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Shubnikov-de Haas oscillations have been studied, at low temperatures, in a high-mobility quantum-
Hall-effect sample. A linear increase with increasing magnetic field of the peak values of resistance is ob-
served and is explained quantitatively by a quantum diffusion model with predominantly small-angle
scattering. The results are inconsistent with recent suggestions that the peak values of conductivity, be-
tween integer-quantum-Hall-effect plateaus, are e?/2h.

Despite a wealth of experimental results a detailed and
quantitative understanding of the amplitude of the
Shubnikiov-de Haas (SdH) oscillations in quantum Hall
systems has not yet been achieved. This is particularly
the case for the resistivity between integer (IQHE) and
fractional quantum-Hall-effect (FQHE) plateaus. For ex-
ample, there is, as yet, no explanation for the observation
by Chang and Tsui' and Stormer e al.? that in high-
mobility samples there is, for all FQHE features, an
empirical relationship between the diagonal resistivity
(pxx) and the Hall resistivity (p,,). Also, a matter of
some debate at present is the suggestion by Clark et al.’
and Lee et al.* that the peak value of conductivity is
e?/2h between IQHE plateaus and e*?/2h between
FQHE plateaus with e* =e /q for the p /q fractions.

The peak values of conductivity (o,, ) were predicted
by Ando and Uemura,’ for two-dimensional systems with
short-range scatterers, to vary as N, +1 where N is the
Landau level at the Fermi level. For a system with con-
stant density this corresponds to peak conductivities that
vary as 1/B. In high-mobility systems p,, >>p,, so
pxxzanpiy. Also in these systems the quantum Hall
plateaus are observed, experimentally, to be narrow so
Pxy is quite accurately proportional to B. The peak
values of p,, are then predicted to vary as 1/(N, +1),
i.e., to be proportional to B. Specifically,

PPk =(g,/m)\h/e)1 /(2N +1), (1)

where g, indicating the spin degeneracy, is 1 or 2 de-
pending on whether the spin splitting is resolved or un-
resolved and the factor 1/7 comes from the assumption
of a Lorentzian shape for the Landau levels.
Experimentally, in GaAs/Ga,_,Al, As-based hetero-
junctions, the absolute magnitudes of the peak resistivi-
ties are at least an order of magnitude smaller than these
values. Figure 1 shows the low-field SdH oscillations,
measured at low temperatures (~30 mK), in a high-
mobility (280 m?/Vs) sample. This is a conventional
GaAs-Al,Ga,_,As two-dimensional electron gas
(2DEG), grown at NRC, with a spacer layer of 40 nm
and has a density after illumination with red light of
3.4X 10" m™2. After an initial exponential increase in
amplitude [cf. Eq. (3)] the peak values of resistance in-
crease linearly with magnetic field and decrease by a fac-
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tor of 2 when spin splitting becomes resolved. This is
shown more clearly in Fig. 2 where the peak values of
resistivity multiplied by the filling factor v are plotted
against v. The dotted lines, which are the result of the
theoretical estimate discussed below, represent a linear
increase of a factor of about 15 times smaller than the
predictions of Eq. (1). The general reduction in peak am-
plitude was first explained by Ando and Uemura® as be-
ing due to the long-range nature of the scattering poten-
tial in these samples but, for long-range scatterers, their
calculations do not explain the rather precise linear in-
crease with B that is observed experimentally.

A linear increase of p,, is also implied by the data of
Chang and Tsui! and Stormer et al.,> who pointed out
the empirical relationship that exists for high-mobility
samples, i.e.,

Bpxx =Bdp,, /0B , (2)

where the constant 3 varies from sample to sample but is
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FIG. 1. Low-field Shubnikov—de Haas oscillations measured
at approximately 30 mK. The density is 3.4 X 10" m~? and mo-
bility 280 m2/V's. The Hall bar used for the measurements had
a width of 300 um with the separation of 750 um between the
voltage probes.
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FIG. 2. Peak values of resistivity, from the data in Fig. 1,
multiplied by the filling factor v and plotted against v. The dot-
ted lines are theoretical estimates from Eq. (6) using the value of
i, taken from Fig. 3 and with g, equal to 1 or 2 according to
whether the spin splitting is resolved or unresolved.

typically between 20 and 40. The emphasis in this work
was placed on the way this expression reflects all the
FQHE features. However, in the IQHE regime, where
the plateaus are narrow, Bdp,, /3B between plateaus is
approximately equal to p,, and this relationship then de-
scribes peak values of p,, which again vary linearly with
B but which are smaller, by a factor of 7/p, than the pre-
dictions of Eq. (1).

