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In this paper, the insensitivity of the projected density of states (PDOS) is investigated. Rounding er-
rors are treated as perturbations in the recursion process when calculating the PDOS. A generalized er-
ror theory for the PDOS is developed, which includes Paige's theorem and the effects of truncation of
the continued fraction. An analytic expression for the PDOS which isolates the error term is derived.
This error term is shown to be exponentially insensitive to perturbations which are distant from the
starting state; in contrast to eigenvalues and/or eigenfunctions which are very sensitive to small pertur-
bations. This is what makes calculating PDOS and its integrated quantities a more stable approach com-
pared to computing eigenvalues. This insensitivity is equivalent to a black-body theorem for the PDOS.
This result is useful in practical computations because it enables an infinite system to be approximated
by a particular finite one, and gives a bound on the error in the computed PDOS.

I. CALCULATING PROJECrKD DENSrj. Y OF STATxS

To calculate projected quantities such as the electronic
occupation of an orbital, the energy of a defect state, or
the band energy and electronic occupation of a projected
state, the approach is to first calculate the projected den-
sity of state (PDOS) which describes how a particular or-
bital couples to the entire system. The PDOS for a finite
system is defined' as

n(uo, E)=g l(uo, +„)I'5(E—E„),

where uo is the orbital of projection and 4„ is the eigen-
function of the system Hamiltonian with energy E„.

The PDOS is the total density of states weighted by the
probability of finding the system in a particular orbital
u0. Many quantities of physical interest can be written as
integrals of the PDOS; for example: The diagonal ele-
ment corresponding to u0 of the density matrix,

EF
(n ) =f n(uo;E)dE; (2)

the energy expectation value for orbital uo,

(E)= f n(uo,.E)EdE .

Since the definition of the PDOS does not require the sys-
tem to possess symmetry, this approach is applicable to
amorphous or disordered solids.

In computing the PDOS, one need not solve for all the
eigenfunctions and eigenvalues of the system. Calculat-
ing all eigenpairs of the Hamiltonian is impractical, both

computationally and analytically, because the number of
states involved in a macroscopic system is on the order of
10 . Diagonalization on a computer requires a number
of arithmetic operations which scales with the cube of the
number of orbital degrees of freedom. Furthermore,
direct diagonalization is unstable because of the sensitivi-
ty of eigenfunctions and eigenvalues to small changes in
the boundary conditions. The PDOS, on the other hand,
does not exhibit this sensitivity and can be computed us-

ing the recursion method with fewer arithmetic opera-
tions, compared to a full diagonalization of the Hamil-
tonian.

This insensitivity of the PDOS with respect to the
boundary conditions of the system was first pointed out
by Friedel. ' It is a black-body effect for the PDOS which
Heine referred to as the invariance theorem. This is
similar to the black-body theorem in electromagnetic
theory where the density of modes in a cavity is insensi-
tive to the boundary of the system.

In this paper, perturbations and numerical errors are
treated equally. Thus, a generalized error theory for the
PDOS is formulated. Errors that occur when computing
integrated quantities of the PDOS will not be considered
because they have been discussed by Nex.

In Sec. II, the recursion method for computing PDOS
is discussed, and previous error analyses on the subject
are briefly reviewed. It is seen that these analyses do not
address the effects of numerical approximations like
round-off errors on the PDOS. Hence in Sec. III, a gen-
eralization of the error theory for the PDOS is developed.
This is used to examine the behavior of errors for systems
where the PDOS has both discrete and continuous spec-
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tra. This form of error theory for the recursion method
takes into account all types of errors that occur in a re-
cursion calculation. It extends the previous analysis
given by Paige's theorem, and the truncation efFect
discussed in Haydock and Shohat and Tamarkin. Ex-
amples of these errors include perturbations, round off,
truncation of the recursion calculation, loss of ortho-
gonality of the recursion vectors, and approximation in
the Hamiltonian or non-Hermiticity. From this analysis,
the accuracy of the computed PDOS is determined. To
illustrate the insensitivity of the PDOS, a numerical ex-
ample is discussed in Sec. IV. Section V summarizes the
important features of the error theory and its application
to the computational method known as dynamic recur-
sion.

