
PHYSICAL REVIEW B VOLUME 49, NUMBER 15

Satellite problem with application to exciton binding
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A particle may be trapped by a local potential due to the presence of a satellite particle that does
not interact with the potential. A physical example is the trapping of an exciton by an isoelectronic
impurity that is unable to bind the single electron.

In the present paper, we study a bound two-particle
system, consisting of a negative and a positive charge, in
which merely one of the particles is attracted by a local
potential V(r). An exciton, in the efFective-mass descrip-
tion depicted as a bound hole-electron system, in which
the electron, say, is attracted by the local potential, is
such a system. The question we investigate is the fol-
lowing: Under the assumption that the potential V(r) is
unable to trap a single electron, can it nevertheless bind
the electron plus its satellite, the hole? One might won-
der whether the answer is trivially afBrmative, by simply
replacing the electron mass by the exciton mass. How-

ever, the problem is more subtle.
One physical motivation for studying this question

comes &om trapping of excitons by isoelectronic impu-
rities, an impurity with the same valence electron con-
figuration as that of the host atom it replaces. The
mechanism for binding has been described as follows:
A primary particle (electron or hole) is trapped in the
short-range potential of the isoelectronic impurity, and
then the secondary particle (hole or electron) is bound
by the Coulomb attraction &om the primary particle. ' '

However, Masselink and Chang have suggested that this
picture is too simple, and that systems may occur which
display bound excitons even if the primary particle does
not bind by itself. They studied exciton binding to the
N impurity in gallium phosphide doped with nitrogen
(Gap:N). The short-range isoelectronic potential V(r) is
attractive for electrons, and they find the electron to be
barely bound with a binding energy less than 1 meV. On
the other hand the bound exciton has a binding energy of
28 meV, considerably larger than the &ee-exciton bind-
ing energy of 20 meV. Although the electron is (weakly)
bound in this system, their numerical results suggest that
this is not necessary to obtain bound excitons. The the-
oretical calculations in Ref. 6 include the complications
and approximations that a realistic detailed calculation
must take into account. We want, on the contrary, to
make a simple and transparent model study to demon-
strate the effect.

Another physical scenario of relevance could be the
question of binding of an exciton to a quantum dot
in a limiting case in which the dielectric constant and
the effective masses are material independent, and the
conduction-band offset encourages the electron to be in-
side the dot, while the valence-band offset is negligible.

Thus motivated we investigate the Hamiltonian

Here m, and mg are the effective masses of the electron
and hole, respectively. (The roles of the electron and hole
could of course be interchanged. ) As our local potential
we choose for simplicity the square-well potential

—Vp ifr &R
0 otherwise.

(For application in a spherical quantum dot this would
represent the conduction-band offset. ) This defines our
simple model system.

The binding of a single particle (electron) to the lo-
cal potential (2) is a textbook problem. The electron is
bound when

or

Vp &—
8 R2m, '

Vp & —= 1.2337,
8

in terms of the dimensionless potential depth

2VRm,

(4)

e(r„rg) = (e '" " + ce "" )g(rg),

and integrate out the hole degree of freedom. This yields

We assume now that the binding condition (4) is not
fulfilled.

Let us start by demonstrating that the answer to the
question posed in the Introduction is afhrmative: The
local potential can bind the electron plus the hole, even if
the electron alone is not bound.

This can be shown by a specific example. Assume
m, = mh, R = R/ae ——1, and Vo ——1.2, which by (4)
implies that a single electron is not trapped by the po-
tential. Here ao ——4m''h /e2m, is an efFective Bohr ra-
dius. An upper bound on the energy of the two-particle
problem can be provided by the Rayleigh-Ritz principle.
We use the trial function
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for the function g(r, ) a one-dimensional Schrodinger
equation that can be solved numerically exact. The erst
exponential term in the trial function is associated with
the binding of the hole to the electron, the second with a
possible localization of the hole near the local potential.

For a well-chosen set of the variational parameters a, b,
and c we obtain

V, =S.S7 (m/„= m„R = 1). (8)

This estimate is very far Rom what one would obtain by
naively replacing the electron mass by the total exciton
mass in the binding condition (3).

