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A method is described for the calculation of generalized symmetry-adapted Wannier functions
by Fourier transformation of Bloch functions obtained by standard first-principles techniques. An
additional unitary transformation derived from a Slater-Koster-model Hamiltonian is introduced
in order to deal with the nonanalytical behavior of the Bloch functions. The parameters of the
Hamiltonian, which are the energy matrix elements of the Wannier functions, reproduce the first-
principles band structure with high accuracy. It is considered in detail how problems caused by
degeneracies have to be treated by an analysis of transformation properties at symmetry points. An
application to fcc transition metals yields highly localized functions of d symmetry, an s function
whose localization depends on the strength of relativistic effects, and less localized p functions.

INTRODUCTION

Since their introduction in 1937, Wannier functions
have been used in many theoretical models, e.g., in the
theory of localized perturbations. However, there exist
only few numerical realizations, most of them consisting
of a direct calculation rather than a Fourier transforma-
tion of Bloch functions. The direct variational approach
proposed by Kohn? has recently been applied by Modrak
and Wojnecki to the d bands® and the d-s-band complex
of copper and nickel.* These calculations yield convincing
results for the d functions but a very extended s function
possibly due to the neglect of p functions or to certain
assumptions about the functional form of the Wannier
functions outside the central muffin-tin sphere.

On the other hand, there have been only a few at-
tempts to calculate Wannier functions for real crys-
tals applying the Fourier transformation of Bloch func-
tions, although this indirect approach could take advan-
tage of the highly developed techniques of modern first-
principles methods. Problems connected with the di-
rect calculation like orthogonality and three-center cor-
rections are automatically included.

However, problems arise from the fact that the Bloch
functions labeled according to increasing energy are not
analytic functions of the wave vector k at points of de-
generacy. In order to avoid this difficulty Callaway and
Hughes® developed a symmetry labeling scheme in their
calculations for silicon, which required the interchange of
band numbers even at points of quasidegeneracies thus
leading to new discontinuities. Goodings and Harris®
pointed out that this would be a complicated procedure
in the case of transition metals and kept the usual scheme
in their calculation for copper. Their results showed
poorly localized Wannier functions certainly due to the
nonanalytical behavior of the Bloch functions.

It has been proposed”® that this item should be
treated considering groups of bands rather than single
bands. One of us has suggested earlier® that this should
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be done by employing the eigenvectors of a Slater-Koster-
model Hamiltonian leading to Wannier functions of de-
fined symmetry. In this work we give a detailed instruc-
tion how this can be carried out in a numerically success-
ful way.

I. DEFINITION OF GENERALIZED
WANNIER FUNCTIONS

At this stage we briefly want to summarize the con-
cepts given in Ref. 9. The one-particle energies and wave
functions may be known from a first-principles calcula-
tion by means of the approximate solution of an effective
one-particle Schrédinger equation

Htpnk = Enx¥nk (1.1)

H is the effective one-particle-Hamiltonian, E,x is the
one-particle energy eigenvalue for wave vector k and band
n, and 9, denotes the corresponding one-particle wave
function, which is also called a Bloch function.

As we are interested in a small number of bands we
put these together into a band complex and look for a
model Hamiltonian with the same eigenvalues E,,

> Hou(k) e(n, k), = Enk e(n,k), (1.2)

where e(n, k), are the eigenvectors. In the case of metals
the definition of such a band complex imposes the intro-
duction of an artificial cut in the band structure, which
is in some respect ambiguous. This is of course done in
an energy region far enough from the region of interest,
so that it can be expected that the reproduction of the
band structure will be adequate there.