II. THE RECURSION METHOD
FOR COMPUTING PDOS

Given a Hamiltonian H and a starting orbital up, the
recursion method is defined by the recurrence relation

ed resolvent which goes to zero as the number of recur-
sion steps increases. Thus, it is not necessary to recur un-
til the space is completely spanned in order to calculate
the projected resolvent to a given precision. It can also
be seen from the continued fraction how errors that
occur further down its chain have a smaller e8'ect on the
projected resolvent.

Before proceeding with the generalized error analysis,
a brief review of Paige's theorem and the analysis on
truncation will be given in the following subsections.

A. Paige's theorem

Paige's theorem ' ' can be briefly stated as fol-
lows: Let E be an eigenvalue of an n Xn Hermitian ma-
trix H with at most z nonzero elements in any row. If H
is tridiagonalized using the recursion method, then after
N recursion levels there exists an eigenvalue of the tridi-
agonal matrix J say p;, such that'

IE —p; I
~2.&[lb~+gu;(N) I(1+2ep)+2eg~N iiHii],

Hup apup+b]u] (4) (10)

and for n & 1, by the three-term recurrence

Hu„=a„u„+b„+,u„+,+b„u„ (5)

RG(E) =
(E—ap)—

b
(E—a, )—

(E —a )—
2

The PDOS, n (up', E), is proportional to the singular part
of the projected resolvent. It is the limit as e—+0+, from
above the real axis, of the imaginary part of R p(E):

From the a's and b's generated by the recurrence rela-
tion, the projected resolvent Rp(E), in continued fraction
form, is

where &p=«+4)«i=(7+z&)«IIH[[=il IHI ii with

iHi the matrix formed by taking the absolute value of
each element of H, e the floating point error, bN+, is the
N + 1 off-diagonal element of J, u;(N) is the Nth element
of the ith recursion vector, and iiH ii denotes the norm of
the matrix H.

From the above relation, it is seen that Paige's theorem
does not quantify how errors in the computed eigenvalues
contribute to the computed projected resolvent. The ei-
genvalue p; is very sensitive to a change in the number of
recursion levels while the projected resolvent is not. Fur-
thermore, for an infinite system, the eigenvalue spectra is
not necessary and so the result of Paige's theorem, while
deals only with discrete eigenvalues, is inapplicable.

n(up;E)= lim — ImRG(E—+ie) .1

e~p+

In matrix notation, the recurrence relation is

HU=UJ,

(7)
B. The efFects of truncation

If the continued fraction is truncated after N levels, an
error in the projected resolvent is introduced and the ap-
proximate projected resolvent ' is given as a fractional
linear transformation

where U is the matrix formed of the column vectors
u p, u 1,u z, . . . , u „,and J is the symmetric tridiagonal ma-
trix with the a„'s forming its diagonal elements and the
b„'s its off-diagonal elements. By rewriting HU = UJ into
U(E —J) ' =(E H) '

U, the pr—ojected resolvent is
given by

Rp (E,z)= 1
p

Q~(E)
Qw+t(E) z-

N+1

P~(E)
Pe+i(E)

N+1

RG(E)=(up, (E H) 'Uep)—
=(up, U(E —J) 'ep }=(ep, (E —J} 'ep },

where the parentheses denotes inner product in H space,
the angled bracket denotes inner product in J space, up is
the starting orbital, ek is the Cartesian basis vector in the
J-space matrix representation, and the inner product
(u;, uj )=5;..