The problem can be analyzed accurately by the Born-
Oppenheimer approach in the limit in which the satellite
mass mh, is very large. %'ith the hole at a fixed posi-
tion r~ the eigenvalue problem for the electron is a one-
particle problem in a potential consisting of the Coulomb
attraction to the hole plus the local potential (2). When
m& )) m, the cntical local potential is very weak (to be
verified a posteriori), and consequently we treat V(r, )
by perturbation theory. To first order the ground-state
energy for the electron problem equals

Ep ———0.254
m, (e'

t

ji2 (4ms )
This energy is loner than the energy Eo of the &ee ex-

citon (i.e. , when the exciton is not in the neighborhood of
the local potential), Ep ———0.25m, h (e2/4ne) . Thus
the exciton is trapped by the local potential, even if the
electron alone could not be trapped. This verifies the
Masselink-Chang conclusion.

We can, moreover, estimate the critica/ potential
strength Vo for binding the exciton in this equal-mass
case. With a two-particle function of the form {8) we
find the variational estimate

Consequently, the zero-eigenvalue condition must be of
the form

Vp' ——A(R)
fAh

(m~ && m. ), (13)

where A is a dimensionless function of R. It is easy to
see from (10) that A(R) must be a decreasing function
of R, and limiting cases can be evaluated. For small R
the potential (10) is approximately

v(r/, ) —sVpR e (14)

and the 8-state zero-energy Schrodinger equation with

this potential is satisfied JD(/SvoRmq/Bm e ""i ')//rq,
where Jo is a Bessel function. The requirement that
the wave function is finite at rh ——0 selects the crit-
ical values of Vp. In our case Vp' = 3jpm, /8Rm/„ in
which jp ——2.4048. .. is the first zero of Jp{z). This
corresponds to A(R) = 2.17R i. In addition to this
small-R behavior we have A(oo) = m2/8, and interme-
diate numerical values are easy to compute. We find,
e.g. , A(0. 10) = 21.73, A(0.25) = 8.8, A(0.50) = 4.5, and
A(1) = 2.53.

where R = R/ap, is clearly shallower than the local po-
tential (2), but may of course trap a sufficiently heavy
particle. It is straightforward to obtain the complete an-
alytic formula for v(rp, ), but we do not reproduce the ex-
plicit formula here. The Hamiltonian Hg for the heavy
particle takes, in terms of the dimensionless variable
r = rh/R, the following form:

-m R'Hg 1 2
- mhR —2R)r' —r~ g3

fi /R mi, 2 m, m „r(i

Eg(r/, , Vp) =—m, /'e'5
2h' ~4~e)

I4'(Ir —r& I)I'"'"
v, (R

with g{r) = e "~ '//map the unperturbed ground-state
Coulomb wave function. The integral can be evaluated
analytically both for rh ) R and rh, & R by Grst perform-
ing the angular integration. We do not give the explicit
expression here.

The function E~(rI„Vp) acts as a potential for the hole
degree of &eedom. It is the difference between the lowest
eigenvalues in the presence and in the absence of V{r,)
that determines whether the exciton is trapped by the lo-
cal potential or not. The critical value of Vo corresponds
to vanishing ground-state eigenvalue in the potential

0.8

0. 6

0.2

30

( )=E( V) —E.( o)
1= —Vo

7t ~o

The potential, with a minimum

v(0) = —Vp[l —(1+2R+ 2R )e ],

(10)

FIG. 1. Critical well depth Vo as a function of the mass
ratio m, q/m„ for four diferent values of the weH radius R
of the well. The corresponding A(R) values are given in the
main text. The well depth is measured in units of h /m, R,
and the well radius is measured in units of the effective Bohr
radius aii = 4vreh /e m, . The fully drawn curves represent
the interpolation (16), and the dashed curves the asymptotic
result (13).
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By (13) the critical depth Vo falls off inversely propor-
tional to the satellite mass mh. Hence the perturbation
treatment of the local potential is justi6ed for large mass
ratios.

In the opposite limit, when the satellite mass is very
light, the critical trapping condition is clearly (4),

and a Born-Oppenheimer approach shows that the cor-
rection to first order in the mass ratio m~/m, vanishes.

A very simple interpolation formula that is consistent
with both limiting cases is the following:

f~ml, l
ma (8A m, )

'

which is shown in Fig. 1, and coxnpared with the corre-
sponding asymptotic results (13). This sums up the situ-
ation qualitatively, as well as semiquantitatively. For the
special case m~ = m„R = 1, Eq. (16) yields Vo = 1.14,
close to, and on the correct side of, the variational result
(8).

In conclusion, we have shown that a particle (an elec-
tron, say) may be trapped by a local potential, due to
the presence of a satellite particle (a hole) that does not
interact with the potential. The eHect is less pronounced
than a mass increase equal to the satellite mass would
have brought about.
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