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We bosonize a Fermi liquid in any number of dimensions in the limit of long wavelengths. From
the bosons we construct a set of coherent states which are related to the displacement of the Fermi
surface due to particle-hole excitations. We show that an interacting Hamiltonian in terms of
the original fermions is quadratic in the bosons. We obtain a path-integral representation for the
generating functional, which, in real time, in the semiclassical limit, gives the Landau equation for
sound waves and in the imaginary time gives us the correct form of the speci6c heat for a Fermi
liquid even with the corrections due to the interactions between the fermions. We also discuss the
similarities between our results and the physics of quantum crystals.

I. INTRODUCTION

Attempts to describe fermionic systems by bosons date
to the early days of second quantization. In the early
195Qs, Tomonaga, i generalizing earlier work by Blochl
on sound waves in dense Fermi systems, gave an explicit
construction of the Bloch waves for systems in one di-
mension. Three years after the seminal work of Tomon-

aga, Bohm, and Pines3 showed that there was a nat-
ural connection between bosonization and the random-
phase approximation (RPA). Subsequently, many au-
thors4 derived an explicit Fermi-Bose transmutation in
one-dimensional systems. These works uncovered deep
connections in relativistic field theories (both fermionic
and bosonic) and with condensed matter systems.

The success of the bosonization approach in one di-
mension is related to phase space considerations. Even
for noninteracting fermions, two excitations with arbi-
trarily low energies moving in the same direction move
at the same speed (the Fermi velocity) and, hence, are
almost a bound state. Consequently, even the weakest
interactions can induce dramatic changes in the nature
of the low-lying states. These phase space effects be-
come manifest even in perturbation theory and result
in the presence of both marginal and marginally rele-
vant operators. Bosonization yields a simple and very
general description of the possible fixed point structure
of strongly correlated systexns: marginally relevant op-
erators are responsible for the gap generating instabili-
ties while strictly marginal operators give rise to anoma-
lous dimensions. Quite generally, the fixed points are
determined by the marginal operators alone. In turn,
the anomalous dimensions produce non-Fermi liquid be-
havior. Bosonization in one spacial dixnension is due to
the fact that the charge and current densities for states
restricted to the vicinity of the two Fermi points, p(x)
and j(x), of electrons obey the equal-time algebra (Kac-
Moody)

This algebra implies that there exists of a &ee bosonic

field P(z) and its canonically conjugate momentum II(z),
which obey the canonical equal-time commutation rela-
tion

provided that one makes the identifications

(1.2)

More complicated operators, such as various order pa-
rameters associated with 2k~ excitations, can also be
identified with suitably chosen bosonic operators. Typ-
ically, these operators involve nonlocal or nonlinear (or
both) expressions in the bosonic field. In any event, the
basic building blocks are the local density and current
operators which describe electron-hole pairs at small mo-
ment»m transfers.

In dimensions higher than one, phase space considera-
tions change the physics of the low-lying states. The only
marginal operators left [i.e., operators whose coupling
constants (Landau parameters) do not change as the en-
ergy scale is lowered] are responsible only for changing
the shape of the Fermi surface. However, the low temper-
ature and low &equency behavior of physical quantities is
insensitive to the presence of such marginal operators. In
a sense, these operators are redundant. This observation
is at the root of the stability of the Landau theory of the
Fermi liquid. 6'~ It is, thus, hardly surprising that very few
attempts have been made to generalize the bosonization
approach to dimensions higher than one. In addition,
phase space considerations also tell us that even for small
xnomentum transfers, an electron-hole pair can decay into
its electron and hole constituents. Electron-hole collec-
tive modes do exist (and are described by the random-
phase approximation), but so does the electron-hole con-
tinuum. Hence, unlike what happens in one space di-
mension, kinematics alone does not require the generic
existence of a bosonic bound state.

The first serious attempt at bosonization in higher di-
mensions was carried out by Luther, who constructed
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a generalized bosonization formula in terms of the Huc-

tuations of the Fermi sea along radial directions in mo-
mentum space. However, this approach was not pur-
sued. Interest in the construction of bosonized versions
of Fermi liquids has been revived recently in the context
of strongly correlated systems due to the possibility of
nonconventional ground states that are not Fermi liquid
like. Since in one dimension the bosonization approach is
a powerful nonperturbative tool, the expectation is that
if a suitably generalized analog does exist in higher di-
mensions, it may throw light on the nonperturbative as-
pects of Fermi liquids and, hopefully, it may help to de-
fine non-Fermi liquids. It has been well known since the
early days of the Landau theory that particle-hole excita-
tions have bosonic character, e.g. , the sound waves (zero
sound collective modes) of the Fermi surface of neutral
liquids or plasmons in charged Fermi liquids. Inspired
by these identi6cations, and drawing &om Luther's work,
Haldane has derived recently a bosonic algebra for den-
sity Huctuations of a Fermi liquid in the form of a gen-
eralized Kac-Moody algebra which generalizes Eq. (1.1).
Haldane's construction has been examined recently by
several authors.

Recently, we developed a bosonization approach for
Fermi Buids based on a coherent-state path integral
approach. In this paper, we generalize and apply the
results of our earlier work. Our approach has the same
starting point as Haldane's. We also begin by construct-
ing a bosonic algebra with creation and annihilation op-
erators that act over a reference state describing a filled
Fermi sea. This algebra is valid in a restricted Hilbert
space of states generated by small deformation of the
6lled Fermi sea. Using these operators we construct a set
of coherent states that can be regarded as a deformation
of the Fermi surface. More precisely, we show that the
eigenstate of the annihilation operators of the algebra,
namely the coherent states, are related to the displace-
ment of the Fermi surface in some direction. These dis-
placements are a coherent superposition of particle-hole
excitations close to the Fermi surface. This interpreta-
tion leads to the picture of the Fermi surface as a real
dynamical object. We have two strong arguments in sup-
port of this picture. The 6rst argument is based on the
fact that, using these coherent states, we reproduce the
phenomenological theory of Pomeranchuk on the stabil-
ity of a Fermi liquid and its modern reinterpretation (by
Shankar ) in terms of the renormalization group method.
Pomeranchuk's approach is based on the work of Landau
on many-body systems. The second argument follows
Rom the fact (on which we elaborate further below) that
it is possible to define a surface tension associated with
the Fermi surface itself.

Armed with these coherent states, we construct a co-
herent state path integral that can be viewed as a sum
over the histories of the shape of the Fermi surface, a
bosonic shape field We show th.at there exists a class
of simple interacting Hamiltonians (in terms of the orig-
inal fermions of the theory), which are naturally related
to the Landau theory of the Fermi liquid, which in the
coherent-state bosonization leads to a simple quadratic
Hamiltonian in terms of the bosons. These Hamiltonians

are the natural generalization of the Luttinger-Thirring
models of one-dimensional systems. According to the
renormalization group analysis, these Hamiltonians rep-
resent the stable 6xed points of Fermi liquids.

With the path integral we can study the thermody-
namics and dynamics of interacting electronic systems
in a very simple way. In order to prove the consistency
of our method we calculate the low temperature specific
heat and obtain the same results of the Fermi liquid the-
ory (although we have only real bosons in the problem).
We can go even further and calculate the corrections for
the speci6c heat due to interactions and we show that
our results also agree with the well known results of the
Fermi liquid theory. This calculation reveals the new fea-
tures of the bosonic 6eld involved in the problem. They
are not a usual &ee bosonic field but a topologically con-
strained excitation. The constraint comes &om the need
to sum over the bosonic excitations tangent to the Fermi
surface and do not contribute to the energetics. This is
most important since &ee nonrelativistic bosons in space
dimensions larger than one do not have the linear specific
heat that is characteristic of Fermi liquids.

In this paper we discuss the bosonization approach to
the fixed point Hamiltonians. These Hamiltonians con-
tain operators that are at most marginal. We deliberately
leave out a number of relevant operators that lead to the
well known instabilities of the Fermi liquid: superconduc-
tivity, magnetism, etc. We will discuss these operators
elsewhere.

