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The influence of quasilocal vibrations on the far-infrared spectra of glasses is investigated under the
supposition that the quasilocal vibrations are directly inactive in the attenuation. It is shown that taking
into account phonon-quasilocal-vibration coupling and both medium- and short-range structure of the
inhomogeneities of a photon-phonon coupling parameter can give rise to an attenuation curve similar to

one observed for a-SiO, and related materials.

I. INTRODUCTION

It is well known that dielectric (and semiconductor)
disordered materials show the absorption of far-infrared
radiation to be sufficiently greater than that in ideal crys-
tals. The disorder-induced coupling of light with atom
vibrations is generally accepted to be responsible for this.

In earlier experimental papers the absorption was
found to satisfy either the law I'~w?,"? or ' ~w*3 in
the frequency range @=20 to 80 cm ~!. These results are
described by the expression

INo)=clw)gplo), (1)

provided that the state density g(w) is assumed to have
Debye form and the efficient photon-phonon coupling pa-
rameter c(w) is regarded either as a constant [the model
of charge defects (MCD) (Refs. 4 and 5)] or as o’ [the
model of induced dipoles (MID) (Ref. 6)].

The crossovers from the w* law to the w? law,?7 or to
I'(w)~const,” which were observed in some materials,
could be explained in terms of the same formula, taking
into account the correlation properties of the spatial dis-
tribution of a parameter describing the interaction of
light with phonons. In this case ¢(w) becomes propor-
tional to the spectral density S (k) of the inhomogeneities
of this parameter with the coefficient of proportionality
being equal to 1 or to w® depending on the model of the
phonon-photon coupling.>*

However, more precise experiments®'® have found the
dependences I'(w) to be in fact more complicated in this
frequency region. It appears, in particular, that the curve
I'/w* has a maximum at frequency w~30-40 cm .
This finding is in accord with other anomalous (with
respect to the Debye model) properties of glasses. First
of all one should mention so-called “boson peak” of Ra-
man scattering and the observation of the excess vibra-
tional state density by means of inelastic neutron scatter-
ing. All these facts, in addition, should be correlated
with the departure of the temperature dependence of the
specific heat from the T law at temperatures ~ 10 K and
the plateau on the temperature dependence of the heat
conductivity at the same temperatures. A survey of these
results can be found in Refs. 11-13. All these peculiari-
ties are in the same frequency or the appropriate temper-
ature regions and it is natural to suspect that they have a
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common origin.

At present, it is generally accepted that there exist
some quasilocal vibrational modes in glasses at angular
frequencies 10'?> Hz which coexist with phonons and it is
these modes that are responsible for all these phenomena.
A first step to take into account the contribution of quasi-
local vibrations (QV’s) in themselves to the attenuation of
light might be an expression of the form

er(&)):CQv(CO)qu(CD) ’ (2)

which looks very similar to Eq. (1). However, we should
emphasize that Egs. (1) and (2) have been derived with
rather different assumptions and have dissimilar senses.
To obtain Eq. (1) one should suppose a Debye model for
the state density, while to derive Eq. (2) it is necessary to
admit that the QV-light coupling parameter is a constant
value. The c(w) in this case is again either equal to a
constant or proportional to w? and 8qv(®) is the state
density of QV’s. These assumptions look rather reason-
able since the QV-light coupling parameter is formed by
the local structure of atom groups, which are responsible
for QV’s, and may have only small fluctuations around
some average value. Unlike this, the phonon-light cou-
pling parameter arises due to comparable-sized phonon
wavelength spatial inhomogeneities of the glass structure
and has, in the majority of cases, an average value equal
to zero.»> 1413