The energies of the band complex at k = 0 may be
labeled by the irreducible representations of the point
group ' ... T®) | Then the following symmetry prop-
erties are required:
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H(ak) =T(a) H(k) T(a)™! (1.3)
with
rW(a) 0
INa) = - ) (1.4)
0 r'®(a)

where a denotes an element of the point group. So the
dimension of the model Hamiltonian and the transfor-
mation matrices is the sum of the dimensions of the irre-
ducible representations contained in the band complex.
The H matrix is expanded into a Fourier series in the
lattice vectors R:

Hk) =) e(R)e™F
R

with similar symmetry requirements for the coefficient
matrices:

(1.5)

e(aR) = I'(a) e(R) [(a) ™ (1.6)

The independent parameters £,, (R) have to be obtained
by a nonlinear least-squares fit of the eigenvalues (1.2) to
the band structure energies. The reader familiar with
lattice dynamics will note the close similarity between
the dynamical matrix and the model Hamiltonian H (k)
and the polarization vector and e(n, k), respectively.
Like in Ref. 9, we now define generalized symmetry-
adapted Wannier functions using the eigenvectors of the
model Hamiltonian and summing over the band complex:

i-/szdke-ik-n Zﬂ: e(n,k); ¥nk(r) ,
(1.7)

(2m)3
where Q denotes the volume of the Wigner-Seitz cell. As
has been shown in Ref. 9, the Fourier coefficients in (1.5)
are the energy matrix elements of the Wannier functions

ew(R) = / a,(r—R)*Ha,(r) dr

In the following these will be called Slater-Koster param-
eters. The Wannier functions transform like basis func-
tions of irreducible representations of the point group

a,(r—R) =

(1.8)

Z L(@)yu au(r) = ay(ar) (1.9)
m
and obey the orthogonality relations:
/%u-mr%u—nﬁazaﬁﬁ (1.10)

It is important to note that the model Hamiltonian
and the Wannier functions are uniquely defined only by

the choice of the independent Slater-Koster parameters.
J

d

g

BeG(k) © BEG(k)
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While there may always be various sets of parameters
which reproduce the first-principles eigenvalues satisfac-
torily well, one can expect to obtain well localized Wan-
nier functions only if the Fourier expansion (1.5) con-
verges fast.

II. CONSTRUCTION
OF THE WANNIER FUNCTIONS

A. Treatment of degeneracies

In the case of a degeneracy at the point k there ex-
ists an arbitrariness in the first-principles eigenfunctions
as well as in the eigenvectors of the model Hamiltonian
belonging to the degenerated energy. This arbitrariness
is connected to the fact that the representations under
which either of them transform are determined only up
to equivalence. The group of k is the set of point oper-
ations which leave k invariant up to a reciprocal lattice
vector: G(k) = {3|Bk = k+K}. The degenerated

Bloch functions transform in the following way:
Yu(B7E) =Y Di(B)nn Yre(r) for B G(k)
(2.1)

where the sum is extended over the degenerated states.
The matrices Dy (8) form an irreducible representation
of G(k), the dimension of which is the degree d of the
degeneracy. When the first-principles Bloch functions
are normalized on the Wigner-Seitz cell 2 the matrix
elements can be obtained in the following way:

De(B)nm = /Q B () Brone(Br) (2.2)

For the eigenvectors of the model Hamiltonian we define

Dk(,B)nn' = Z F(:B);; e(n,k);; e(nlvk)u

pv

(2.3)

Dy is an equivalent unitary irreducible representation of
G(Kk). So there exists a unitary transformation U with

Du(B) = UD(B) U™ for all § € G(k)

It is shown in the Appendix that the symmetry of the
Wannier-functions (1.9) requires

Di(B) = Du(8)

This condition can be fulfilled if the inverse of the uni-
tary transformation U is applied to the eigenvectors
e(n,k),, thus defining a new set of degenerated eigen-
vectors €(n,k),. These can be found using a projection
operator technique:

(2.4)

(2.5)

Y BulBlon X DO = S T BelBon 3 DulB)ar (w10,

=2 S Be(@an 3 Unp Du(Bpa Uik e, K,

BEG(k)

n'pg

= Z 5"? 6"’"1 U"P Uq-;l} e(nl?k)l’ = Uﬂn Z Un—nl' e(nla k)u = Unn g(n’ k)u

n'pq

(2.6)
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g denotes the order of G(k). The summations are ex-
tended over the degenerated band indices. In the third
step we have used the orthogonality relations for irre-
ducible representations of finite groups. Normalization
yields the new eigenvectors €(n, k), up to a phase factor.
The relative phase factors are determined comparing the
off-diagonal elements calculated according to (2.3) with
those from (2.2).