We also show that the Landau theory is the semiclas-
sical approximation for the bosons, which is exact for
the fixed point Hamiltonians, since the Hamiltonian is
quadratic in bosons. This result means that the bosonic
field is nothing but the 6eld of sound waves that prop-
agates on the Fermi surface. We applied these methods
to study the physics of sound waves in two dimensions.
We obtain a general equation for the sound modes and,
in particular, we study the zero sound. In order to study
the characteristics of these sound modes we go to the
limit of large Fermi momentum and concentrate on the
forward scattering direction. We introduce a scale in the
problem, the range of interaction. We find a rather com-
plex spectrum of sound modes that describe increasingly
wrinkled Fermi surfaces. In the case of long range in-
teractions, the shape of the Fermi surface can become
unstable. The existence of strong local quantum Buctu-
ations of the shape of the Fermi surface also suggests an
analogy with the quantum mechanical Huctuations of the
shape of a crystal at zero temperature. Thus it is natural
to ask if it is possible that, for long range interactions,
the Fermi surface could undergo a roughening transition.
In the case of the shape of a three-dimensional crystal,
it is known that quantum Quctuations generally make
the surface smooth, not rough. However, in the case of
a "planar crystal, " which has a one-dimensional surface,
it is possible to have a quantum mechanical rnughening
transition. It turns out, however, that by an explicit
calculation of the correlation function between different
pieces of the Fermi surface, we can show that quantum
Huctuations of the fixed point Hamiltonian wash out this
interesting possibility. The reason is that the dynamics
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described by the fixed point Hamiltonians enforce Lut-
tinger's theorem as a local condition. It may be possible
to find other Hamiltonians that enforce Luttinger's theo-
rem only as a global constraint. The shape of the Fermi
surface of the ground states of these Hamiltonians may
exhibit a quant»m roughening transition in two space
dimensions.

The paper is organized as follows. In Secs. II and III
we present two physical arguments which suggest that
the Fermi surface should be regarded as a quantum me-

chanical object. In Sec. II we review the stability of
a Fermi liquid and customize the discussion to the case
of two dimensions. In Sec. III we refine the analogy
with the theory of surfaces by defining the surface ten-
sion of the Fermi surface. In Sec. IV we describe the
coherent-state bosonization construction for an interact-
ing fermionic system. In Sec. V we show how a fermionic
Hamiltonian can be rewritten in terms of the bosons and
in Sec. VI we study the Fermi liquid properties, the
thermodynamics, and classical dynamics. Section VII
contains our conclusions. We also have included three
appendixes. In Appendix A we show how the surface
tension of the Fermi sea vanishes for non-Fermi-liquid
behavior. In Appendix B we prove that our approach is
consistent with the bosonization procedure in one spatial
dimension. In Appendix C, in order to show that we can
obtain all the important results of the Fermi liquid the-
ory, we obtain the eH'ective mass of the quasiparticles for
an isotropic system.

Substituting (2.2) in (2.3) and expanding up to second
order in the deviations we find

where J7 and p' are at the Fermi surface and v~ is the
Fermi velocity.

We expand the interaction and the displacement of the
Fermi surface in Fourier components (in two dimensions
we can parametrize the points of the Fermi surface by
one angle, 8) as

f(g7, p') = ) f cos[m(8 —8')] (2 6)

and

b - = b' (8)h( — ) — (2 4)
2 dp

Now, using (2.1) and (2.4) it is easy to show that the
total change in the &ee energy, E = E —pN (p is the
chemical potential and N is the total number of particles)
is given by

2& dg
[» (8)j

2 2s d8 2m d8&+, — f (J» s')»z(8)»z(8'),2' Q 2' Q 2'
(2.5)

»s(8) = ) u cos(m8). (2.7)

II. THE STABILITY OF THE FERMI LIQUID
IN TWO DIMENSIONS

b.E = ) e4np+ ) f„-,bnpbn„-„,

jj 1lP

(2 1)

where V is the vobime of the system, bn„- is the dev'ia-

tion of the occupation number where p is at the Fermi
surface, e„- is the bare dispersion relation, and f -, is the

p't p
quasiparticle interaction.

In this section we essentially follow the work of
Pomeranchuk ' but we restrict ourselves to two dimen-
sions since in three dimensions the results are well known
and two-dimensional Fermi liquids are of current physi-
cal interest. Consider a change in the Fermi momentum
given by

p~(8) = J~+»~(8) (2.2)

where 8 is the angle that parametrizes the position of the
Fermi surface and p~ is the original Fermi momentum.

The new occupation n»aber is simply given by

nr- = e[p~(8) —p]. (2 3)

The route for the stability of a Fermi liquid was estab-
lished by Pomeranchuk, s who studied the effect of the
change of the Fermi surface on the free energy of the sys-
tem using the Landau expansion for the change in the
total energy,

Substituting these expressions in (2.5) and using the or-
thogonality between the Fourier components, one finds

(2.8)

where N(0) = ~~ is the density of states at the Fermi
surface.

Observe that the Fermi liquid is stable if AI" & 0 or

N(0) f„&—1 (2.9)

for all n. This result implies that the Fermi liquid is a
local minim»m in the configura, tion space of the many-
body system. Local stability, in terms of renormalization
group, means that the effective Hamiltonian is at a fixed
point.

We notice that it is not a coincidence that the free
energy (2.8) has the same form as the one for a drum-
head. It means that the Fermi surface is a dynamical
object with elastic properties. Furthermore, we see that
the interaction term gives the same order of contribution
as the free term of the energy. In terms of the renormal-
ization group interpretation of the stability of a Fermi
liquid, it means that the interaction is a marginal op-
erator while next order expansion in the functional (2.1)
will give only irrelevant operators that do not contribute
to the low energy physics of the problem.

Anderson has argued that a singular interaction be-
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tween the fermions could give rise to new features which
could explain the anomalous behavior of cuprates. Hal-
dane has constructed an argument which is mainly
based on the form of expression (2.8), which we reproduce
here due to its simplicity and elegance. Suppose that in-
stead of an overall density of states, N(0), we introduce
a local density of states at each point of the Fermi sur-
face. In order to do so we have to define a cutofF on the
Fermi surface, A, which is much smaller than the Fermi
momentum yet large enough to count a macroscopic num-
ber of states. By naive dimensional analysis we conclude
that this local density of states must scale like A" v+ .
Therefore, &om (2.8), the quantity F = A vJ,. f is
the dimensionless coupling constant. Suppose that the
interaction f and the Fermi velocity are well behaved
(they do not diverge) in the limit where A —+ 0 (the scal-
ing limit). It is easy to see that F goes to zero for d & 1
and, therefore, only the noninteracting term is present.
This result implies that the interaction is marginally ir-
relevant. However, for d = 1, F will always be 6nite,
that is, the interaction is maryinally relevant in one di-
mension. Therefore, even if the interaction is not singular
in the scaling limit it has profound consequences in one
dimension while it "scales away" in higher dimensions.
However, we have the interesting possibility that the in-
teraction term f or the Fermi velocity diverge in the
scaling limit. If this is so, the dimensionless coupling
constant can diverge and therefore the operator becomes
relevant with respect to the noninteracting term. How-

ever, this singular behavior is never present in a Fermi
liquid since the renormalization group flow is dominated
by the noninteracting 6xed point.

The approach in this section is essentially phenomeno-
logical because we have postulated (2.1) in order to get
the stability condition (2.9). In the next section we study
the elastic properties of the Fermi surface &om the mi-
croscopic point of view. This point of view will bring
a different perspective on the same subject, namely, the
Fermi surface as a real quantum object.

tion and G(k, m) is the interacting Green's function in
momentum space.