In low magnetic fields, at low temperatures, the ampli-
tude (Ap) of the SdH oscillations is well described by the
expression®’

Ap/po=4exp(—m/w 7, )=4exp(—m/u,B) , (3)

where o, is the cyclotron frequency, p, the resistivity at
zero field, 7, a quantum lifetime, and p, the correspond-
ing quantum mobility. Because small-angle scattering
dominates®® 7, is significantly shorter than the corre-
sponding transport lifetime 7,,. Figure 3 shows a Dingle
plot for the oscillations shown in Fig. 1 and there is good
agreement with Eq. (3). In particular, and in agreement
with data in many lower-mobility samples,”® the prefac-
tor of 4 is obtained correctly. The quantum mobility
p,=12.3 m?/Vs and the ratio 7o/7, (With 7, the zero
field value of 7,,) is 23 confirming the small-angle nature
of the scattering. At higher magnetic fields this behavior
breaks down and, as described above, a linear increase
with B of the resistance maxima is observed. This linear
dependence is explained below, quantitatively, in terms of
the same parameter 7, which characterizes the disorder
at low fields.

The usual expression for the conductivity in a magnet-
ic field can be written in terms of a diffusion process as

0. =nelr, /m*(1+wirk)=e’D*g (Ep), )

q

where g(Ef) is the density of states at the Fermi level.
In zero magnetic field the diffusion coefficient D* is just
A%/27, where A is the mean free path and 7, the zero-field
value of the transport scattering time 7,,. In magnetic
fields such that w7, >>1, i.e., under normal experimental
conditions, D‘=R§ycl /27, where R, is the cyclotron
radius. This expression can be interpreted, - following
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FIG. 3. Dingle plot for the low-field Shubnikov—de Haas os-
cillations shown in Fig. 1. The straight line is a fit to Eq. (3)
with a slope corresponding to p, =12.3 m?/Vs. The deviation
from linearity at low fields is attributed to macroscopic dephas-
ing associated with an inhomogeneity of order 1% along the
length of the Hall bar. At high fields (1/B less than 3 T™') the
effects of spin splitting become important.

Ando and Uemura,’ as a process of ‘“quantum diffusion”

corresponding to hopping between orbit centers with a
mean free path given by R ;. When the scattering rate
1/7, is proportional to the density of states®’ the con-
ductivity (and the resistivity p,,) are proportional to
[g(Ef)]%. This does not require that Ag, the deviation of
the density of states from the zero-field value, be small
but when Ag is small Eq. (3) can be derived from this ex-
pression. Observation experimentally of the prefactor of
4 in Eq. (3) can therefore be considered as confirmation
that 1/7, is, indeed, proportional to the density of
states;® a prefactor of 2 would result if 7,, was indepen-
dent of g (E).

When Ag is not small the density of states must be
determined self-consistently and then Eq. (3) may not be
valid. The peak heights of separated Landau levels are
inversely proportional to the width; but the width is
determined by the total scattering rate which is itself
dependent on the final density of states. This problem
was first treated® ° using the self-consistent Born approx-
imation and has recently been extended beyond that ap-
proximation, for high Landau levels in smooth, random
potentials, by Raikh and Shahbazyan.!! When the width
of the Landau levels is less than the separation (#iw_) they
find, in agreement with earlier results,!” that the density
of states can be described by a sum of Gaussians with a
width T given by

r’=#o /2n1, , (5)

where 7, is defined to be consistent with Eq. (3).

Using this expression for the density of states in Eq.
(4), D*=R gyd /27, and the assumption that 1/7,, is pro-
portional to g (Er), the peak values of resistivity increase
linearly with B, and are given by

pk =g, L(B /ne)(t, /1y . (6)
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Here 7, and 7, are both explicitly independent of magnet-
ic field. For spin-unresolved peaks and 7,=7, this ex-
pression reduces to Eq. (1) within a factor 7 /2 which ap-
pears because the line shape is Gaussian rather than
Lorentzian.

