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Spin-wave bound-state energies from an Ising model
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We study the two-dimensional classical Ising model that is equivalent, via the Suzuki-Trotter map-

ping, to the XXZ Heisenberg quantum-spin chain. By imposing appropriate boundary conditions to the

Ising model, the spin waves of the quantum model are studied. We reproduce the entire energy spec-

trum of the two-spin-wave states and derive bound-state energies of the three-spin-wave states. Thus,
the continuum energetics of the elementary excitations of a d-dimensional quantum model are contained

in the equivalent (d + 1)-dimensional classical model, even though the latter is a discrete-spin model.

I. INTRODUCTION —P~xxz =K g (o,"o";+&+o,o;+,)+E,g o', o', +, , (1)

Noncommuting quantum-mechanical operators bring
an added degree of difficulty to the statistical-mechanical
treatment of model systems. A general step along the
direction of relieving this difficulty was taken by Suzuki, '

who showed that the Trotter formula can be employed
to map, rigorously, d-dimensional quantum-mechanical
systems onto (1+1)-dimensional classical systems with
somewhat complicated, but local, interactions and con-
straints. This mapping for the partition function is simi-
lar to the Feynman path-integral formalism for particle
propagators in many-body theory. The Suzuki-Trotter
transformation has to date been exploited to enable
Monte Carlo simulations, which are carried out on the
equivalent (0+1)-dimensional classical system. 3 6 Un-
fortunately, it has not been much used within closed-form
treatments of model systems.

The classical system that is the upshot of the Suzuki-
Trotter mapping is composed of discrete, namely Ising-
type, local degrees of freedom. Therefore, a question that
arises is how the latter system incorporates elementary
excitations of the initia1 quantum-mechanical system,
such as spin waves, that have a continuously varying en-

ergy spectrum. We have investigated this question with
XXZ Heisenberg magnetic chains. We find that its
answer lies, quite generally, in the extreme spatial anisot-
ropy of the (d+1)-dimensional classical system. In the
process of this study, working with the equivalent classi-
cal Ising system, we have reproduced the entire energy
spectrum of the two-spin-wave quantum states and we
have derived bound-state energies of the three-spin-wave
quantum states.

II. THE XXZ HEISENBERG MAGNETIC CHAIN
AND ITS EQUIVALENT CLASSICAL ISING MODEL

The XXZ Heisenberg chain is defined by the Hamil-
tonian

where /= 1/k&T, and o," are the Pauli spin matrices at
site i For . X=K„O&/E/(/E, /, fE/) /E, /)0,
E=OWE„and EAO=EC„ the model respectively
reduces to the Heisenberg, easy-axis Heisenberg, easy-
plane Heisenberg, Ising, and XY models. This mode1 has
been treated by Bethe, Dyson, Orbach, Wortis, ' and
others, within its quantum-mechanical formulation.

Suzuki has mapped' the XXZ chain onto a classical
system as follows. The Hamiltonian is separated into two
terms, each containing every other bond. The Trotter
formula states that
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FIG. 1. The classical d =2 model that is equivalent to the
XXZ Heisenberg quantum-spin chain (Ref. 1). There is a classi-
cal variable m; J =+1 at each site (i,j). These are coupled only
in the shaded squares, with the interaction of Eq. (3), which
shows that the model is extremely anisotropic. There are N (the
number of original XXZ Heisenberg spins) sites horizontally
and 2n+1 (the number of inserted sets of states plus 2) sites
vertically. Various specifications of the horizontal boundary
conditions determine the property of the original quantum sys-
tem that is studied via the classical system (Sec. III).
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the corrections being of order n . Suzuki uses this for-
mula by inserting a complete set of states between each of
the 2n factors in the right side. In each —P& /n, the
operators associated with a given bond (i, i +1) commute
with all other operators. Thus, the matrix elements, re-
sulting from the insertion of the complete set of states,
themselves factorize to local calculations of matrix ele-
ments of single-bond operators. The result of such a cal-
culation amounts to a local coupling in a classical two-
dimensional Hamiltonian, where the degrees of freedom

are the quantum numbers of the single-bond operators in
two adjoining inserted states.