Equation (3.2) can be rewritten in terms of the spectral
function of the system as

+P d tU+E-
Eg = A(k, w),

vr 2
(3.3)

where the spectral function A(k, m) is given by

A(k, ur) = (3.4)

fg —e- —Zp(k, eI-) = 00
k (3.5)

and, in particular, the Fermi surface is de6ned by the set
of vectors (J7~) such that

Ep~ = P. (3.6)

It is clear &om the above de6nitions that we expect
that any singularity in this problem should appear near
the Fermi surface. We, therefore, split the integral in
(3.3) in two pieces, from —oo to p —( (free of singular
terms) and from p —( to p (the singular contribution),
where ( is a small energy scale that permits us to look
only to the singular part of E&.

Moreover, consider the vectors k close to the Fermi
surface,

k = pF+bk, (3.7)

where Z~(k, m) and Zl(k, m) are the real and imaginary
part of the self-energy and p is the chemical potential of
the problem.

The spectrum of the interacting system (the poles of
the Green's function), eg, is given by the solution of the
self-consistent equation

III. THE TENSION OF THE FERMI SURFACE

In this section we explore in more detail the picture
of the Fermi surface as a quantum object. In particular,
we will establish that, for systems that obey the hypoth-
esis of a Fermi liquid, it is possible to de6ne a surface
tension. Here we follow the work of Luttinger on the
properties of many-body systems. It can be shown that
the total energy of a spinless interacting fermionic sys-
tem can be written in the form of an integral over the
whole momentum space as

+

where the displacement bk is perpendicular to the Fermi
surface, that is,

bk. V'ep = bk
i

V'ep (3.8)

and bk is positive if the vector points outside of the Fermi
surface and negative if it points inside the Fermi surface.

Since we are interested in the integral close to the
Fermi surface, we can expand the integrand using the
above formulas. In particular, the denominator in (3.4)
can be rewritten as

where

@—)

+oo g tU+ 6-0
e' " Gk, m,

2mi 2

(3.1)

(3.2)

where

m —8- —ZR(k, m) = Z '(w —eg), (3.9)

(3.10)

where g —+ 0+, e- is the noninteracting dispersion rela-
is the quasiparticle residue.

We can also write
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e„- = p, + bk
~

«6-,~ ~

(3.11)

where we used (3.6), (3.7), and (3.8).
Substituting these approximations in the singular part

of the integral (3.3) and changing variables with respect
to the chemical potential we get

in the E(k) vanishes as bk&~ "l as bk ~ 0. Therefore,
v = 0 is a critical point (this is the case of a marginal
Fermi liquid phenomenology ) .

We can interpret this discontinuity in E(k) as being

due to a surface tension in momentum space, since E(k)
is the contribution of the mode k to the total energy, as
we see by (3.1). The surface tension in three dimensions
can be defined by the difference of energy density across
the Fermi surface as follows:

Zr(k, p, —u6)
X

Z„: (u6 + bk
~
'((7', ~)' + Zr (k, p, —u6) 2

( 1 1 l b,E(p~)
~~

I z, + z, I

=
vF F j F

(3.18)

Zr(k) u() = Cg(m —p) sgn(p, —u6), (3.13)

where Cg depends only on k and sgn(z) = 1 (—1) if
z &0 (z &0).

Substituting (3.13) into (3.12), changing the variables
(Bk)Ivep

of integration &om m to z = "~, we found

ldz /' 1
I p + e'„- ——

/
bk

f/ &eg-~ I I

Ps 2'

Cg I
bk II «p

X
g ss]s+ sgss(6ts)]s + C'6ks

] Vss, ]')
(3.14)

(3.12)

For a Fermi liquid we use the fact that the imaginary
part of the self-energy can be written asM

where R& and R+ are the principal radii of curvature at
p~ and Vy is the volume of the Fermi sea.

In two dimensions the analog of (3.18) is

os EE(py )
Rg A~

(3.19)

IV. BOSONIZATION AND COHERENT STATES

where A~ is the area of the Fermi sea.
Comparing (3.18) or (3.19) with (3.17) we conclude

that the surface tension is proportional to the quasipar-
ticle residue. Therefore, for a non-Fermi liquid behav-
ior the surface tension vanishes with the quasiparticle
residue. From this observation we can conclude that a
transition &om Fermi liquid to non-Fermi liquid behav-
ior can. be viewed as a phase transition in momentum
space for the case where the quasiparticle residue can be
tuned to zero adiabatically.

= z
/ Zp i {b[z+sgn(bk)j —b(z)). (3.15)

Substituting this result in (3.14), we find

's~+ p ~

E„'- =[ Z„- [

' e(—bk), (3.16)

where e(z) = 1(0) if z & 0 (z ( 0).
From (3.16) we conclude, therefore, that there is a dis-

continuity at the Fermi surface which is given by

(3.17)

Therefore, there is no singularity when the quasipar-
ticle residue vanishes and we have non-Fermi liquid be-
havior. In the noninteracting system it is easy to see
that this discontinuity is simply given by p, , which is the
energy needed to put another electron in the system.

We can also show (see Appendix A) that this result
holds true if the imaginary part of the self-energy goes
like (tu —p) +" with v greater than zero. However, if v
is smaller than zero we can prove that the discontinuity

Observe now that if we let bk ~ 0 we can use the well

known expression

C; I
bk II «„-

' {g ss]s+sgss(66)]s+Csggs
]
gss; ]')

In this section we review and generalize the method of
bosonization of Fermi Huids of Ref. 13. Our starting point
to approach the bosonization resembles the microscopic
approaches for the foundations of Fermi liquid theory.
However, instead of working with the dynamics of the re-
sponse functions, we will work directly with the proper-
ties of the operators that generate the physical spectrum,
in a restricted Hilbert space of states of the filled Fermi
sea. This is the standard procedure of bosonization in
one dimension and in a recent work of Haldane. From
this perspective, the algebra obeyed by the operators is
not a property of the operators themselves but a property
of the states.

For simplicity, we will consider a system of interacting
spinless fermions. Generalizations to systems with an
internal symmetry, such as spin SU(2), can be done with
some minor but important modifications. The density of
fermions at some point r" at some time t is given by

p(f, t) = yt(r", t)y(f", t) = ) ct (t)c„- -(t) e'~'", (4.1)
k, q

where ct and c& are the creation and annihilation oper-
%

ators of an electron, at some momentum k, which obey

the fermionic algebra ct, c&-,
——bg &-„where {.. ) is the

anticommutator and all other anticommutation relations
are zero. In the Fermi liquid theory the operator that
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appears on the right-hand side (rhs) of (4.1) determines
the behavior of the system. We will concentrate on this
operator, which we will denote by

n;(k, t} = c'„,(t)c„-;(t).
2

(4.2)

In particular, np(k) is the number operator in momentum
space. As in the standard approaches for the Fermi liquid
theory, we will concentrate our interest in regions close to
the Fermi surface (k ps ) and consider long wavelength
fiuctuations around these regions (q ~ 0).

The equal-time commutation relation between the op-
erators defined in (2) is easily obtained. In the long wave-
length limit (q « A, where A is a cutofF) we get

ng(k) n=, (k') = 4.-b;-,;q. ~np(k)

+2np(k)b -,q. )Ir'bg g. (4.3)

We are interested in the behavior of systems with
a Hilbert space restricted to the vicinity of the Fermi
surface. We define the Hilbert space to be the filled
Fermi sea IFS) and the tower of states obtained by act-
ing finitely on it with local fermion operators. More
specifically, we consider a shell of states of thickness D
(measured in units of momentum) around the Fermi en-

ergy. Next we imagine dividing up the Fermi surface in
patches ' centered at points k on the Fermi surface of
the filled Fermi sea. Each patch has thickness D and
width A (in momentum units and tangent to the sur-

face). Instead of the sharp operators n~(k), we will con-
sider operators smeared over each patch. We will replace
Eq. (4.3) with a weaker identity valid in the restricted
Hilbert space. Furthermore, we will make the explicit as-
sumptions that we are in the thermodynamic limit (the
momenta form a continuum) and that the Fermi surface
is macroscopically large (q &( D (& A (& p~)

Since the vectors k are at the Fermi surface and q are
very small, in the restricted Hilbert space it is possible
to replace the rhs of (4.3) with its expectation value in
the filled Fermi sea IFS), namely,

n~(k), n -, (k') = bg „-,b -, q. v„-b(p —(g), (4.5)

where we drop the last term on the rhs of (4.3) because
its matrix elements near the Fermi surface are down by
powers of —.We now define the operator

PF

a~(k) = n~(k)e[sgn(q)] + n ~(k)O[—sgn(q)], (4.6)

where sgn(q) is +1 if q points outside the Fermi surface
and —1 if it points inside the Fermi surface at the point
k. The adjoint of (4.6) is simply

at(k) = n;(k) e[sgn(q)] + n;(k) O[-s:n(q)], (4.7)

where we used, from the definition (4.2), that n (k) =
n -(k).