The main question concerning the problem of far-
infrared attenuation (and the “boson” peak as well) in
glasses may be summarized as follows: Which expression
[(1) or (2)] gives the most contributions to the attenua-
tion? Since gp(w) <<gqy(w), it seems more plausible to
believe that the QV state density plays the main role.
However, since the QV-light coupling parameter is main-
ly determined by the local structure of glasses, as has al-
ready been mentioned, the situation can appear when this
parameter is very small or even equal to zero due to the
peculiarities of the local structure. This situation might
arise, for example, in a-SiO,, where, in accordance with
neutron data, QV’s are assumed to be caused by the rota-
tion of coupled tetrahedrons.!® The symmetry of these
modes does not allow them to be active in the far-infrared
region, which was mentioned in Ref. 10. In this situation
the state density of QV’s could not give any contribution
to this attenuation.
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Nevertheless, even in such a case Eq. (1) seems to be
inappropriated to account for infrared attenuation in
SiO, since it does not allow for the phonon-QV interac-
tion, which is of great importance for the transport prop-
erties of glasses. Besides, one should note that the at-
tenuation curve for SiO, is too smooth in the vicinity of
the maximum to be described by Eq. (1) with a realistic
model for the correlation properties of the phonon-light
coupling parameter.

In this paper we discuss the form of the far-infrared at-
tenuation curve in glasses taking into account the
phonon-QV interaction and assuming that QV’s are
directly inactive in absorption. Besides, we take into con-
sideration both medium- and short-range order of
phonon-light coupling parameter.

We demonstrate that allowing for all these factors in
combinations can give rise to attenuation curves rather
similar to the experimental ones for SiO,. We find also
that three different shapes of the attenuation curve can
appear depending upon the characteristic sizes of the
medium- and short-range order of glasses and the con-
centration of QV’s. We make some numerical estima-
tions, which support the contention that the model sug-
gested is quite realistic.

II. GENERAL EXPRESSION
FOR ATTENUATION TAKING INTO ACCOUNT
THE QUASILOCAL VIBRATIONS

In spite of the recent progress in solving the problem of
QV’s in glasses and a number of models suggested'’~?°
there is still no complete picture of the dynamics proper-
ties of glasses, which could allow theoretical results to be
in quantitative agreement with experimental data. There-
fore in this paper we use a phenomenological approach,
based on the ideas of Ref. 21.

In the case under consideration the only distinction of
the expression for the attenuation compared to the Debye
model is to allow the renormalization of the phonon
Green’s function G(e,k) due to phonon-QV coupling,
€=w?’. Assuming that the principal contribution to the
attenuation is due to waves with only one polarization
and neglecting the wave number of incident light, one can
write down the common expression for both models men-
tioned in Introduction of the interaction between light
and phonons:

T(e)~Ve [ c(k)ImG(e,k)d’k , (3)

where ¢(k)=S(k) for the MCD and c(k)=k2S(k) for
the MID. Deducing this expression we assumed that the
phonon-light coupling parameter does not correlate with
the characteristics of QV’s, which seems quite natural.
Equation (1) follows from Eq. (3) provided that

ImG (€,k)~8(e—s2k?) ,

where s is the sound velocity. QV’s result in the imagi-
nary part of the Green’s function becoming different
from the & function. In this case Eq. (3) cannot be writ-
ten down as the product of the state and spectral densi-
ties.

To obtain the Green’s function taking into account
QV’s we use the ideas of Ref. 21, which describes QV’s
introducing a site pseudopotential U,(e) and discusses
them in terms of resonance scattering of phonons by this
pseudopotential. The contribution of QV’s to the state
density is allowed for by adding the term
—Im{Sp[dU/de]G(e)} to the standard expression
g(e)=Im{SpG(e)} (for details see Ref. 21). The expres-
sion for the Green’s function can be written in the usual
way (see, for example, Ref. 22):

GkI:Gl(c)I +Gl(c)m 1, Gr(z)l ) 4)

where G}, is the Green’s function of the matter with no
QV’s, and T,,, is a scattering matrix, which can be writ-
ten in the form of

Ty=tTy ,
where
t,=U,/(1—U,GY) (5)

describes the scattering at one site and T obeys equation
Ty =81+ Gioyy T (1= 8,,) .