The equivalent classical d =2 anisotropic model is
finalized, after the insertion of states and the calculations
just mentioned, by taking matrix elements of the operator
in Eq. (2), in manners to be specified in Sec. III, which
determines the classical boundary conditions. The result-
ing model is composed of classical spins m, =+1 at each
site (i,j) of a square lattice. These classical spins are cou-
pled by local interactions that are grouped into every oth-
er square in a checkerboard pattern, as shown in Fig. 1.
Thus, in this figure, each darkened square contributes to
the exponentiated Hamiltonian a term

0 0 0
0 8 C 0
0 C 8 0
0 0 0

K In —K In —K In
with 3 =e ', B=e ' cosh(2K/n), and C=e * sinh(2K/n), (3)

where the rows or columns are addressed by the states (+1,+1), (+1,—1), ( —1, +1), (
—1, —1) of (m, , m, +, ) or

(m; +&, m;+& +&), respectively. The index i ranges from 1 to N, the number of initial quantum spins, and the index j
ranges from 0 to 2n, the number of inserted sets of states plus the two states of the matrix element of Eq. (2). The ex-
pression in Eq. (3) is the direct result of the local calculation, described in the preceding paragraph, of

(m; . , m;+& lexp[(K/n)(o';cr";+, +cr~cr~+, )+(K, /n)o';o';+, ] m; +„m;+& +&), (4)

where m, is the eigenvalue of 0; in the inserted set j.
The above clearly corresponds to a classical spin- —,

' Ising
model, with local constraints, namely excluded nearest-
neighbor quartets of states, due to the zeroes in the ma-
trix in Eq. (3).

III. BOUNDARY CONDITIONS OF THE CLASSICAL
MODEL

A. Corresponding to the partition function of the XXZ model

In Suzuki's original work, the trace of Eq. (2) is taken,
in order to obtain the partition function of the XXZ
Heisenberg model. This yields the partition function of
the equivalent classical d =2 model with periodic bound-
ary conditions along the j direction as defined in Eq. (3),
m, 0=m, 2n. The boundary condition along the i direc-
tion is always determined by that of the LXZ model,
which we take as periodic in the entirety of this article.
Furthermore, N is taken to be large (approaching the
thermodynamic limit) and even.

B. Corresponding to the z-aligned state of the XXZ model

The diagonal matrix element of Eq. (2) with respect to
the quantum state

l [m;=+1] ) yields, in the classical
d =2 model, the pinned "up" boundary conditions
m;o=+ 1=m;z„.The constraints [Eq. (3)] do not allow
the creation of a "down" spin (m,. = —1), so that only
one state, [m,. =+1], occurs in the classical system.

Thus,

(Im;=+I] le "'l[m;=+I] &=e

NKgNn e z

The energy of the z-aligned state, NK„ is the ground-
state energy of the XXZ model for K, & lK and K, =K.

C. Corresponding to a single spin wave

Consider the matrix element of Eq. (2) between states
such as

l [m;&„=+1],m; „=—I ) = r ). This yields the
partition function of the classical d =2 model with
pinned up boundary conditions at rows j =0 and j =2n,
except for the spins at l =fo and i =r2„,respectively,
which are pinned down. Since the constraints [Eq. (3)] do
not allow the creation or destruction of a down spin, each
row j has one and only one down spin, which, from row
to row, may remain at the same position r, or move to
r+1 within an interaction square, respectively, with
Boltzmann weight B or C according to the interactions in

Eq. (3). Consider the transfer matrix of the classical sys-
tem, connecting every other row, with respect to the sin-
gle spin-wave basis set

lk ) = g e'""lr ), k =2vrp/N, p =1, . . . , N . (6)
1

I'