It is important to note that, by construction, the op-
erator defined in (4.6) annihilates the filled Fermi sea

aq(k) I
FS) = 0. (4.8)

Moreover, from the commutation relations (4.5) we easily
obtain,

aa(k), a )k ):~~ tr aa-~ &)y, —aa)Saa-, (&--, +S- -, },
(4 9)

and all other commutators vanish.
Equations (4.8) and (4.9) show that the elementary ex-

citations have bosonic character, particle-hole pairs, and
they are created and annihilated close to the Fermi sur-

face by these operators; moreover, they span the Hilbert
space of low energy. But we need an interpretation for
these excitations. It is natural now to define the coherent
state"

I u;(k)) = U(k) I FS) (4.10)

Hence, within this approximation the commutators of
the operators n~(k) become c numbers, namely,

np(k) m (np(k)) = 8(p —e„-),

Vnp(k) -+ V(np(k)) = —v)b(p —eg), (4.4)
where

where p is the chemical potential, eg is the one-particle
fermion spectrum (from which the Hilbert space is con-
structed), and v& ——V'e& the velocity of the excitations.
The terms ignored in (3) vanish as ~ as the size ofIF
the Fermi surface diverges. More generally, all correc-
tions vanish if the limit q (( D (( A (& p~ is satisfied.
These are exactly the same assumptions that enter into
the construction in one diinension (in Appendix 8 we

prove the equivalence of our construction and the well
known bosonization in one dimension). Notice that the
state IFS), which is used to normal order the operators, is
not necessarily the ground state of the system of interest
(as in the one-dimensional case). However, this approach
will succeed only if the true ground state belongs to the
restricted space.

U(k) = exp ) uq(k) at(k)-2]q. v„-I )
' (4.11)

where the sum (and all other sums that follow) are re-
stricted to q «A. Observe that from the definition (4.7)
we have at (k) = at(k) and we choose uz(k) = u ~(k).
Using this property and the commutation relation (4.9)
we find

a;(k) I u.-(k)) = b(~ —~g) vg u.-(k)
I u.-(k)}.

U '(k) aq(k) U(k) = a~(k) + b(y, —eg)veau~(k), (4.12)

which, together with (4.8), leads us to the eigenvalue

equation
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It is easy to see that uq(k) is the displacement of the

Fermi surface at the point k in the direction of v&.

Indeed, suppose we change the shape of the Fermi sur-

face at some point k by an amount u(k). The occupa-
tion number changes up to leading order by b(no(k)) =

u(k) = vsb(p —es)u(k), which is precisely
8Ic

the quantity that appears in (4.13). Hence, the coher-
ent states of (4.10) represent deformed Fermi surfaces

parametrized by the bosonic field uq(k).
Next we de6ne a many-body state which is a direct

product of the coherent states defined above,

The adjoint is simply

:-t[u] = exp ) "„u;-(k)a;(k) (4.16)

(4~) I ku}) = (» I
=-'[~]=-[ul

I »)

From the above equations we obtain the overlap of two
of these coherent states,

I (u)) = U(k) IFS) = =-[u]
I
FS) (4.14) v2S(& -.„-)= exp ) " iv'-(k) uq(k)

where, due to the commutation relation at different k's,
(4.17)

:-[u) = exp ) " uq(k) a (k) ~ . (4.15) It is also possible to find the resolution of the identity
for this Hilbert space,

(v2b(p, —es)
duq k du-k uq k uq k exp

(2vr Iq vgI
k, q

( v b(p —es)
(4.18)

.v„'-8( —e„) g ,(k, )

Ie,q

(( ) I
~

I ( ))
(fu} 1(u))

(4.19)

where H is the Hamiltonian written in the restricted
Hilbert space which will be studied in the next section.

and we conclude, as expected, that they are over-

complete. 23

In order to study the dynamics of these modes, we can
construct, from (4.17) and (4.18), a generating functional
as a sum over the histories of the Fermi surface in terms of
these coherent states in the form 2 = JD u exp{i S[u]),
where S is the action whose Lagrangian density is given

by (5= 1),

is the interaction between the fermions. We will assume
that the interaction between the fermions is important
only close to the Fermi surface. This means that the
vectors p and p' are at the Fermi surface in what follows.

We see that the interaction is given in terms of the
bosonic operators as

U = ) f -,~ n q(pQnq(p').

pip )q

Of course, the free part K cannot be written directly
in terms of the bosons, since it is quadratic &om the be-
ginning. However, since we are in a restricted Hilbert
space, what really matters is the effective dynamics that
it can generate. We know that the operators nq(k) gen-
erate the restricted space; therefore, it is natural to look
at commutation relation between K and nq(k). Up to
6rst order in q we 6nd

V. THE BOSONIC HAMILTONIAN K nq(k) = q vsnq(k). (5.4)

Consider a fermionic system described by a Hamilton-
ian of the form H = K + U where,

Observe that in order to keep the vector k at the Fermi
surface we have to multiply the above expression by a
distribution function of the form b(p —eg)/N(0)V, where

p

(5.1) 1
N(0) = —) b(p, —eg) (5.5)

is the noninteracting term and

(5.2)
2V & fi q,i'+q rr+& r *, p' &r'+f— —

Pip iq

is the density of states at the Fermi surface.
Now we notice that there is another operator that gives

the same commutation as in (5.4) in the restricted Hilbert
space, namely, using (4.5) we find
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) n -, (pgn-, (pQ, nq(k) = —2q. v„-nq(k) b(p —eg),
J' q

(5.6)

by the solid angles 0 and 0', respectively. We will as-
sume throughout this paper that the density of states is a
smooth function across the Fermi surface (which means
that there is no Van Hove singularity present). In our
language we make the following substitution:

which means that in the restricted Hilbert space we can
rewrite ).b(~ ei) fs = dnf(n),

Sg
(6.3)

K = ) n q(k)nq(k).
k, q

{5.7)

Using the definition (4.6) and Eqs. (5.3) and (5.7), we
conclude that in the restricted Hilbert space, the Hamil-
tonian for the interacting fermions in simply given by

II = ) G'„,a (k) aq(k'),
k, k', q, sgn(q) &0

(5.8)

where

gq
N(0) 's q, ~'+q'— (5 9)

which describes a &ee, quadratic, theory.
It is worth noting the similarity between (5.8) and (5.9)

and Pomeranchuk's expression (2.8). This resemblance is
expected, since we are looking at the same kind of fiuc-
tuations. We would say that we have a quantum version
of Pomeranchuk's construction. Moreover, all the scal-
ing arguments of Sec. II can be used here in order to
understand the stability of the Fermi liquid as a renor-
malization group fixed point.

VI. FERMI LIQUID PROPERTIES

This section is devoted to showing that we can get
all the results of the Fermi liquid theory Rom the point
of view of the bosons. In particular, the relationship
between the bare mass of the fermions and the effective
mass of the Landau theory is discussed in Appendix C.
We start by studying the thermodynamics (imaginary
time) of the system and then we study its dynamics (real
time) from the point of view of our path integral.

