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Photonic energy bands in body-centered-cubic bce materials are analyzed by considering struc-
tures having O® (I4,32) space-group symmetry. Such structures can be realized physically by inter-
lacing cylindrical elements oriented along (111) crystallographic axes. In addition to heterogeneous
systems composed entirely of dielectric materials, the possibility of using conducting materials (par-
ticularly at microwave frequencies) is studied. We find that (a) band gaps occur in heterogeneous
dielectric systems when materials having a dielectric constant of 10 or more are properly placed
in the O® unit cell, and (b) utilizing conducting materials can significantly widen the excluded
frequency band, the result being that band gaps of more than 20% should be attainable with O®%
structures at microwave frequencies. Experimental verification of these results should be possible in

this spectral region.

In a series of theoretical studies, the feasibility of
designing solids capable of exhibiting “photonic band
gaps” has been analyzed for different structure groups
and cellular geometries.!”7 Based upon these studies, it
has proved possible to design materials possessing such
band gaps and they have been successfully fabricated and
tested.” 10 All of these studies, both theoretical and ex-
perimental, have been based upon two basic conceptions:
One, the best (and perhaps only possible) structure for
the solids is face-centered cubic (fcc) and two, only elec-
trical insulators or semiconductors (but not metallic con-
ductors) should be used in fabricating the heterogeneous
structure.

In this work, we demonstrate that these two restric-
tions are not always applicable and that it may be possi-
ble to produce useful “photonic crystals” in other ways.
In particular, we (a) present the results of photonic band
calculations showing the existence of photonic band gaps
in body-centered-cubic (bcc) structures, and (b) show,
by considering bcc composites containing both conduct-
ing and insulating materials, that they can possess band
gaps as wide as those found using fcc insulating or semi-
conducting structures.®” In addition, the particular bcc
structure we analyze may have advantages over fcc solids
in ease of fabrication.

The starting point of our study was noting that the
nonsymmorphic and noncentrosymmetric space group O3
(I4,32) can be realized as an interlaced assembly of iden-
tical (111) oriented cylinders, each having an internal chi-
ral character.!! This internal structure is important when
the cylinders are completely uniform along their length as
otherwise the relevant space group would be centrosym-
metric O° (Ia3d). This higher symmetry is not desirable
as it results, for example, in (hk0) Bragg reflections being
forbidden unless!? k,l = 2n. There can then be no (110)
Fourier components in the position-dependent dielectric
constant and, consequently, it is difficult to significantly
break certain degeneracies in the “free photon bands”
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(e.g., the degeneracy existing in the absence of spatial
dielectric variations in the photon bands at the point V
in the bec Brillouin zone).

Since ordinary materials are generally nonchiral, the
desired O® space-group symmetry was obtained by “deco-
rating” the cylindrical elements!! forming the solid. Con-
sider, for example, a [111] direction cylinder whose axis
is on a main diagonal of the unit cell. In'? O%, the point

pairs(%,%,é—)and(5 3, 2) are distinct from (3, 2, 2) and
(7 T 7

87878
5 %13)- In centrosymmetric 0;°, on the other hand,
all four of those points are related by elements of the
space group.'? We therefore “decorate” this cylinder by

making the segments (0,0,0) to (3,1,1) and (},1,1

40201
to (%, %, %) one “color” and those between (3,3, 1) to
(%, 3 %) and (%, %, %) to (1,1,1) a different one. In prac-

tice, this reduces to forming a given cylinder by alternat-
ing two different materials and/or using different radii
for the cylindrical segments in each of the two distinct
regions. The O® space-group symmetry elements then
uniquely fix the corresponding positional patterns of all
the other cylinders.