The one-site pseudopotential U,(e€) is considered to de-
pend on the frequency; the form of this dependence is
determined by the microscopic nature of QV’s. This
pseudopotential is treated as a random value defined by
some distribution function p(U). The parameters of the
noninteracting QV’s are determined by the poles of ex-
pression (5).

Since we consider quasilocal excitations, we can limit
our analysis to the use of some one-site approximation.
The best one is the coherent potential approximation.
Using this approach we write down the Fourier trans-
form of the Green’s function under investigation in the
form

G(k)= ’—Zi*-—“ ) (6)
e—s’k*—Z2(e)

where mass operator 32(¢) should be determined by the
condition that the averaged one-site ¢ matrix calculated
with the pseudopotential U(e)—2(€) vanishes. The con-
crete form of = depends on the nature of QV’s and the
form of the distribution function p(U), which are in fact
unknown. So we regard X as a phenomenological param-
eter. The exact form of this value is not significant; it is
only important that 2 be dependent on the frequency but
be independent of wave number. This fact directly fol-
lows from the general assumption that the modes under
consideration are local ones.

Later on we shall neglect the renormalization of the
frequency due to the real part of =, suggesting that the
main effects are due to the imaginary part, which we
write down in the form Im3(e)=e€&(e). This suggestion
is supported by the experimental observation of the linear
dispersion law of phonons up to 500 GHz frequencies.”

In spite of the lack of knowledge of the form of £(€)
one can give some qualitative arguments that this func-
tion monotonously increases with frequency in the region
o <<wp, where w is a Debye frequency. It is well known
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that at sufficiently small frequencies the pseudopotential
U(e) must have the form U~ Uye to provide the ex-
istence of long wave phonons. Therefore the resonant
frequency is proportional to U, ! and the amplitude of
the resonant pseudopotentials decreases as the frequency
increases. The decreasing of the amplitude causes an in-
crease in the number of resonant pseudopotentials and it
is the first reason why the state density of QV’s increases
with frequency. The second reason is the widening of
separate QV’s. It follows from the above arguments that
the state of density n2y of the noninteracting QV’s is an
increasing function of frequency. Within the averaged t-
matrix approximation the value £ ~engy.2! Hence & also
increases with frequency. For example, the calculations,
which were carried out?! in the framework of this ap-
proximation on the basis of the model of soft potentials,'’
lead to the expression for £ ~¢&>/2.

Since £ determines a phonon mean free path, we can
compare the results of these speculations with the ap-
propriate experimental data. The dependence of the
mean free path on frequency was obtained from the tem-
perature behavior of the heat conductivity,?* and up to
angular frequencies 10'* Gz, it appears to be a monotonic
function of frequency.

Thus, the main matter of our analysis should be the ex-
pression

Tle) ‘l—f c (k)

m AV, 7 S
€ Ve e—s’ki—ieE

where £ is regarded as a steeply increasing function of
frequency.

The behavior of Eq. (7) essentially depends on the form
of function ¢ (k). This function will be considered to be
proportional to k2 at k <<r_ !, where r, is the correlation
radius of the inhomogeneities of the phonon-photon cou-
pling parameter. In the framework of the MID such a
behavior follows from the relations c¢(k)=k2S(k) with
S (0)=const, which is in routine use in the description of
the spatial inhomogeneities of disordered systems. In the
context of the MCD this type of c (k) was suggested by
Schlomann® in order to allow anticorrelation effects in
the spatial distribution of different kinds of charges.

There have been used two types of ¢ (k) to describe op-
tical properties of glasses. In the Martin-Brenig model of
Raman scattering in glasses®® ¢ (k) was considered to
tend to zero steeply at k >>r, !, while in Schlomann’s pa-
per’® ¢ (k) was considered to be constant in this region of
k. Neither of the two functions can describe the experi-
mental attenuation curve in the model under considera-
tion.