First we will rewrite the Lagrangian in (4.19) using
the Hamiltonian we have just derived in the preceding
section. Namely, we substitute (5.8) in (4.19) and use
the eigenvalue equation (4.13) in order to get

Vk = VFAk (6.4)

where nk is an unit vector perpendicular to the Fermi

surface at the point k.
With these substitutions we can rewrite the La-

grangian (6.1) as

dn dn' ) "'
;(n)

Sd 2j.n(n)
q, sgn(q) &0

(. 8
x

l
ibn„. ——Wq(n n') Iuq(n')

Bt )
(6.5)

where
( Ilq(n, n') i

W;(n, n') = pg R(n) l bye) + (6.6)

and Il„- „-, = N(0) fg „-,.
Observe that the field uq(n) has dimensions of mo-

mentum, as required by our interpretation; however, we

can rewrite the action in terms of a new dimensionless
bosonic field Pq(n) by a simPle scaling of the original
field as

( vFN(0)V
(t;(n) =

l 2S l- „-(n)l l;( )

and rewrite the generating functional as

(dp-(n, t)dp'(n, t) )
g s ~ ~

~ s s
r27r

q, A, t,sgn(q) &0

(6.7)

(6.8)

where S~ is the integral over the whole solid angle, Sg ——

jdn. Furthermore, using the fact that the density of
states is smooth we can replace the velocity with

I[uj =

where

v b ()ti —tg )
u'-(k, t)

2g v-
k

k, k', q, sgn(q) &0

c) 1
x

l

ib- -, ———Wq b(p —e -, ) l

u-(k', t),ts, is' gg ~ i, g

(6.1)

where

s = dt dn ) ip'-(n)
q, sgn(q) &0

dO dO' *- 0 Mq O, O' - 0'
q, sgn(q) &0

(6.9)

k, k' g- k,k'
k

(6.2)
where

M'(n, n') = Ql j.n(n)llq. n(n')l

('
sgb (n —n')

N(0)

Observe that the vectors k and k' in the above expres-
sions are restricted to the Fermi surface due to Dirac's
delta function. We therefore pararnetrize these vectors

(6.10)
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pq(n) = (pq(n) + irlq(n) (6.11)

and we trace over the imaginary part in order to get

We can split the field Pq(n) into real and imaginary
parts as

A. Thermodynamic properties

The extension of the Lagrangian (6.5) to imaginary
tixne (i.e., finite temperature) is trivial. We will consider
first the case in which only the diagonal term in Eq. (6.6)
is present, namely,

Z = (detM) '&t f . . f ~ h

q, O, t,sgn(q) )0
W~(n, n') = Eq(n)hxx xx, (6.19)

d(Pq(n, t) e' '"( ) (6.12)
and therefore it is straightforward to show that the par-
tition function is given by

where,

Seff — dt dO dO'

q, sgn(q) &0

Z = exp( —PF) =
h ~

Q,q, sgn(q) )0

fEq(n)PI)
).

(6.20)

i(9(pq(n) -

q( I)- —1 8(pq(n )
where )9 = 1/T is the inverse of temperature (our units
are such that I(:xx = 5 = 1).

Using the expression for the &ee energy F given in
(6.20), we easily calculate the specific heat,

—(pq(n) Mq(n, n')(pq(n') (6.i3) p& . E,'(n)
&v =—

4 )
t 2 &q(xx)xx

o,q, sgn(q) )0 slnh 2

(6.21)

We proceed further and expand the action in its eigen-
modes by rewriting

(pq(n, t) = ) v"-(n)c"-(t), (6.i4)

where

(6.15)

Equation (6.15) can also be rewritten in terms of the
original fields if we use (6.7) and (6.10),

We have to be careful in order to understand the in-

tegrals in (6.21). We built a reference frame that runs
over the surface (a Fresnel frame as in differential geom-

etry). The Fermi velocity (normal to the Fermi surface
at g7F) and gradient of the Fermi velocity (which spans
the vectors in the plane tangent to the Fermi surface at
pF) form a local orthogonal basis for the vectors q. We
therefore split the integral in (6.21) into one part which
is normal to the surface, qN, and another which is in
the plane tangent to the surface, q~. In the absence of
interactions the dispersion is given by (6.6) as

dO'

l
vF q n(n) i u,"-(n)+ F(n, n')u,"-(n')

i

= (d"-u"-(n). (6.16)

E(qN) = vF qiv. (6.22)

First we observe that the density of states is given as
an integral over the tangent component. Indeed, &om
(5.5) and the definition of the local frame, we have

Using the completeness of the states defined in (6.15)
we rewrite the generating funcfional as n (o) = —' f = —' f dn f d&, (n)

'' ' "
.

Z = (detM) tit f . f
q, A, t

where

d@A (t) is~ff [4]

(6.17)

(6.2a)

We also have assumed that the normal component is not
affected by the curvature [see (6.4)). Thus we can inte-
grate out the tangent component in (6.21) using (6.23).
The final result is,

(6.18)

V 4 0 . h2 E'(qw)P
2

Using (6.22) we finally find

(6.24)

which, as expected, is the action for a free massive
bosonic Geld.

Vr2= —N(0)T, (6.25)
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(k Pl
fnnr~ = a+b

(k p)
' (6.26)

where a and b are parameters that depend on the spe-
ci6c form of the interaction. Due to the geometry of the
interaction we can rewrite (6.26) as

which is the expected result for a Fermi liquid. Observe
that the dimensionality plays no role here except in the
calculation of the density of states.

We can clearly see the differences between the bosonic
excitations described in this paper, which are due to co-
herent superposition of particle-hole pairs, and the usual
&ee bosonic excitations. First of all, naively we would ex-
pect that the specific heat should behave as T as in usual
free bosonic theories, since the bosonic Hamiltonian (5.8)
is quadratic in the bosons. However, the bosonic field in
the Fermi liquid hves on the Fermi surface, that is, it is

topologically constrained. The Fermi velocity, through
the density of states, defines the metric of the manifold
where the 6elds propagate. In the case without interac-
tions the bosonic fields oscillate without coherence (like
decoupled harmonic oscillators with phases distributed at
random). These oscillations are responsible for the con-
tribution of the particle-hole continuum to the specific
heat as shown in (6.25).

We can proceed further and evaluate the eKect of the
interactions in this problem. The general approach would

be to calculate the eigenvalues of Eq. (6.15) and evaluate
the bosonic determinant in the partition function. How-

ever, we use an approach inspired by the calculations of
the Fermi liquid theory. 24 First, we expand the interac-

tion term for small angles by defining the vector p = k' —k

such that

and in two dimensions one 6nds

vF N(0)
@(qN) = vFqN + 7rb ~N

pQ
(6.31)

Observe that these expressions depend only on the nor-
mal component and we can use Eq. (6.24) to calculate
the corrections for the speci6c heat due to interactions.
Up to 6rst order in b we have

bCv, rr)
v (AvF )

(6.32)

in three dimensions and

(6.33)

in two dimensions, where

16p~~b

15~2 4 '
F

and

3((3)pF b
g 3 )

KV~

(6.34)

(6.35)

where ((n) is the Riemann ( function of n,.
The result (6.32) is well known~s'24 [apart &om the

prefactor, which is different due to the average over
the Fermi surface we have carried out in (6.28)] and
the result (6.33) was obtained recently using the RPA
approximation.

We conclude, therefore, that in our approximation we

are counting the correct number of states at low temper-
atures. This result proves the consistency of our method.

g
2

fnn =o+b, (6.27)
B. The semiclassical dynamics

qN
fn, n ~

I
dO'fn, n

~
bn, n ~ b).