QS' the real axis, truncating the continued fraction
after several steps gives a bounded error on the project-

b„+,P„+,(E)=(E—a„)P„(E) b„P„,(E), —

P, (E)=0 and Pp(E)=1

b„+,Q„+,(E)= (E—a„)Q„(E)—b„Q„,(E),
Qp(E)=0 and Q&(E)=1

(12)

(13)

where z denotes the part of the continued fraction that
has been truncated, PN(E) is an ¹horder polynomial in

E, and Q&(E) is an (N 1)th order polyno—mial. The po-
lynomials satisfy the following relations:
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and where the a's and the b's are the ones generated by
Eq. (5).

Haydockz and Shohat and Tamarkin have shown that
for complex E and z, and for N) 0, Eq. (11) maps the
complex z plane into the interior of a circle C(E) with
the real axis of z mapping into the circumference of this
circle. As X approaches infinity, the radius of this circle
decreases monotonically to zero. From this result, it is
seen that the recursion method gives a monotonically
convergent sequence of approximations for the projected
resolvent. However, this approach assumes an exact
computation of the coeScients a„and 5„. It does not ad-
dress the effect of round-off errors that are encountered in
practical applications. Nor does it determine the error
on the PDOS when H is approximated.

IH. GENERAI-I&ED ERROR THEORY
FOR THE RECURSION METHOD

Hu„=a„u„+b„+,u„+,+b„u„,+5„. (14)

The term 5„represents the most general type of error.
Examples are perturbations, round off, truncation of the
recursion process, loss of orthogonality of the recursion
vectors, and approximation in the Hamiltonian or non-
Hermiticity.

Consistent with the notations used in Sec. II, the equa-
tion above can be written in matrix form as

In practical calculations, Paige's theorem cannot be
applied in conjunction with the analysis on truncation be-
cause Paige's result does not apply to the projected resol-
vent. Hence the need for an error theory of the projected
resolvent which does not assume exact arithmetic opera-
tions and which addresses the effects of other types of er-
rors.

In this section, a generalized recurrence relation is
given which includes an error term. This error term
serves as the inhomogeneous part to the otherwise homo-
geneous matrix equation HU= UJ. The contribution of
this inhomogeneous term to the projected resolvent for
systems with extended or localized states is then ana-
lyzed.

A. The recursion method with an explicit error term

Consider the three-term recurrence relation of the re-
cursion method as given by Eq. (5), and assume an error
in each step of the recursion, represented by 5„,such that
the recurrence equation becomes

Ro(E)=Go(E)+(uo, R (E)b,G(E)eo), (17)

where Ro(E)=(uo, (E —H) 'uo), Go(E)=(eo, (E
—J) 'eo), and uo and eo were defined in Sec. II. In this
form, the error on the projected resolvent Ro(E) is entire-

ly contained in (uo, R (E)EG(E)eo).
Now consider the behavior of (uo, R(E)EG(E)eo).

First expand it in the basis, I 4„J,of the Hamiltonian H
and also in the basis jek ) of the tridiagonal matrix J
which were defined in Sec. II. Without loss of generality,
4p is chosen as the starting orbital. Then the error term
of the projected resolvent is given by

(@O,R (E}bG(E)eo)=g (40,(E —H) '4„}
n, k

X(4„,hek)(ek, (E —J) 'eo) .
(18)

Note that (4„,hek ) is the n by k element of the matrix h.
The other two terms in the product are off-diagonal ele-
ments of the exact and computed resolvent, i.e.,
R 0„(E)=(40, (E —H) '4„) and Gko(E) = ( ek, (E
—J) 'eo), respectively. The error in the projected resol-
vent is determined by how 6 couples to the off-diagonal
elements of the resolvent;

(40,R (E)b G(E)eo}=gRo„(E)h„kGko(E) . (19)
n, k

C. Behavior of the ofF-diagonal element of the resolvent

Next the behavior of (@o,R (E)EG(E)eo) for systems
that have either an exponentially localized or extended
states wi11 be considered. Cases in between should be
clear from these two extremes. The expression for
Ro„(E) and Gko(E) have to be generalized for systems
with extended states. Since Ro„(E) and Gko(E) have
similar form, only Ro„(E) will be considered; results for
Ro„(E)are also valid for G„o(E).