The values p?% deduced from Eq. (6), using the value of
T, /Ty obtained from the low-field data (Fig. 3), are shown
as dotted lines in Fig. 2. It can be seen they provide
good, quantitative, agreement with experiment. Also, for
the data in Ref. 2, it can be seen that between the IQHE
plateaus dp,, /0B ~p,,/B, ie, B2k ~p,,. Under the
same conditions Eq. (6) can be written as
Phx =7, /70)py, so the coefficient B can be identified as

27y/71,. Experimentally observed values of B between 20
and 40 are consistent with measured and calculated
values for the ratio 7,/7, that are in the litera-
ture’~*1271 and, indeed, this provides an alternative
means of estimating 7,. It should also be noted that in
Ref. 2 the IQHE “peaks” are actually distorted into ex-
tended regions where the resistivity increases linearly
with magnetic field. This is entirely consistent with Eq.
(6) provided the top of the Landau levels are essentially
flat. The equivalence between Egs. (2) and (6) for IQHE
peaks is also trivially true on plateaus. However, a gen-
eral explanation of Eq. (2), for all the FQHE features, has
not been obtained although the argument could be ex-
tended, within the composite particle picture,'®> to FQHE
peaks and plateaus. The essential requirement is that the
width of the Landau levels and the scattering rates 1/7,,
respond in the same way to changes in g (E).

The linear field dependence can be seen in other experi-
mental data in the literature (see, e.g., Ref. 14) but it is
not universally observed. To be obvious it requires sam-
ples with sufficiently low disorder that the Landau levels
are well separated without localization effects being im-
portant and, indeed, a linear dependence is often more
apparent at higher temperatures when the shorter inelas-
tic mean free path suppresses localization effects.! The
magnitude of the linear term is proportional to 7,/7g;
this ratio may be as small'® as 0.01, compared to 0.04
here, which makes the linear behavior less obvious. For a
linear dependence to be clearly visible the Landau levels
must all have essentially the same shape; this is not the
case when the two spin states are differentially scattered.
Also, the linear behavior is not seen in experimental
configurations such that edge state, rather than bulk,
conductivity is being measured.'’

The quantitative explanation of the peak resistivities
relies on (a) a transport scattering rate proportional to
the density of states and (b) Gaussian-shaped Landau lev-
els with a width varying as B'/2. However, this particu-
lar model for the Landau-level structure is not needed to
get a linear B dependence, only to determine the exact
constant of proportionality. The linear B dependence
comes, not from the detailed shape of the Landau level,
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but from the degeneracy factor (1/2wl2, where 1,, is the
magnetic length), in the density of states. The essential
requirement is that the width of the Landau levels and
the transport scattering rate (1/7,,) have the same depen-
dence on magnetic field. This is the case for long-range
scattering potentials because then the integrals involved
in calculating the Landau-level width and ,, can be eval-
uated in the asymptotic limit.!! This limit is valid when
the cyclotron radius is much larger than the correlation
length for the scattering potential. For the sample used
here the cyclotron radius is about 100 nm at 1 T and the
correlation length, equal to twice the spacer thickness, is
80 nm and the asymptotic limit is approximately satisfied
over most of the field range.

It has been observed® that in activation plots for the
conductivity minima the intercepts are very often close to
e?/h and this has been interpreted®* as evidence that the
peak conductivity of the adjacent maxima is e?/2h. This
is, of course, inconsistent with the data and explanation
presented above. Between 1 and 2 K, the sample mea-
sured here also shows activated behavior with intercepts,
for v between 12 and 24, all approximately 0.5¢?/h.
Comparison with Fig. 1 shows that for these fields
(0.6-1.2 T), at low temperatures, spin splitting is only
just resolved. As the temperature is raised the spin split-
ting is suppressed and, at 2 K, it has almost completely
vanished. The temperature dependence of the conduc-
tivity, in this field and temperature range, is therefore
determined as much by the spin splitting as by the basic
activation process and the intercepts are only coinciden-
tally close to e?/h. The peak conductivities vary essen-
tially as 1/B but with a factor of 2 change when the spin
splitting becomes resolved.

Experimental results are presented which show peak
values of resistivity in a high-mobility 2DEG that in-
crease linearly with magnetic field. The results are ex-
plained quantitatively in terms of a quantum diffusion
model using one, independently determined, experimental
parameter. Although the results are consistent with
Gaussian-shaped Landau levels, with widths varying as
B!/2, a less stringent requirement, that the transport re-
laxation time and the quantum lifetime have the same
dependence on magnetic field also explains the linear in-
crease. This is reasonable for the long-range potentials
which dominate the scattering in high mobility 2DEG’s.
The explanation goes part way to explaining the propor-
tionality between p,, and Bdp,, /0B that is observed in
high-mobility samples but, with the experimental data, is
inconsistent with universal values for the peak conduc-
tivity between integer quantum Hall plateaus.
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