) „- qN+P 4

(6.28)

Changing the sum to an integral and taking into account
that this integral must be done on the surface, we found
that the change in the energy due to interactions can be
written as

AE(qN) = 16vFbqN q dps N(0)Sg, p"

pF ~d 0 p + 4~N

Since we are working with a local expansion, we will

replace the nonlocal term in (6.6) with a local one which

is an average over the surface,

where we have defined the angle 8 by q . n(O) = cos8.
Observe that if

u~(O, t) = e * ~'u"-(O), (6.37)

Notice that the Lagrangian (6.5) is quadratic in the
6elds and, therefore, the semiclassical approximation is

exact. The semiclassical equations of motion for these
Lagrangians are given by the saddle point equation (the
Euler-Lagrange equations) derived from L, namely,

Bug(O, t) = qvF cos 8 u;(O, t)
Bt

dO'
+qvF cos 0 F(O, O') uz(O', t),

Sg
(6.36)

(6.29)

8bvF N(0) s qN
@(qN ) vF qN 2 qN»

pQ A
(6.30)

where A is the cutofF. In three dimensions, we have

we recover Eq. (6.16).
Equation (6.36) is the Landau equation of motion for

sound waves (the collective modes) of a neutral Fermi
liquid where f& &-, is the scattering amplitude for particle-

7

hole pairs. Observe that the Landau equation gives the
eigenmodes of the problem [see (6.15)].
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We conclude, therefore, that our bosons are the sound
waves that propagate around the Fermi surface at zero
temperature. The solution of (6.16) [or (6.36)j will give
the possible values for the frequencies of oscillation for
these modes and they will depend essentially on the Lan-
dau parameters of the theory. The Landau equation,
(6.16), yields solutions that represents both stable collec-
tive modes ("sounds") and solutions with imaginary fre-

quency that represent the particle-hole continuum. This
behavior is a direct consequence of the phase space. Note
that in one dimension these unstable solutions are absent
and only the collective mode is left.

In order to illustrate the behavior of these sound modes
we present here an explicit calculation in two dimensions.
This calculation will enable us to understand many in-

teresting features of these sound modes.
As in Sec. II, we expand the interaction and the dis-

placement in Fourier components,

(1 + F)u„= ) F K(m —n)u (6.44)

where we define a kernel,

K(n) = A(s)e I I ( ) (6.45)

with

A(a) = (6.46)

and

a(s) = ln (s + QN~ —1) . (6.47)

(6.41). Therefore, for a ) 1 we can replace (6.41) with

F(8 8)) ) F s(a s')n— (6.38)

For a purely local interaction in the real space, the in-
teraction is angle independent (long range over the sur-
face in momentum space) and we define

where F „=I'„* = F„due to the symmetry of the prob-
lem, and

F„=Fpb„,p. (6.48)

Substituting (6.48) into (6.44) for the n = 0 we obtain
the allowed value of s,

u(8) = ) u„e' ",

where u „=u„'.
From (6.16) we have

(6.39)

s F0

( ) 2

I1+—'I -1
Fo)

(6.49)

dH'
(s —cos 8)u(8) = cos 8 F(8,8')u(8'),

p 27K
(6.40)

and for n g 0 we obtain the value of the Fourier compo-
nents

where v~s = u/q is the velocity of the sound waves.
Using (6.38), (6.39), and the orthogonality relation of

the Fourier components it is easy to show that (6.40) can
be written as a matrix equation,

u„ = FpK(n)up. (6.50)

Substituting (6.50) into (6.39) and summing up an ordi-
nary geometric series with a little help from (6.49), we
easily get

(1+F )u„= ) F K(m —n)u (6.41) cos H
u(8) = upFp

s —cos H' (6.51)

where

2~
dHd8 a

p 2x s —cosH
(6.42)

We allow s to have an in6nitesimal imaginary part and
we integrate (6.42) into the complex plane in a contour
in the unit circle around the origin. We found

K(n) =

8 Inl
s —i/I —a2, (s( ( l.

i 1 —s2
(6.43)

It is easy to see from (6.43) that all the modes are
damped if the velocity is smaller than the Fermi velocity
~s~ ( 1. This result is clearly expected; it is nothing but
the Landau damping of the collective modes.

Here we are only interested in the stable solutions of v = PFH. (6.52)

which is the expected result if we have just solved (6.40)
for a constant interaction. The result (6.51) is the well
known zero sound mode, which has the same shape as
the zero sound in the three-dimensional case. i

We can explore even further the matrix equation (6.44)
due to the siinplicity of the kernel in (6.45). We are
mainly interested in the behavior of the Fermi surface in
the forward scattering direction since it has been argued
that it is in this direction that pathological efFects can
happen.

Since we are not interested in the behavior over the
whole Fermi surface, we will transform the matrix equa-
tion (6.44) into a simple second order differential equa-
tion by expanding the kernel in terms of the Fermi wave-
length.

Consider the arc length defined on the Fermi surface
by
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The expansion (6.39) is rewritten as

u(v) = ) e'""u(A) (6.53)

ature in order to investigate the problem of interactions
of finite range

F(v) = vrppaA, e (6.62)

and, due to the periodic boundary conditions u(v +
2mpF) = u(v), we must have

n

PI'
(6.54)

[1+P(A)[u(A) = f dA'G(A —A')F[A')m(A'),

Observe from (6.54) that in the limit of pa ~ oo, the
matrix equation (6.44) can be replaced by an integral
equation,

There are two parameters here: p gives the strength of
the interaction and A, plays the role of the range of the
interaction. When A —+ 0 the interaction is angle inde-
pendent (is short range in the real space) and we obtain
the zero sound solution already discussed; when A, + oo
the interaction is long range in real space and strongly
angle dependent in momentum space. This parameter
will enable us to study the crossover &om short range to
long range interaction in terms of the dynamics of the
sound waves.

The Fourier transform of (6.62) is given by

(6.55)
F(A) = p

A2

A2+ A2' (6.63)

where

(6.56)

which is a Lorentzian.
Using (6.63) in (6.59) we obtain the equation for the

one-dimensional harmonic oscillator,

where we have used (6.45) and an integral representation
for the exponential function. Expanding (6.56) up to
second order in pF one finds

where

+ P (s)A
I
z(A) = E(s)z(A), (6.64)

A 1 d b(A)

n ( (pF~)' dA' )
(6.57)

and

P() I

()
( ~1/2A )

(6.65)

z(A) = F(A)u(A), (6.58)

which, from the arguments given above, obeys the diEer-
ential equation

If we substitute (6.57) into the original equation (6.55)
we find a differential equation which should be valid for
small arc lengths compared to 2xpy . We proceed further
and define the following quantity,

E()= () —
I

(6.66)

(6.67)

Of course, the natural boundary condition is that func-
tion z vanishes at infinity.

The solution of (6.64) is standard. The eigenfunctions
are

where

, + U(s, A)
I

z(A) = e(s)z(A), (6.59)
where H„ is the Hermite polynomial of order n and the
eigenenergies are

U( A)
[pF~(s)1'

F(A)
(6.6O)

E(s„)= 2P (s„) I
n+ —

I

.
I)
2)

(6.68)

and

~(a) = [p~~(s)1 I
2

, f X(a)
0 ~(s) )

(6.61)

Equation (6.68) is self-consistent and it gives the al-
lowed values of s. If we substitute (6.46) and (6.47) into
(6.68) we get the following transcendental equation,

Equation (6.59) has the form of a time-independent
Schrodinger equation for a particle in a potential U with
energy e. Once we know the boundary conditions for the
problem we can determine its eigenfunctions [and there-
fore we determine u using (6.58)] and its eigenenergies
[and we determine s using (6.61)].

In this paper we will assume a particularly simple form
for the interaction term which has been used in the liter-

(
I
1+ —

I
~(s-)+2 „, I

u+ -
I

—&(s-)
'7) '7 ~ pa' Ac'

(6.69)

It is very easy to check that the value of 8 decreases
monotonically with n and, in particular, lim ~ 8 = l.
This result means that the modes approach asymptoti-
cally the particle-hole continuum.
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Furthermore, substituting (6.67) and (6.63) into (6.58)
we 6nd

u„(A) = (A + A, )e ~ " JI„(p A). (6.70)

We now Fourier transform (6.70) back to the arc length
in order to get

interactions.
However, the calculations we have carried out are

purely classical and up to now we do not know if quan-
tum Buctuations can wash out this behavior. It is worth
mentioning that in quantuxn crystals the quantuxn Buc-
tuations can wash out the classical ones.