In a system with extended states, Ro„(E)is given by an
integral over an energy distribution. The off-diagonal ele-
ment of the resolvent becomes

8. Error term in the projected resolvent

The projected resolvent for the starting orbital uo is
the element in the first row and first column of Eq. (16),
i.e.,

HU= UJ+6, (15) Ro„(E)=(40, (E —H) '4„)

where 5 is formed by the column vectors
50 5] 5$ 53 . , 5„. When b, is zero, the homogeneous
matrix equation HU=UJ is recovered. Equation (15}
isolates the contribution of the error term from the a' s
and b's in the tridiagonal matrix J, and from the recur-
sion vectors that forms U. Rewriting Eq. (15) to give an
exact relation between the resolvent of H and the resol-
vent ofJgives

R (E)U= UG (E)+R (E)hG(E), (16)

where R(E}=(E—H} ' and G(E)=(E —J)

(@0,qi(E') )(ql(E'), @„)
n (40,E')dE',

(20)

where (V(E'),4„) is the inner product of the orbital 4„
and the state %(E'). It is the projection of the orbital @„
onto the eigenstate 4 with an energy E'. Here, the
PDOS, n(40, E), is chosen as the energy distribution
function. This choice of energy distribution function
n (40,E) defines the normalization condition for the wave
function %. [The relation between the choice of energy
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Exponentially localized eigenstates give rise to singular
spectral points (5-function distribution of states) in the
PDOS. Since the eigenstate 4 is exponentially localized,
its overlap with the orbital 4„decreases exponentially
with distance x„ from the center of 4 which is taken to
be the origin, i.e.,

(+(E ),4„)-e (21)

For large n and E near E, from Eq. (20}, the off-diagonal
elements of the resolvent, Ro„(E), goes to zero exponen-
tially with x„:

—k (x, +x„)
Ro„(E)— (22)

2. Extended states

With extended states, the PDOS is a smooth (absolute-
ly continuous} spectrum. Here, the states are assumed to
have a free-particle-like behavior which gives

(%(E'),4„)-e " (23)

where 8„(E') varies smoothly as a function of E' The.
i8„(E') .

function e " is a generalization of the free-particle ex-
ik (,E')x

pression e
Since n(4 EO) is smooth, substituting this and Eq.

(23}into Eq. (20} gives

distribution function n (4O, E) and the normalization con-
dition of the wave function 4 is discussed in the Appen-
dix. ]

1. Localized eigenstates

truncated. Equation (11) in Sec. II B gives the expression
for Ro(E,z) .Go(E) follows from Eq. (11) when z=0,
that is, if the continued fraction has terminated. So
(4o,R (E)b G (E)eo ) is given by

bN+i N+i«) —z N(E)
Ro(E) Go—(E)=

bl [bN+& N+&(

Qx+ t(E)
b PN+i(E)

(27)

IV. NUMERICAL KXAMPLK

Simplifying the equation gives the form of the error in
the projected resolvent, (4o, R (E)bG(E)eo), in terms of
the truncation error of the continued fraction z as

(40,R (E)b,G(E)eo)

z [Q&+&(E)PN(E) —P&+ &(E)Q&(E)]
(2&)

b, PN+, (E)[b~+ )PN+ )(E) zP~(E—) )

This is a linear fractional transformation which has the
same property mentioned in Sec. IIB and discussed in
Haydock or Shohat and Tamarkin.

Paige's theorem results directly from Eq. (15). Hence
the relation HU=UJ+5 serves as a starting point for
deriving Paige's theorem. These are shown in Refs. 9 and
10.