In this way the freedom is removed which lies in the
arbitrary orientation of the degenerated eigenfunctions
leading to the failure of the k - p procedure in the case
of a degeneracy. Thus we assume to obtain smooth func-
tions in k space and as a consequence well localized Wan-
nier functions. This assumption will be confirmed by the
numerical results.

B. The phase of the Bloch functions

After the nonanalyticity of the original Bloch func-
tions has been treated by a suitable linear combination of
those, we are still free to multiply them by an arbitrary
phase factor as long as we do not introduce new disconti-
nuities. As was suggested by Blount,” we want to fix this
phase in a manner that leads to best localized Wannier
functions in the sense that the mean square radius

r2, =/ r?|a, (r)|?dr (2.7)

is minimized. We define quasi-Bloch functions in the
following way:

10 871

with a lattice-periodic part u,x:
buk(r) = €T uy(r)

If no contributions from discontinuities occur, which we
assume from the foregoing, the operation of a power of r
on a Wannier function can be written”

Q3 ; a\"
"a,(r) = —5 dke’* T (z———) Uk (r
r3au(r) (2m)3 /z;z Ok; k()

This leads to the following expression for the mean square
radius:

(2.9)

. (2.10)

-Q /
r?,,, = dk dk’'§(k — k'
(2m)3 Jpz BZ ( )

X Vi Vi / dr ujy. (r) uyk(r)
Q
(2.11)

In general the minimization of this expression would have
to be carried out numerically by introducing phase fac-
tors in Eq. (2.8). However, for the case of inversion sym-
metry Teichler'® has given an argument which shows how
the phase is to be chosen. We expand the u,x into plane
waves:

u,,k(l') = E V(V’ k)] T (2'12)

In a crystal with inversion center the coefficients V (v, k);
can be chosen real. So we can write

V(V1 k)] = eixv (k) V(Vv k)J ’ (2'13)

duk(r) = Z e(n,k); Yuk(r) (2.8)  where V(v, k); is real. So we get for the mean square
n radius
J
-Q )
2 __ ! . 3 I\ % (Kj—Kjl .
= G / dk / dk'6(k — K )V Vie Y V(1,k); V(1K) /ﬂ e ) dy

- / & Y (Vi V(0,07 + / dk |V X (k) 2

i3’

(2.14)

It follows that rZ, takes on its minimum value when the expansion coefficients in (2.12) are chosen real. This is
equivalent to the choice of real Wannier functions in the case of even representations and purely imaginary ones for

odd representations.

C. Numerical representation

In the MAPW procedure,'1'1? which we used as the first-principles method to determine the band structure and the
Bloch functions, the following Ritz ansatz is made for the Bloch function in the central cell:

Lmax

Pnk(r) = Z v(n,k); { el +Kj)r _ O(ro — 1) Z ier J(lk + K;|r) Yo(k + K;) Y. (r) }

J

L max

+0O(ro — 1) z iter Z Agr(n,k)REi(r) Yi.(r)
E

L=0

L=0

(2.15)
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r¢ is the muffin-tin radius, Rg; are solutions of the ra-
dial Schrodinger equation for certain energies F, j; are
the spherical Bessel functions, and Y; are real spheri-
cal harmonics with normalization factors c;. The most
important features of the wave functions obtained from
this procedure are that they are orthogonal to the core
states and everywhere differentiable in r, so the Wannier
functions will have the same properties. The plane wave
coefficients v(n, k); and the radial coefficients Agg(n, k)
as well as the eigenvectors of the model Hamiltonian
are real so there remains only a trivial choice between
+1 and —1 for the phase. This is of course deter-
mined in a way to produce a smooth function in k space.
We choose a certain small r for which we demand that
> . ev(n, k) *Pni(r) do not change sign for all k in the
irreducible wedge.