( v
u„(v) = 2n + 1 + P (s„)A, —

~

( v
xe (« -&) II„~"

&p( -)) (6.71)

Equations (6.69) and (6.71) are the solutions of (6.44)
in the limit when the Fermi moxnentum is much larger
than the xnomentum transfer between the particle-hole
pairs (which means, as we said, that we are looking close
to the forward scattering direction).

We want to change the range of the interaction A, but
we keep the density of the system constant. In this case
the product p~A, is finite ( A,p~ P where rs is the
mean distance between the particles and ao is the Bohr
radius). In other words, it means that PA, is finite in
what follows. Therefore, keeping the above product con-
stant and sending A, ~ 0 we find from (6.65)

C. Quantum Huctuations of the Fermi surface

It was shown some time ago that quantum one-
dimensional crystals can lose long range order when
the interactions are sufficiently local. Quantitatively
it means that the equal-tixne correlation function for
the deviations of the equilibrium position of the atoms,
u(R), diverges logarithmically for long distances, that is,
(u(R)u(R')) 1n~R —R'~ as ~R R'~ ~—oo. We would ar-
gue, due to the classical calculations we have carried out
that the same could happen for the fields uz(0) for long
range interactions in real space. Therefore, in order to
understand this problem we calculate the quantum cor-
relation function for different pieces of the Fermi surface.

From (6.18) is straightforward to calculate the corre-
lation function for different pieces of the Fermi surface,
namely,

and from (6.71),

u„(v) m const,

(6.72)

(6.73)

(T(pq(0, t)(p-, (0', t')) = ) v"-(0)v", (0')

x (TC,"(t)O", (t')) (6.76)

if n is even and u„(v) = 0 if nis odd. O, bserve that this
result is in agreement with the zero sound result, (6.51),
which is constant in the forward direction (8 0).

However, for A, ~ oo it is easy to see that

where T is the chronological operator and v"-(0) are the
solutions of (6.15). The correlation function in the rhs
of (6.76) is easily calculated from (6.18) (we assume that
the eigen&equencies u"- are well behaved functions of q
and A) and it reads

and

P~O (6.74)

(TC;(t)C; (t )) = h» b- -e" (6.77)

(vl '
~ (=i~ fv)

u-(~) -
I

—
I

e '(" II-I —I,ip
"

qp
' (6.75)

Thus, from (6.76) and (6.77),

(Tpq(0, t)(p;(0', t')) = 8 -, ) v"-(0)v"(0') e'~,"-I'—'I

which oscillates strongly near v = 0. We would argue,
therefore, that while for short range interactions (A, ~ 0)
the field u(v) is smooth around the forward scattering
direction, for long range interactions (A, -+ oo) the field
becoxnes rough near the same direction. This could rep-
resent a signal that there is soxnething particularly non-
conventional happening there. Notice, on one hand, that
this result has similarities to the problexn of long-range
order in low dimensional systems, since it is well known
that one-dimensional systems at zero temperature with
local interactions do not have long range order. How-
ever, on the other hand, quant»m one-dixnensional inter-
faces at zero temperature also cannot have long range
order while two-dimensional interfaces always have long
range order. Since the Fermi surface has the properties
of a real interface in moxnentuxn space, it could be ar-
gued that the Fermi surface could undergo a roughening
transition of the Kosterlitz-Thouless type for singular

(Tp-(0, t)y -, (0', t)) = b -, h (0 —0'). (6.79)

Equation (6.79) shows that the correlation function is
always finite and therefore there is no roughening (there
is long range order), that is, the Fermi surface is always
smooth.

Through coxnparison between this result and the result
of quantum crystals, we know that this result is due to
a conservation law, namely, the local conservation of the
volume of the Fermi surface (the Luttinger's theorem~s).
From the other point of view this is expected, since the
sound waves obey a diffusionlike equation, (6.36), and,

(6.78)

and therefore the equal-time correlation function is sim-
ply [using the completeness of the states in (6.15)j,
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therefore, a bump on the Fermi surface diffuses leaving
nothing behind it.

VII. CONCLUSIONS

We construct a bosonization of a Fermi liquid in any
number of dimensions in the limit of long wavelengths.
The bosonization is valid for a restricted set of states
close to the Fermi surface. We generate a set of cre-
ation and annihilation operators that span the restricted
Hilbert space. We showed that it is possible to construct
a set of coherent states (bosonic shape fields) which are
coherent superpositions of particle-hole excitation close
to the Fermi surface and which are the displacements of
the Fermi surface in some direction. The physical inter-
pretation of the existence of these fields comes from the
observation that the Fermi surface is a real quantum ob-
ject which is responsible for the whole physics of Fermi
liquid systems at low energies. From the coherent states
we generate all the thermodynamics and semiclassical dy-
namics of a Fermi liquid.

We have shown that an interacting Hamiltonian of
the original fermions is simply quadratic in terms of the
bosons, which means that the bosons are free and move
on the Fermi surface like sound waves. They are not
free fields in the usual sense, since they are topologically
constrained to live in the Fermi surface. This feature
produces very interesting results. In particular, it repro-
duces all the results of the Fermi liquid theory &om a
bosonic point of view.

We obtain the correct thermodynamics of a Fermi liq-
uid even with the corrections due to the scattering be-
tween the fermions. This observation leads us to conclude
that our approach is consistent and that we are counting
the correct number of states in the Hilbert space.

Moreover, we have shown that the semiclassical dy-
namics of these sound waves is described by the Ian-
dau theory. In two dimensions we calculate the form of
these sound waves explicitly for short range interactions
(zero sound) and long range interactions. We have shown
that, at classical level, we could conclude that it is possi-
ble to have a rougheninglike transition of the Kosterlitz-
Thouless type, which is closely related to the absence of
long range order in one dimensional crystals at zero tem-
perature. However, we show that quantum Quctuations
destroy this effect due to the local conservation of the
volume of the Fermi surface (Luttinger's theorem).
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APPENDIX A: FERMI LIQUID
AND NON-FERMI LIQUID BEHAVIOR

~r(k, ~) = &f, l~ —vl'+"sgn(v —~). (Al)

If we substitute (Al) into (3.12) and make the same
change of variables that lead to (3.14) we find

dz f, 1
v+ ~ I II pj s 2'

C

&g-.z" '
I

~k I"
I «p~ I"

Z: z "[z+sgn(bk)]'+ C2bk'"
I Vep, I'"

(A2)

When v & 0 it is easy to calculate the limit analogous
to (3.15),

Z z'"]z+sgn(bk)]'+0'bk'"
]

Vs- ~'")

= x
I Zp I b(z"[z+sgn(bk)]}, (A3)

which gives the same result as in (3.16) (Ferini liquid
behavior). However, if v ( 0 the above limit takes a
different form, namely,

&p I
~k I"

I Vep

Z z'"]z+sgn(bk)]'+C'bk'"] gss- ]')

1

Cslal-IVeo I-'

and, therefore, substituting in (A2) we find

In this appendix we discuss the possibility of behaviors
for the imaginary part of the self-energy other than the
conventional Fermi liquid one, (3.13). We will still as-
sume that the real part of the self-energy is linear in the
kequency close to the Fermi surface, but for the imagi-
nary part we will assume that

ACKNO% LEDGMENTS

We gratefully thank Gordon Baym for many illumi-

nating conversations, for his encouragement and sharp
criticism. We benefitted Rom an early conversation with
F. D. M. Haldane and we wish to thank him for explain-
ing to one of us (E.F.) his (still unpublished) picture of
the Fermi surface as a quantum mechanical extended ob-
ject. We also acknowledge Brad Marston for interesting
discussions. A.H.C.N. thanks Conselho Nacional de De-
senvolvimento Cientifico e Tecnologico, CNPq (Brazil),

I
o(—bk). (A5)

E2(1 —~) "

The discontinuity is easily calculated in the limit as bk -+
0,

b,E(pF) = (~sz —
RIVING I

{v—i)
Ihkl&" 'i -+ 0, (A6)

2(1 —v) )
and therefore there is no singularity left (non-Fermi liquid
behavior) .