It is seen that Paige's theorem has been incorporated
into an error theory for the projected resolvent which
also takes into account the e8'ects of truncation and other
types of error. Thus all forms of error that accrue during
the recursion process have been considered in this gen-
eralized error theory for the projected resolvent.

and

I

ReR0„(E)—n (40;E )sin[8„(E)]e (24)

I——ImR0„(E)-n (40', E)cos[8„(E)]e ", (25)

A simple nontrivial example is the m-bonded linear
chain. It is a series of atomic orbitals concatenated to
form a chain. The Hamiltonian is composed of the on-
site energy a of each orbital and a hopping interaction b
which is between its nearest neighbors.

where, when integrating Eq. (20), n(40, E') is evaluated
at E and 8„(E') has been expanded around E as
8„(E'}-8„(E)+8'„(E)(E'E). In order t—o make the in-
tegral nonsingular, the projected resolvent is evaluated
for complex E~E+ie. These o6'-diagonal elements of
the resolvent dies ofF exponentially fast when
8'„(E)»1/e.

The contribution of Eq. (19) to integrated quantities of
the projected resolvent is thus proportional to

ff(E}e ' ' 'cos[8„(E}]dE . (26)

This goes to zero exponentially fast for e&0. On the real
axis when @=0, this integral is the Fourier transform of
f (E) and also goes to zero exponentially in the limit as
8„(E)~ oo provided that f (E) is smooth and

f"„If(E)Id« ~

D. Relation to previous error theories

One can recover the results given in Haydock and
Shohat and Tamarkin when the continued fraction is

Taking the starting state uo to be the left-most orbital,
this model give the a's and b's in the tridiagonal matrix
as

a„=a, b„=b . (29)

Whence, this system is also known as the constant chain
model. This model gives a discrete or continuous spectra
depending on whether the chain is finite or infinite, re-
spectively. For an infinitely long chain, the analytic ex-
pression for the PDOS of the orbital at the left-most site
1S

+4b (E a) /4b, —a —2b ~ E ~ a +2b-,n(uo,.E)= .
0, E &a —2b, E &a+2b .

(30)
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FIG. 1. A plot of the differences between
the exact PDOS and those with rounding er-
rors that occur at different recursion levels.
The solid curve is when errors begin at level
n ~1. The dashed curve is when errors start
from n ~10 while the dotted curve is when
n & 20. All calculations were terminated using
the square-root terminator after 25 recursion
levels. Inset is a plot of the exact PDOS as
given by the analytic expression of Eq. {30).
The values used for a and b are a =0, b = 1.

-0.05

0
Energy

To see how the PDOS is afFected by perturbations, errors
are introduced into the numerical calculation at different
recursion levels, i.e., for n &1, 10, and 20; corresponding
to different proximity of the perturbation from the start-
ing orbital. All calculations were terminated after 25 re-
cursion levels with the same square-root terminator. ' '
Without loss of generality, the following values were used
for a and b:a =0 and b = l. Errors introduced are such
that ~5„ I

~ 0.01 in Eq. (14); which is less than 10% of u„.
The term S„manifests itself as errors on the tridiagonal
coeiIicients a„and b„. The differences between the exact
PDOS and the perturbed ones are plotted in Fig. 1. A
plot of the exact PDOS is provided (inset) for reference.
It is seen that errors that occur early in the recursion
make a bigger change on the PDOS. This is consistent
with the fact that perturbations nearby has a much larger
effect on the local environment. As errors occur later in
the recursion process, which is equivalent to perturba-
tions farther from the starting state, the changes in the
PDOS get smaller. Note that the maximum deviation in
the PDOS is also less than 10% of its exact value. More-
over, note how the changes in the PDOS oscillates be-
tween positive and negative values which then cancels
out when calculating integrated quantities like (n ) or
(E ) of Eqs. (2) and (3), respectively. Also it can be seen
from Fig. 1 that the band edges have converged as ex-
pected with a recursion calculation. From this plot, one
clearly sees the insensitivity of the PDOS to errors which
are far from the starting state uo. This is an example of
the black-body character of the PDOS.