Let us consider first of all the Martin-Brenig function.
The attenuation curve in this instance can be described
by the following expressions:

dk , (7

cle)+apte'’?, e<<e, =s%k}, <1,

F(:) = lc(e)+a, Ee ¥,

aw§—16—3/2 ,

e>>e¢, , £<1, (8)
€e>>e€, , §>>1,

where we suppose that €, lies in the region of weak
scattering. The first and second lines of this expression

relate just to this frequency area and the first items de-
scribe the attenuation without any QV’s. The second
items include the contribution of QV’s in the approxima-
tion of noninteracting QV’s. The values a, and a, are
determined in concrete form by the function cy(k):
ao=[dk c(k)/k? a,= [dk k*c(k). If € belongs to
the frequency region, wherein £>1, then one should
leave out the second line in Eq. (8). At first glance it
would seem that QV’s increase attenuation in the region
€>¢€,, £<<1 and can give rise to the rather smooth at-
tenuation curve than the function ¢ (k) in itself, produc-
ing a better agreement with experimental data for SiO,. !°
However, a more detailed examination of this curve
shows that this effect can appear only at very small &,
where it rather little influences the attenuation curve.
The really marked effect of QV’s in this case can appear
only if £>>1. However, it is evident from the third line
of Eq. (8) that in this case QV’s lead to a very steep de-
creasing of the attenuation in contradiction with observa-
tions.

If one use Schlomann’s function to calculate the at-
tenuation curve by means of Eq. (7), it will be obtained
that

l"(:) =(1+§2)1/4cos(1/2al'ctan§) ©)

at €>¢€,. The attenuation curve in such a case has no
maximum at all. Figure 1 gives the attenuation curves
for both situations considered.

Both the Martin-Brening and Schlomann functions are
the particular cases of the function

cx(k)=(1—2z73)"[2S,(k /z)—z738,(k)] , (10)

where S,(k) is a commonly used spectral density associ-
ated with, for example, exponential or Gaussian correla-
tion functions. The function c (k) introduced by Crivo-
glaz?® is characterized by two correlation radii r, and Ty
z=r;/r,21, and meets the condition c(k)~k? at

[(w)/w? (arbanits)
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FIG. 1. The attenuation curve obtained with the use of the
Martin-Brenig-like (a) and Shlomann (b) functions. The dashed
line displays the attenuation curve for the Martin-Brenig-like
function without taking into account QV’s.
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k <<r;!. The Martin-Brenig and Schlomann functions

can be derived from (10) in the limits of z—1 and z —
accordingly. Considering this function we take into ac-
count both medium- (r;) and short- (r,) range order,
which seems quite reasonable. Moreover, we will see that
taking into account short-range order is of particular im-
portance for the problem under consideration.

Let us consider the case of intermediate frequencies
such as sr; ' <w<sr;! under conditions z>>1 and
£ <<1. By means of the above results we can find

I'(e)
€

=cglk)—Elae 32 +2z 1ayVe) . (11

One can see from (12) that taking into account the
short-range order leads to a negative contribution to the
attenuation growing rapidly with frequency. The func-
tion cg (k) appears as a constant in this frequency range
and owing to this contribution the bump on the attenua-
tion curve can, in certain conditions, arise.

For the purpose of obtaining numerical estimations we
have calculated the attenuation curve using cg (k) where
the function 1/(r; ?+k?) has been inserted for S (k). In
Fig. 2 we display the results of this calculation on plots of
I'(€)/€ versus w/sr; '. In so doing we use &(€) in the
form of £=pe>’?,?! where p is proportional to the con-
centration of QV’s. Depending on z we find two lines of
behavior for this curve. At z <20 there is one maximum
(curve a), which becomes steeper as p increases.

At z>20 two maxima can appear (curve b). The first
one falls in the region of weak scattering and is due to the
influence of short-range order. The shape of the attenua-
tion curve in the vicinity of this maximum is described by
(11) and the value ,, depends on both correlation radii
r, and r, and on the parameter p, characterizing QV’s.
As z and p increase this bump flattens out and disappears
eventually (curve ¢). The second maximum of this at-
tenuation curve lies in the strong scattering region and
can be described by Eq. (9) and the last line of Eq. (8).
Let us note that the position of this maximum '’ is
determined by the condition w?, =sr; 'é71/%(w?,) rather

I(w)/e? (arbunits
e
\‘\\\

0.4 a

0 035 1o 1.5 20 25 30 35 o

scaled frequency wfsry!