49 BOSONIZATION OF FERMI LIQUIDS 10 891

APPENDIX B:BOSONIZATION
IN ONE SPATIAL DIMENSION

H=) ~,c'c, + ) ~p(q)p( q)- (B1)

In this appendix we show that the formulas obtained in
Sec. IV of this paper are consistent with the bosonization
procedure in one dimension. In order to do so we prove
that we can obtain the same commutation relations for
the densities as is obtained in the standard procedures
of bosonization. Therefore, all other results relative to
the calculation of the fermionic operators and the one-
particle Green's function follows from this result.

We will concentrate particularly on the Tomonaga
model, ~ but the extension of the arguments to the Lut-
tinger mode14 is absolutely straightforward.

The Tomonaga model for spinless electrons is described
by the following Hamiltonian:

sities for q ) 0 as [compared with (6.7)]

2'
b = pi(q)q

2'
&P2( —q)

qL

with their adjoint they obey the usual bosonic algebra,

4, bg = bi„a. (B9)

Following the same kind of argument as presented in
Sec. V, we can prove that the Tomonaga model is purely
quadratic in terms of the bosons and can be easily diag-
onalized by a Bogoliubov transformation. In particular,
the calculation of the correlation functions follows ex-
actly as in the work of Mattis and Lieb and Luther and
Pescheizs for the Luttinger's model.

where the dispersion relation is given by

(B2)

Vq is the Fourier transform of the electron-electron inter-
action, L is the length of the system, and

p(q) = ):n. (k) (83)

p, (q) = ) n, (k),
k&0

p2(q) = ) n~(k); (B4)

thUB) p(q) pl(q) + P2(q)
The one-dimensional version of the commutation rela-

tion (4.5) is

[n, (k), n v (k')] = sgn(k) bs s b, q qvp b(p —vp
~

k ~).

(B5)

Therefore, from (B4) we easily find

is the density operator.
Now we split the density operator in two terms, one

for right movers and other for left movers,

APPENDIX C: THE EFFECTIVE MASS

u~(k) m u~(k) +
k

(Cl)

The total change in the action can be obtained &om
(6.1). Up to first order in q one gets

bL = —) ~ " u'-(k)
i W„,b(p —e„-,)

v b(p, —6g) ~ ( q vg )
k'

(C2)

Using (6.2) and (5.9) we can rewrite the above expression
as

In this appendix we show the complete consistency of
our approach and the Landau theory of the Fermi liquid
via the calculation of the effective mass of the Landau
theory in terms of the bare electronic mass.

Suppose we displace all pieces of the Fermi surface in
momentum space by the same in6nitesimal amount q.
This is equivalent to looking at the system from a refer-
ence point that moves relative to it with constant veloc-
ity. By simple geometric arguments it is easy to see that
the displacements of the Fermi surface will change by the
quantity

[p;(q), p;( —q')] = (—1) +'b, , qvf

x ) b(p —v~(k~),
k( —1)&(0

(B6)
bI, = —) Ubb(P —~b)u,'-(k) (j.fb),

k,q

(C3)

where the chemical potential is written as p = v~p~.
In the thermodynamic limit we transform the sum into

an integral (P& ~ 2 f dk) and we finally get

where

1
Jq ——v)+ —) fg „-, b(y, —(„-,) v„-, .k, k'

k'

(C4)

[p;(q), p, (—q')] = b;-, (—1)'+', i,j = 1,2, (87)

as expected for spinless fermions.
The bosonic operators are de6ned in terms of the den-

Notice that since we are transporting the whole Fermi
sea by a constant vector the change in the Lagrangian
must be minus the total change in the energy of the
system. Therefore, J& is the contribution for a current



10 892 A. H. CASTRO NETO AND EDUARDO FRADKIN 49

carried by a fermion with momentum k. Moreover, if
the system is homogenous and isotropic the current and
the velocity must point in the direction of k. Naturally,
the current transports a mass equal to the mass of the
fermion m, namely, F(8) = ) FI,Pi(cos0), (CS)

the bare mass in the Landau theory of the Fermi liquid.
In three dimensions we can expand the interactions in

Legendre polynomials,

(C5)

In the Landau theory the efFective mass m* is defined as
the coefficient of the velocity,

where F = N(0) f. Use the density of states as defined in
(5.5) and the orthogonality between the Legendre poly-
nomials in order to get

=1+—3' (c9)

m* (C6)
In two dimensions we use (2.6) and the above defini-

tions and we find
Substituting (C5) and (C6) into (C4) and assuming k

and k' at the Fermi surface and k. k' = p& cos8, we easily
get

(C7)

which is the usual relation between the efI'ective mass and

(C10)

The Galilean invariance present in the argument of this
appendix shows that the mass that appears in the Fermi
velocity in the case of a homogenous system is not the
bare mass but the effective mass which is calculated in
the above expressions.

' S. Tomonaga, Prog. Theor. Phys. 5, 544, (1950).
F. Bloch, Z. Phys. Sl, 363 (1933).
D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
D. Mattis and E. Lieb, J. Math. Phys. 6, 304 (1965);
A. Luther, Phys. Rev. B 14, 2153 (1975); S. Coleman,
Phys. Rev. D ll, 2088 (1975); S. Mandelstam, ibid. 11,
3026 (1975); W. Thirring, Ann. Phys. (N. Y. ) 3, 91 (1958);
J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
S. Mandelstam, Phys. Rev. D ll, 3026 (1975).
I. Ia. Pomeranchuk, Sov. Phys. JETP 8, 361 (1958).
R. Shankar, Int. J. Mod. Phys. B 6, 749 (1992); Rev. Mod.
Phys. 66, 129 (1994); J. Polchinski (unpublished).
A. Luther, Phys. Rev. B 19, 320 (1979).
P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); 65,
2306 (1990); 66, 3226 (1991).
F. D. M. Haldane (private communication); Helv. Phys.
Acta. 65, 152 (1992).
A. Houghton and B. Marston, Phys. Rev. B 48, 7790
(1993).
D. V. Khveshchenko, R. Hlubina, and T. M. Rice (unpub-
lished).
A. H. Castro Neto and Eduardo Fradkin, Phys. Rev. Lett.
'72, 1393 (1994).
E. Fradkin, Phys. Rev. B 28, 5338 (1983).
G. Baym and C. Pethick, Landau Fermi-Liquid Theory
(Wiley, New York, 1991); D. Pines and P. Nozieres, The-
ory of Quantum liquids (Addison-Wesley, Redwood City,

1989), Vol. I.
3. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417
(1960); J. M. Luttinger, ibid. 119, 1153 (1960); 121, 942
(1961).
L. Kadanoff and G. Baym, Quantum Statistical Mechanics
(Addison Wesley, Redwood City, 1991).

~s P. Nozieres, Theory of Interacting Fermi Systems (Ben-
jamin, New York, 1964).
C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abra-
hams, and A. E. Ruckenstein, Phys. Rev. Lett. B3, 1996
(1989).
L. D. Landau and E. M. Lifshits, Statistical Physics (Perg-
amon, Oxford, 1980), Pt. I.
M. Stone, Phys. Rev. Lett. 63, 731 (1989).
J. W. Negele and H. Orland, Quantum Many-Particle Sys-
tems (Addison-Wesley, Redwood City, 1988).
J. Klauder and B. S. Skagerstam, Coherent States (World
Scientific, Singapore, 1985).
C. Pethick and G. Carneiro, Phys. Rev. A 7, 304 (1973).
D. Coffey and K. S. Bedell, Phys. Rev. Lett. 'F1, 1043
(1993).
P. Nozieres, J. Phys. (France) I 2, 443 (1992).
D. Mermin, Phys. Rev. 176, 250 (1968).
J. M. Kosterlitz and D. 3. Thouless, J. Phys. C B, 1181
(1973).
A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).