A little algebra starting from Eq. (3) yields, for this
transfer matrix, to leading order in 1/n,
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(k ~e
' e ' ~k) =5(k k)

(7)

with

a=4K, In, y =(4Kln) cos(k/2),

where 5(k', k)=1,0 for k'=k, k'Ak. Thus, the partition
function of the entire system (of n pairs of rows) is

(k'i(e ' e ' )"ik ) =5(k', k)e
Y(p) =x~+bx I', with b =e '" =+1 . (14)

and where p', p are between 1 and N —1 inclusive. The
eigenvectors of this transfer matrix have the form

which yields the well-known single spin-wave energy

(8)
One set of eigensolutions are extended (unbound) spin-
wave pair states with x =e'~ in Eq. (14). Their eigenval-
ues are

—Pa, = 4K, —+4K cosk . (9)
[(N —8)K +8K cos(k /2)cosq ]/n

e (15)

D. Corresponding to two spin ~aves

Consider the matrix element of Eq. (2) between the
states such as

~ [m;&„,=+ 1 j,m; „„=—1) =—~r, r').
This yields the partition function of the classical d =2
model with pinned up boundary conditions at rows j =0
and j =2n, except for the spins at i=ra, ro and
i =r2„,rz„,respectively, which are pinned down. Simi-
larly to the previous case, each row j has two and only
two down spins, which, from rom to row, may remain at
the same positions r, r', or each or both move to neigh-
boring positions within an interaction square, with
Boltzmann weights dictated by Eq. (3). Again consider
the transfer matrix of the classical system, connecting
every other row,

(10)

There are two terms in Eq. (10) because, in going between
the rows, either down spin can match to a given down
spin in the other row. There is a leading factor of —,

' be-
cause the down spins are indistinguishab1e, so that a sum-
mation over (r„r2) double counts the states. With
respect to another two-spin-wave basis set,

ik(r& +r2)/2
~k, p) =. y e ' '

~r, , r, =r, +p),v'N
„

k=2np/N, p =1, . . . , N,
this transfer matrix has the form

where, as specified above, k =2mp /N, p = 1, . . . , N, and

q is determined for b =+1 by

(K /K, )cos(k /2) —cosq =sinq tan(Nq /2),
and for b = —1 by

(16)

(K/K, )cos(k/2) —cosq = —sinq cot(Nq/2) . (17)

For ~(K /K, )cos(k/2)
~

& 1, graphical analysis shows that
Eq. (16) accounts for (N/2)(N/2) solutions and Eq. (17)
accounts for (N /2) [(N /2) —1] solutions. For
~(KIK, )cos(k/2)~ &1, again graphical analysis shows
that Eq. (16) accounts for (N/2)[(N/2) —1] solutions
and Eq. (17) accounts for (N/2)[(N/2) —2] solutions. In
the latter case, a set of N eigensolutions of bound spin-
wave pair states occurs, with x =

~
(K IK, )cos( k /2) ~

in

Eq. (14},and eigenvalue

I(N —4)K +4[Leos(k/2)] /K I/n
e z z (18)

The expressions in (15) and (18), with their exponents
multiplied by n, yield the corresponding Boltzmann
weights of the entire system. Thus, the extended spin-
wave pair energies are

—Pe2= 8K, +8K cos—(k/2)cosq

8K, +4K[cos—(k/2+q)+cos(kl2 q) J, (19)—
which in fact equals the sum of the energies [Eq. (9)] of
two single spin waves with wave numbers (k/2)+q. The
bound spin-wave pair states, occurring for
~(K /K, )cos(k/2)

~

& 1 as above, have energy

—Pe2= 4K, +4[K cos(k—/2)] /E, . (20)

+(k', p'ie ' "e ' "ik, —p)J .

It reduces to leading order in 1/n to

(12)

M(p', p) =

1 y
y 1 —a

—,'5(k', k ) A [M(p', p)+e'" M(p', N p)), (13)—
where

The above account for aH of the spin-wave pair states,
and agree with the previous works.

