For a symmetric structure the conductance amplitude
will saturate at 2e /h, the conductance of an open chan-
nel. ' ' The clearest feature of the Kondo effect in linear
response, however, is the broadening of the conductance
peak, which is predicted to reach + 10% below
k&T=0.025t, where t is the total coupling strength to
the leads. In nonlinear response, the Kondo peak will

produce a peak in the differential conductance around
zero bias. Since this nonlinear peak remains clearly
defined for temperatures up to AT =0.05t, we believe it
will be the most accessible signature of the Kondo effect
in quantum dots.
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APPENDIX

In this appendix, we show that the noncrossing ap-
proximation is current conserving. Specifically, the
current through the Anderson impurity can be expressed
either as a current flowing from the left lead into the site
or as a current flowing from the site into the right lead.
Within the noncrossing approximation, these two expres-
sions are equivalent.

The full expression for the current through the left
(right) tunneling barrier, with no restriction on the rela-
tive couplings to the leads, is

J („,=+(—)—„gf dco I '"'(co)I [1 f,„,(co—)]G (co)+f, ,(co)G (co)], (Al)

where G (co) are Fourier transforms of the physical-electron Green functions defined in (9). In the noncrossing ap-
proximation, these Green functions factorize into boson and fermion parts,

NCA ) Zg
G~(co) = f dco'D (co')G&~(co+co') .2' ZQ —] (X)

(A2)

Since this factorization is an approximation, one can ask whether the two expressions for the current (Al} remain iden-
tical.

To show that current is conserved in the noncrossing approximation, we examine the difference JL —JR between the
currents flowing through the two tunneling barriers,

e Zg=0
JL —J„=— „gg f dco f dco'I ' )(co)I [1—fr(a)(co)]D'(co')Gf (co+co')

g=) n LR

+f1.(R)(co)D (co )Gf(r(co+co')] .

This expression is simplified by recognizing that the co integration produces factors of the boson self-energies,

(A3)

II (co')= g g f dcoI' '"'(co)f, ,(co)Gf (co+co'),
o L,R

(X)

g g f dco I' ' '(co)[i fr. (a)(co)]Gf (—co+co ) .
o L, R

The difference can therefore be written as

(A4}

J —J = f dco'[D (co')II (co ) —D (co )11 (co )] .
277 Zg —i

The integrand vanishes because of the relation between the boson Green functions and self-energies (22),

D (co)=D'(co)II (co)D'(co) .

The noncrossing approximation therefore explicitly conserves current,

(A5)

(A6)

(A7)
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