FIG. 2. The attenuation curves obtained using Krivoglaz’s
function and £=pe’*/? at various z and p.

than just the correlation radius r,. We would like to em-
phasize that curve b can appear only if w,, belongs to the
weak scattering region £ << 1 (computer simulations show
that this curve does not appear at £ >0.2).

III. NUMERICAL CALCULATIONS
AND COMPARISON WITH EXPERIMENTAL DATA

It is obvious from Fig. 2 that curves a and b are in
rather good qualitative agreement with the experimental
results of Ref. 10. By this means we show that taking
into account phonon-QV coupling and medium- and
short-range order, in principal, one can obtain attenua-
tion curves which are similar to the experimental ones,
even though QV’s are not active in the infrared region.
However, to compare the obtained results with the exper-
imental data quantitatively is a more difficult problem.

First of all, we do not know, which phonons, in point
of fact, are responsible for the attenuation. Indeed, it can
be predicted with certainty that longitudinal phonons
make little contribution to the attenuation (due to their
large velocity) if it is known that light and phonons in-
teract in accordance with the model of charge defects.
But in the context of the model of induced dipoles, the
coupling parameter of light with longitudinal phonons
can be sufficiently greater than with transversal ones.”!*
Therefore the contribution of longitudinal phonons in
such a case may be the major cause of this effect.

The question—which phonons make the most contri-
bution to the attenuation—is very important. Indeed, we
know from various experimental results'*?!"?? that
transversal phonons are very strongly scattered at fre-
quencies >500 GHz and the maximum on the curve
I'(e) /€ for SiO, falls within the region of strong scatter-
ing of transversal phonons. Therefore if one believes that
transversal phonons do mainly contribute to attenuation,
then we have to conclude that nothing but curve a in Fig.
2 is consistent with experiments. Using the experimental
data by Ghivelder and Phillips!® and our results, we esti-
mate the values r{, r,, and &(w,,) in this case. We find
r =12 A, r,=0.8 A, and one can regard these values as
quite acceptable for medium- and short-range order ac-
cordingly. It is more important to estimate (k/) ' at w,,
[/ is the transversal phonon mean free path, which is
directly determined by &£(w,, )], since one can compare the
result with the data of independent experiments. We ob-
tain (kI)~! to be approximately equal to 0.66 while this
value from measurements of heat conductivity?? is 0.8.
These estimations show that the situation considered is
not unreasonable.

However, if we admit that longitudinal phonons are
most important for the attenuation, the situation looks
rather different. One may expect that longitudinal pho-
nons are scattered significantly weaker than transversal
ones and w,, can fall in the weak scattering region of lon-
gitudinal phonons. In such a case curve b in Fig. 2 will
most likely agree with observations.

By this means, although we have demonstrated that
inactive in infrared QV’s can influence the attenuation
due to their interaction with phonons and can give rise to
the attenuation curves, which are quantitatively similar
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to the experimental ones, a lot of questions are left
unanswered. To clear up the situation new experimental
investigations are in order. It would be of use to investi-
gate how the shape of the attenuation curve depends on
the parameter p in the expression £=pe” (n can be equal
to 3 or 3 depending on the model of QV’s). This value
can be determined from the measurements of the specific
heat.?’ This investigation could be carried out with the
samples prepared under different conditions. Curves a
and b display dissimilar behavior versus the value p. If
we deal with curve a, the maximum thereof should be-
come sharper and the position of the maximum should
move to a lower frequency if p increases. Unlike this,
curve b flattens out in the vicinity of the first maximum
with increasing p.

It is of great interest also to observe light-induced pho-
non emission from glasses. By means of such observa-
tions one could obtain a lot of information concerning
light-phonon interactions in glasses and the part played
by QV’s in this process as well.
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