V. BLACK-BODY THEOREM AND
DYNAMIC RECURSION

A. Summary

The general form of error on the resolvent is given by
Eqs. {16)and (17). The error term in these equations in-
cludes the effect of truncation and Paige's theorem. Fur-
thermore, it is seen that for localized systems the error
term (uo, R(E)EG(E)eo) decays exponentially with dis-

tance from the starting orbital. The computed resolvent
Go(E) converges exponentially with decreasing error to
its exact value Ro(E). For systems with extended states,
it was shown that the contribution of (uo, R (E)EG(E)eo)
to R o(E) is zero in the mean.

B. Application

The error in the projected resolvent given by Eq. (19),
which dies off exponentially as a function of distance
from the starting orbital, describes the insensitivity of the
PDOS to disturbances far from the orbital in considera-
tion, or to the system s boundary conditions. This insen-
sitivity is a form of a black-body theorem for the project-
ed density of states. This is the basis for dynamic recur-
sion.

Dynamic recursion makes use of this black-body effect
of the PDOS to implement a computational method that
uses a dynamic basis set to handle an infinite system. In
this scheme, only the N largest elements of the recursion
vector are considered. The neglected components are
then treated as errors in the recursion process with the
largest of these neglected components serving as an upper
bound for the error 5 in HU = UJ + b, . Although Paige's
theorem is inapplicable because there need not be discrete
eigenvalues for an infinite system, projected quantities
like PDOS can still be calculated and their errors bound-
ed. Using the analysis given in See. III, the error on the
projected resolvent, {uo,R {E)bG(E)eo), and its integrat-
ed quantities can be determined. The generalized error
analysis for the projected resolvent shows that the com-
puted projected quantities have bounded errors and that
the projected resolvent converges monotonically to its ex-
act value as the approximation improved. This result al-
lows the use of a dynamic basis set in a recursion calcula-
tion for an infinite system.
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APPENDIX OFF-DIAGONAL ELEMENTS OF THE
RESOLVENT AND NORMALIZATION CONDITION

For a general expression of the projected resolvent
which includes extended states, Ro„(E) is given as an in-

tegral over an energy distribution; the total density of
states. However, the choice for an energy distribution
function is not limited to the total density of states. Any
energy distribution from an invariant subspace that con-
tains either 40 or 4„ is acceptable provided that the
wave functions be normalized accordingly.

If the PDOS, n (4o,E), is chosen as the energy distri-
bution, that is,

Ro„(E)=(4o, (E H) '4—„}
(@o,+(E')}(+(E'),@„)

n (4o,E')dE',

(A 1)

where (%(E'),4„) is the inner product of the orbital 4„
and the wave function %(E'), then %(E') has to be nor-

malized in a way that Ro„(E)=(40,(E —H) '4„) be-
comes equal to the integral expression on the right-hand
side of Eq. (Al).

Consider the case for which the PDOS is a distribution
of localized states. The spectrum is singular and discrete,
i.e., the PDOS is given by a set of 5-function such that

n(@o,E)=g w 5(E E—), (A2)

where m is the probability of the orbital 4o to be on the
state%'(E ) with energy E,.

Substituting this form of the PDOS into Eq. (Al), and
integrating over all energy, the zero-zero element of the
projected resolvent is given as

w~~(%(E ),4o)~
Ro(E)=Roo(E)=g

a a
(A3)

But —(1/m)lmRo(E) is the PDOS, so from Eqs. (A2)
and (A3), this makes ~(%(E,), @o)~ =1. This type of
normalization for the wave function %(E ) is associated
with the choice of the PDOS for the energy distribution.
This construction is known as point normalization.
Hence the distribution function chosen in Eq. (Al) to
define the off-diagonal element of the resolvent sets the
normalization for the wave function %(E,}.
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