To calculate the photon band structure, we used the
standard method of linear combination of plane waves as
adopted to the photon problem by Ho et al.® The relevant
equations for the magnetic field vector H are

AN w?
Z Z FG”G,hGI’AI = c—th,,\, (1)

G’ \'=1,2

[Fo,e'] = K+ GIK+G'legla | 2 |

Here the Hg,)» and é, are the Fourier components and
basis vectors of the magnetic field
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H(r) = Z Z haaére!®+E)r, (3)

G \=1,2

where G are reciprocal lattice vectors, K is a vector in the
first Brillouin zone, eafG, = e (G — G') are the Fourier
components of the inverse dielectric constant ¢! (r), and
w = w(K) is the frequency (i.e., energy) of the monochro-
matic electromagnetic plane wave. The solution now re-
duces to numerically diagonalizing the matrix [Fg '] for
selected K values and determining, in particular, the low
lying photon bands of the structure. The only input re-
quired is the position-dependent dielectric constant e(r).
Given the latter, the Gc_;fcr are obtained by discretizing
€~1(r) on an appropriate grid and Fourier transforming
numerically.

In addition to considering a bcc structure, the other
innovation in our work was to explore the possibility of
forming the structure from metallic conductors as well
as (or instead of) conventional dielectrics or semiconduc-
tors. This is particularly applicable to microwave fre-
quencies where, as is well known, good conductors are es-
sentially reflectors of electromagnetic radiation. In other
words, since the skin depth is small compared with the
thickness of the conductor (which is of the order of the
radiation’s wavelength), the high frequency spatial field
configuration outside the conductor is analogous to that
outside a superconductor in the presence of a magnetic
field.!® As far as electromagnetic propagation outside the
metallic regions is concerned, this is formally equivalent
to characterizing these regions of the structure by an ef-
fective dielectric constant much smaller than unity. This
equivalence is easily understood when it is recognized
that at an interface between regions with different di-
electric properties, the electromagnetic field intensities
are strongest in the region having the higher dielectric
constant (see, e.g., Ref. 10). Therefore, fields incident
upon a region having a dielectric constant much smaller
than unity will be essentially totally reflected into neigh-
boring regions having €’s of O(1) or more, just as occurs
when microwave radiation is incident upon a conducting
region since such radiation’s wavelength is much larger
than the skin or penetration depth. This is the basis for
the equivalence noted above. (At optical frequencies, the
calculation of the field distribution when conductors are
present is much more complex. The reason for this is that
here the skin depth to wavelength ratio is not necessarily
small. We shall not consider this spectral region here in
the context of metallic materials.)

In the numerical calculations, the two alternating re-
gions making up each of the cylinders and the interstitial
region outside the cylinders were each characterized, in
principle, by distinct dielectric constants. The results
were not sensitive to the e value chosen to model the
metallic regions as long as it was less than 0.04. The
results presented here were all obtained using 0.01 as the
effective value. The cylinders were taken to be tightly
packed—their radius was therefore r,, = v/2a /8 =0.177a
where a is the cubic unit cell edge dimension. Then
€~ 1(r) was calculated on a net of 323 points and a fast
Fourier transform package was used to obtain e 1(G).
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The matrix [Fg,g'] was calculated using up to 381 plane
waves (i.e., matrix sizes of 762 x 762) and 221 points
in the Brillouin zone and partially diagonalized to yield
the ten lowest lying photon bands. Average CPU time
for the largest matrices was 1.3 min per K value on an
RS6000/320H workstation. By comparing results ob-
tained with 141, 177, 249, and 381 plane waves and ex-
trapolating, we concluded that the results obtained with
the latter were converged to better than 1% for each of
the different configurations studied. (Note that the con-
vergence we are referring to relates to the ten lowest-lying
bands only; the higher lying bands are certainly not con-
verged nor are the field values very close to the interfaces
between regions having very different dielectric proper-
ties. For both of the latter, many more plane waves would
be required in order to obtain reliable results. However,
it is the low-lying bands which are of interest to us here.)