The special form of the Bloch functions described
above implies that the Wannier functions are composed
|
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of two parts. One part confined to the muffin-tin spheres
consists of radial functions and spherical harmonics up
to a limiting value of angular momentum. After replac-
ing the k integration by a sum the other one remains
a superposition of a large (700) number of symmetrized
plane waves covering the whole space,

a,(r) =3 > fur(r-RJ) Yi(r - R)
R L

forr(r) = O(ro — )il {Z(Z e RN " ¢(n,k), ApL(n, k)) Rgi(r)

E k

_ Z e~ kR Z 'ka+K,-jl(|k +K;|r)YL(k + K])} .
k J

In the central muffin-tin sphere (R = 0) f, Lo is nonzero
only if Y7, contains a part which transforms like a, itself
(1.9). If we choose lmax = 2, this is true for one L only.

While the second part varies smoothly with r, the first
part describes the oscillations of the Wannier functions
at the lattice sites where the potential is singular. The
radial functions f,rr can be represented by cubic spline
functions. In cases where it seems to be appropriate the
plane wave part as well may be expanded into spheri-
cal harmonics around any point in r space particularly
around any lattice site.

III. RESULTS

We considered the fcc transition metals Ni (paramag-
netic), Cu, Pd, Ag, Pt, and Au. The Bloch functions
were obtained from MAPW calculations in the local den-
sity approximation using the density functional according
to Gunnarsson and Lundquist.'® The shape of the effec-
tive jotential was assumed to be warped muffin tin. For
the 4d and 5d metals a scalar-relativistic version'* based
on the Foldy-Wouthuysen!® transformation was applied
with the relativistic correction to the exchange potential
according to Macdonald and Vosko.!®

D0 vk, R (2.16a)
k J
with
Vieik,; = Y, e(n,k), v(n,k); (2.16b)
and
(2.16¢)

[

For the various metals we considered a nine dimen-
sional band complex defined by the representations I'y,
I'12, 25/, and I'y5 at the point k = 0. The artificial cut
leads of course to inaccuracies in the reproduction of the
band structure at the upper edge of the band complex
but it can be expected that this will affect only the p-
like Wannier functions belonging to the high-lying I'ys
representation.

A. Coefficients of the model Hamiltonian

In the first step the Slater-Koster-parameters of the
model Hamiltonian had to be determined. We performed
a fit to the band structure energies including 110 equidis-
tant k points in the irreducible wedge of the Brillouin
zone. During the iteration process the mean error was
calculated considering only eigenvalues up to a certain
limiting energy. This energy limit was raised as long
as the error below the preceding limit was not signif-
icantly increased. The effect of this procedure is that
the fit is excellent below the energy limit and slowly be-
comes worse with increasing energy. We want to stress
that this method is to be preferred to the method of
Papaconstantopoulos,'” who took the energy I';s at the

TABLE 1. Mean error for the Slater-Koster interpolation in the region below the given energy

limits in mRy.

Energy limit Ni Cu Pd Ag Pt Au

Fermi energy 0.24 0.33 0.22 0.34 0.24 0.33
Fermi energy + 0.4 Ry 0.29 0.41 0.33 0.40 0.27 0.42
Fermi energy + 0.7 Ry 0.88 2.38 4.27 2.24 0.98 3.81
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TABLE II. Slater-Koster parameters.

Ni Cu Pd Ag Pt Au
E, ,(000) 0.79550 0.96850 1.13270 1.27040 1.01250 0.90700
Es,3_ 2 3,2_,2(000) 0.33740 0.50840 0.55240 0.77760 0.59750 0.54210
E,. ,-(000) 0.34180 0.51820 0.55670 0.78570 0.60070 0.57310
E. .(000) 1.30560 1.47900 1.53970 1.68280 1.59770 1.52900
E, .(110) -0.08070 -0.08960 -0.08000 -0.06220 -0.07210 -0.06650
Esz:_,.z,,(llﬂ) 0.00620 0.00840 -0.01930 -0.01480 -0.04190 -0.01090
Eszz_,.z’h:_,.z(ll()) -0.00910 -0.01190 -0.01660 -0.01020 -0.01650 -0.01530
Ezn_vzyzz_vz(IIO) 0.01870 0.02460 0.02800 0.01760 0.02390 0.02810
E,. (1 10) 0.00710 0.00810 0.00960 0.00630 0.01030 0.00980
E,y,v,(lll)) 0.00910 0.01090 0.01270 0.00790 0.01210 0.00610
E,v,,(110) -0.03410 -0.04160 0.04800 0.03310 0.05150 0.05240
E,v';,,z_,.: (110) 0.01040 0.01440 0.02420 0.01320 0.02310 0.02190
Eqy 2y (110) -0.02060 -0.02700 -0.04060 -0.02450 -0.04190 -0.03890
E. .(110) -0.08610 -0.08790 0.08370 0.06640 0.08570 0.07670
Ez_hz_,.n (110) 0.00520 0.00800 0.02810 0.01390 0.04030 0.01280
E,,,:_vn (1 10) 0.01950 0.02270 0.01940 0.01370 0.01280 0.02780
E,,,v(llo) -0.02910 -0.03610 -0.04530 -0.03330 -0.05340 -0.05810
E. -(110) 0.08340 0.08340 0.06340 0.05660 0.06850 0.08210
E,,,,,(llO) 0.10280 0.10060 0.10670 0.07700 0.10960 0.10200
E,,y,(IIO) 0.00650 0.01200 0.01520 0.00930 0.01130 0.00580
E. .(110) 0.02370 0.01690 -0.01490 -0.00200 -0.00910 0.00230
E,,.(002) 0.00860 0.00310 0.00280 0.00330 0.00230 0.01210
Eszz_,.z,, (002) -0.00580 -0.00820 0.00710 0.00000 -0.00200 -0.00160
Eazz_,.z,;,,a _p3 (002) -0.00520 -0.00650 -0.00350 -0.00310 -0.00280 -0.00390
E,:_yz’,z_vz (002) -0.00130 -0.00180 -0.00550 -0.00080 0.00180 -0.00300
E,,z,yz(002) 0.00140 0.00090 0.00130 0.00010 -0.00040 -0.00340
E.y,2y(002) 0.00010 0.00030 0.00090 0.00040 0.00100 0.00090
E; .y (002) -0.00010 -0.00100 0.00230 -0.00060 -0.00010 -0.00390
E. .(002) 0.01160 0.00950 -0.01710 0.00030 -0.00070 0.00690