Results obtained using only conventional (i.e., non-
metallic) materials are shown in Fig. 1(a). Here the
alternating cylindrical segments were taken to be com-
posed of materials!* with e = 25 and € = 1.1, respec-
tively, with the interstitial regions filled with a dielec-
tric having € = 3. A photon band gap having a relative
width of 12.5% was obtained. The minimum € required
for the high dielectric constant regions of the cylindrical
elements in order to obtain a band gap was 10; for € = 15,
the band gap was 8.2% when the interstitial region had
€ = 4. If, for the case of alternating cylindrical segments
with € = 25 and € = 1.1, respectively, the interstitial re-
gions are filled with material having € = 5 rather than
€ = 3, a band gap of 16.2% is reached.

In Fig. 1(b), we show results obtained using only
metallic (i.e., conducting) cylinders. Here we took al-
ternating segments with radii of r,, and 0.2r,,, respect-
fully; a low-lying photon band gap with a relative width
of 13.8% was obtained. Interestingly, a second band gap
lying (counting from the bottom) between bands 6 and
7 was also found for this configuration. It had a relative
gap width of 8.3%. This second band gap was particu-
larly sensitive to the magnitude of the smaller cylinder
radius. A similar calculation in which the latter was re-
duced to zero (i.e., the system was composed of appropri-
ately located and oriented cylindrical “plugs” ) did not
yield a secondary gap. This result is shown in Fig. 1(c),
where the single band gap has a relative width of 23.4%.

The latter, in fact, was the largest photonic band gap
we obtained. Alternating strong dielectric (¢ = 25) and
conducting segments in compound cylinders of uniform
radius r,, with € = 1 in the interstitial region give similar
but not better results for the relative band gap [20.1%—
see Fig. 1(d)].

The band gaps obtained by us for the O bcc structure
are of the same magnitude (about 20%) as those obtained
using an fcc structure produced by drilling holes in a
microfabricated semiconductor superlattice.”"?1° Indeed,
these two structures are similar in one respect—they are
both based upon using nonspherical “atoms.” The bcc
one differs in that it uses nonintersecting cylindrical units
as building blocks. In addition, our results suggest that,
at least at microwave frequencies, good conductors can be
efficaciously used to obtain structures with large photonic
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band gaps.

In Fig. 1, the frequencies are given in units of (c¢/a),
where a is the dimension of the bcc unit cell. Since
dm = 27 = \/2a/4, the center frequency of the pho-
tonic band gap is set by fixing the maximum diameter
of the cylindrical units used to construct the structure.
For example, using the metallic “plug” structure whose
bands are shown in Fig. 1(c) and setting the center of
the gap at a typical microwave frequency of 10 GHz, we
find that cylindrical elements of diameter d,, = 3.64 mm
and length 4.46 mm are required.

This diameter may be compared with the skin depth,
which is given by!3

6 = +/(1/7fouo). (4)
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Taking (for Cu) 0 = 5 x 10" mho/m and o = 47 x 1077
h/m, the skin depth at 10 GHz is § = 0.7 um. Thus our
basic requirement that § < d,, is easily satisfied.

In summary, we have shown that photonic band gaps
can be obtained by interlacing cylindrical elements into
a bcc structure. To obtain these gaps, it is crucial that
these elements be formed by alternating units of different
dielectric properties and/or diameter in order to obtain
a noncentrosymmetric O® structure. We also found, for
the case of microwave frequencies, that particularly large
band gaps can be obtained by utilizing high conductiv-
ity materials. We suggest that experimental tests of the
predicted band gaps at these frequencies could confirm
the feasibility of using bcc structures in practical applica-
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FIG. 1. Photon frequency bands in the O® body-centered-cubic structure. The frequency is given in units of (c/a), where c is
the velocity of light and a is the cubic lattice dimension. The solid is constructed by interlacing cylindrical elements composed
of (a) dielectric materials, (b) conducting materials, (c) short conducting segments, (d) alternating dielectric and conducting

materials. See text for details.
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tions. Among these are the integration of antennas and
electronic components'® and the fabrication of antennas
operating at different microwave frequencies as a single
multilayer unit.
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