E. ,(002) 0.00680 0.00170 -0.00680 -0.00040 -0.00760 -0.01120
E,,aza_,.z (002) -0.00750 -0.01030 -0.01150 -0.00200 0.00130 -0.00280
E, .(002) -0.00190 0.00260 -0.00710 0.00970 -0.01310 0.00040
E,,.(llZ) 0.00000 0.00340 -0.00100 -0.00060 -0.00180 -0.00310
Eazz_,z,,(IIZ) -0.00040 -0.00050 0.00150 0.00070 0.00030 0.00080
Es,2_,2 3,7_,2(112) -0.00040 -0.00050 -0.00060 -0.00010 0.00050 -0.00100
E,:_y:’zz_y:(IIZ) 0.00040 0.00050 0.00150 0.00020 -0.00030 0.00090
E,,z,,(112) -0.00040 0.00050 -0.00070 0.00030 0.00030 0.00090
Ev,,;,,z_,.z (112) -0.00020 0.00000 0.00070 0.00000 0.00040 0.00050
Ev,,zz_yz(112) -0.00030 -0.00050 -0.00070 -0.00020 0.00010 -0.00090
Ev,,v,(112) -0.00030 0.00020 0.00050 0.00010 0.00020 0.00000
E,y,za_yz (112) 0.00030 0.00050 0.00070 0.00020 -0.00010 0.00090
E.yy:(112) -0.00010 -0.00010 0.00010 -0.00020 -0.00060 0.00040
E., s(112) -0.00070 0.00000 -0.00100 -0.00030 0.00020 -0.00050
Eey,Sz’—r’ (112) -0.00010 0.00020 0.00110 0.00010 0.00040 0.00050
Eoyy:(112) -0.00020 0.00010 0.00030 0.00010 0.00020 0.00010
E.y2y(112) 0.00000 0.00010 0.00030 0.00010 0.00020 0.00020
E. .(112) -0.00250 0.00080 -0.00120 0.00080 0.00150 0.00200
Ez,:,,n_,.z (112) 0.00070 0.00120 0.00150 -0.00020 -0.00040 0.00130
Ez,z’—y’ (112) 0.00060 0.00080 0.00110 0.00010 -0.00020 0.00120
E:n,yz(llz) 0.00020 0.00060 -0.00050 -0.00030 -0.00100 -0.00070
E. .,(112) -0.00060 0.00000 0.00060 0.00010 0.00030 -0.00020
Eg,zy(llz) -0.00070 0.00020 0.00080 0.00000 -0.00020 -0.00040
E. -(112) 0.00100 0.00060 -0.00340 -0.00090 -0.00130 0.00080
E, -(112) 0.00500 0.00140 0.00000 0.00100 0.00190 0.00450
E. ,(112) 0.00240 0.00450 0.00080 -0.00140 -0.00040 0.00340
Ezyszn_,z (112) -0.00010 0.00010 -0.00160 -0.00050 -0.00040 0.00030
E.4.(112) -0.00040 0.00140 0.00150 0.00000 0.00030 -0.00050
E. 2y (112) -0.00020 0.00100 0.00060 0.00080 -0.00050 0.00120
E, .(112) 0.00170 -0.00180 -0.00070 0.00010 0.00050 0.00220

E; .(112) -0.01180 -0.01120 0.00000 -0.00650 -0.00700 0.00110
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upper edge of the band complex and other p-like states at
symmetry points into account in every step of iteration.
It is not possible to reproduce these high-lying states in
this nine dimensional model without affecting the lower
part of the band structure because this I';5 level is hy-
bridized with another I'y5 level following 0.8 Ry above,
so there should be even on-site matrix elements between
these two in an extended model. Three shells of neighbors
have been taken into account. The mean error is given in
Table I. The values given could be verified for arbitrary
k meshes. In general it can be said that the fit is ex-
cellent in the region up to 0.5 Ry above the Fermi level.
It shall be mentioned that a mean error of only 3 mRy
could be obtained with only nearest neighbors taken into
account. The values for the Slater-Koster parameters are
given in Table II. The first-principles band structure and
the interpolated one are compared in Fig. 1.

The conclusion to be drawn from these results is that it
is well possible to achieve good convergence of the Slater-
Koster parameters in an orthogonal basis and that it is
not necessary to introduce a nonorthogonal basis to re-
produce a first-principles band structure with high accu-
racy.

The procedure can be generalized for the case when
spin orbit coupling is included leading to Wannier
functions transforming under representations of double
groups. This will be the subject of a future paper.

B. Localization

An appropriate measure for the localization of the
Wannier functions is the mean value of r2 already used
for the determination of the phases of the Bloch func-

Energy (Ry)

Fermi Energy

]|
=
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tions. If we define

) = [ ) e e i (3)
wsc

(where WSC denotes the Wigner-Seitz cell), then we can

write instead of (2.11):

2 _ 1 Q /
Tov = Aqd Z (2,",)3 leﬂu(k’q)dk

uer) a=0

forver® | (3.2)

employing the Laplace operator with respect to q at the
point q = 0. The sum over all rows of ' leads to cubic
symmetry in q, which permits a quadratic approximation
for small q:

31 Q
CRF SO =Y ML ERT

uer(»)

(3.3)

Results for the root of the mean square radius obtained
with g of order 10~2 are given in Table III.

Another measure is the probability integral restricted
to the muffin-tin sphere (MTS),® where the Wannier
function is centered:

P, = / | au(r) [2d5r (3.4)

MTS

Values for P, are given in Table IV . The k-space in-
tegrations were performed with 110 points in the irre-
ducible wedge to obtain the results in Tables III and IV.
The effect of the number of k points on the shape of the
Wannier functions in the central cell is very small while
it becomes larger for increasing values of r. If k points
with degeneracies are contained in the integration mesh
the procedure of Sec. II A has to be applied to give the
correct results.

These results show that the d-like Wannier functions
are almost completely localized in the central Wigner-
Seitz cell for all the metals considered. It is observed that
the localization of the s function is strongly increased
with the strength of relativistic effects, while the d func-
tions become slightly more delocalized. This is in agree-
ment with the general observation that the binding of
s states is stressed by relativistic effects leading at the
same time to an increased screening of the potential for
d-like states.

TABLE III. Square root of the mean square radius of the
Wannier functions (7,2)% in a.u.

r A X Z W Q0 L A r )X K

FIG. 1. Band structure of copper in directions of high
symmetry in the Brillouin zone. The solid curves show the
first-principles energies and the dotted curves the eigenvalues
of the model Hamiltonian. The fit is excellent in the region
up to 0.5 Ry above the Fermi level. The level I';5 at 2.4 Ry
cannot be reproduced in this model.

'n T2 TDas Tis Lattice constant MT radius
Ni 55 1.1 1.1 103 6.652 2.352
Cu 6.7 1.2 1.3 10.0 6.831 2.415
Pd 52 1.3 1.3 8.6 7.328 2.591
Ag 56 1.2 1.2 11.1 7.789 2.754
Pt 43 14 1.3 8.9 7.399 2.616
Au 3.7 1.6 1.8 109 7.679 2.715
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TABLE IV. Probability integral P, restricted to the cen-
tral muffin-tin sphere.

I T2 |PYY I'is
Ni 0.42 0.95 0.97 0.23
Cu 0.39 0.96 0.97 0.23
Pd 0.56 0.94 0.95 0.23
Ag 0.64 0.96 0.97 0.31
Pt 0.68 0.95 0.95 0.28
Au 0.70 0.94 0.96 0.32

The lack of systematics in the values for the p functions
is probably due to inaccuracies caused by the cut at the
upper edge of the band complex defined by the model
Hamiltonian. This would have to be accounted for by an
extension of the model Hamiltonian.

The behavior of the Wannier functions is illustrated by
the plots in the next-neighbor direction (011), which is
the direction of slowest falloff, in Figs. 2—4. The curves
have been obtained using 1012 k points in the irreducible
wedge. It can be seen that the number of nodes between
the origin and the neighboring lattice site is increased
by one going from the 3d to the 4d metals and from the
4d to the 5d metals, respectively. The Wannier func-
tions show distinctive oscillations at the noncentral lat-
tice sites, which are expected from the orthogonality re-

x1 x3 : x10

f\/\ Au
ﬁ/ﬁ\>» Pt
A A
o £
N Pd
N
N Cu
V/\ . ; A Ni
0 (011) (022)

FIG. 2. Wannier function of s symmetry (I';) plotted in
the (011) direction. For clarity the plot starts a small distance
away from the origin. The function value has been multiplied
by a factor 3 in the muffin-tin sphere around the lattice point
(011)a/2 and by a factor 10 in the sphere around (022)a/2.
(a denotes the lattice constant.) The falloff is increased with
the strength of relativistic effects.
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x1 x5 x50

\J\Jv/\ Pt

Ag

Pd

T !
(011) (022)

FIG. 3. Wannier function of yz symmetry (I';5:) plotted in
the (011) direction. The function value has been multiplied

by a factor 5 in the muffin-tin sphere around the lattice point
(011)a/2 and by a factor 50 in the sphere around (022)a/2.

lations (1.10). Figure 2 shows that in the case of the s
function the amplitudes of these oscillations fall off much
faster for the heavier metals, in agreement with the re-
sults from Tables III and IV. Figure 3 exhibits the op-
posite tendency for the d functions, although on a much
lower scale.

N Au
Bt A
N Pt
N\ i A
- Ag
V
Vo _A\ Pd
Vv
{\ A~ Cu
N
[\\/_ R, ) e S Ni
0 (011) (022)

FIG. 4. Wannier function of z symmetry (I'1s) plotted in
the (011) direction.
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TABLE V. Overlap S{P between bands and representa-
tions for Cu.

Band F1 F12 I‘zsl Fls

1 0.260 0.354 0.302 0.083
2 0.009 0.277 0.684 0.027
3 0.026 0.238 0.686 0.047
4 0.012 0.589 0.379 0.019
5 0.009 0.310 0.677 0.002
6 0.167 0.216 0.227 0.385
7 0.301 0.003 0.039 0.662
8 0.183 0.005 0.003 0.809
9 0.030 0.006 0.001 0.964

C. Energy spreading

The results obtained above show that the concept of
the band complex, which implies appropriate linear com-
binations of Bloch states belonging to different bands,
yields Wannier functions having not only good symme-
try but also the desired localization properties. It might
be of interest to consider the relationship with the bands
in the ordinary sense. As a measure for the overlap be-
tween a band n and a representation I'®) we can define
the following integral:

s = 3 / le(n, k) |2 dk.

vel(r)

(3.5)

Values for these integrals are given in Table V for the
case of copper. Clearly the d-like representations I''? and
I'2% play a dominant role in the first six bands and almost
disappear in the upper three ones, which show mainly I''®
symmetry. I'! appears to a considerable amount in bands
1,6, 7, and 8. The strong mixing of symmetries especially
in bands 1 and 6 shows the necessity for the inclusion of
all three symmetry types in the band complex.

SUMMARY

We have shown how Wannier functions can be con-
structed from first-principles Bloch functions with high
accuracy. They are orthogonal to each other as well as
to the core states and are everywhere differentiable. The
precondition for this transformation was the accurate de-
termination of the parameters of the Slater-Koster inter-
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polation scheme in the orthogonal basis. At points of de-
generacies the resulting eigenvectors had to be adapted to
the Bloch functions. The combination of the two yielded
smooth functions in k space and thus localized Wannier
functions.

The results for fcc transition metals show highly lo-
calized functions of d symmetry, an s function whose lo-
calization is strongly increased with the strength of rela-
tivistic effects, and less localized p functions.

The Wannier functions can be calculated with reason-
able computational effort in the central and the neighbor-
ing cells and may now be used in various applications.
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APPENDIX

Let 3 be a member of G(k). From (2.1) we have
0, (67r) = [ dk Y eln, 10 c(87)
=Y ek Y De(Bnndwk(6'r). (A1)

Because of (1.9) this has to be equal to
Z L(B™ )vuau(r)

=Y "T(B o / dk > e(n, k), $nk(r). (A2)

From (2.2) it follows that

Z Die(B) e e(n, )y = Z L8~ )uue(n, K)u  (A3)
The unitarity of the eigenvectors e(n, k) gives
by ue(n’, k) e(n, k),. (A4)

nn! = Z F(:B

Together with (2.3) this yields (2.5).
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