A particulate analogy to two interacting spin waves,
from the diagonalization of the matrix in Eq. (13}, is
given in Appendix A. A renormalization-group transfor-
mation is derived in Appendix B, with asymptotic Aow
behavior that is fixed point or chaotic, distinguishing the
bound or extended spin-wave pairs, respectively.

K. Corresponding to three spin ~aves

The matrix element of Eq. (2) between the states such
as

~ [m;&,„.„., =+1],m, ,„.„"=—1) is considered. The
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classical d =2 model has pinned up boundary conditions
at rows j =0 and j =2n, except for the spins at
i 7"0 1p f0 and i =r2„,r z„,r 2„,respectively, which are
pinned down. Each row j has three and only three down
spins, which, from row to row, may remain at the same

positions r, r', r", or move to neighboring positions within
an interaction square, with Boltzmann weights dictated
by Eq. (3). The transfer matrix of the classical system,
connecting every other row, with respect to the three-
spin-wave basis set

1 ik(r& + r2+ r3 )I3
lk, pi, p3) = —g e ' ' '

lrl =r2 —pi, r2, r3=r3+p3),
N

„

with k=2'/N, p=1, . . . , N, p&=1, . . . , N —2, and p3=1, . . . , N —1 —pi, (21)

has the form

—p%l In —p&2 In —pA l In —/&2!n
—,
' I(k', pi, pge

' e '
~k, pi, p3)+(k', p'»pge ' e ' k, —

pi
—

p3 pi)

—
PJV& In —PJV2In+(k', pi, p3~e

' e '
~k, p3,

—
p&

—p3) (22)

Again, there are three terms in Eq. (22) because, in going between the rows, any one of the three down spins can match
to a given down spin in the other row (which fixes the other two matches). There is a leading factor of —, because the
down spins are indistinguishable, so that a summation over (p„rz,p3) triple counts the states. The first term in the
parentheses of Eq. (22), for example, reduces to leading order in 1/n to

5(k', k)A B (5(p', ,p, )5(p3,p3)I1+a[5(p, , l)+5(p3, 1)+5(p, +p3, N —1)]]

+C[[ '""5(p' p
—1)+ '""5(pI p +1)]5(p' p»+5(p' p )[ '""5(pl p3

—1)+"""5(p'p +")]

+e'""5(p'i pi+1»(P3 P3
—1)+e '""5(PI Pi

—1»(P3 P3+1)] ) . (23)

The transfer matrix of Eq. (22) has a set of bound-state eigenvectors of the form

Y(p» p3) =y (p» p3)+ by (N —
pi

—p3, pi )+b y (p3, N —
pi

—p3), (24)

with

b=e ' ", y(p„p3)=e ' 'x ' ', si (kn/3+/)=sink/Ql+4(K, /K)cos(k)+4(K, /K)

where the spatial decay is determined by

x =sin(k/3+/)/sin(k/3 —2P), ~x ~
& 1, (25)

where the bound-state restriction ~x ~
& 1 is satisfied for (K/K, )cosk & [4(K, /K )

—3]. The corresponding eigenvalues
are

exp[[(N —4)K, +4Kx cos(k/3+/)]/n]=exp[[(N —4)K, +4K (2K, +Kcosk)/(4K, K)]/n] —. (26)
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The procedure introduced here of using the Suzuki-
Trotter formula with restricted boundary conditions may
be useful for obtaining "renormalized" or "dressed" ener-

gy spectra for elementary excitations in more diScult
problems, such as ones in which the transfer matrix does
not conserve the number of fluctuations. More generally,
it is likely that diverse effective studies of quantum sys-
tems can be built around the Suzuki-Trotter mapping.
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APPENDIX A: PARTICULATE ANALOGY
TO INTERACTING SPIN WAVES

7
0

The matrix in Eq. (13) can be written as

M(p', p) =
I yh +a[5(p, I )+5(p,N —1)]

+ (1—a+2y ) J 5(p', p), (A 1)

FIG. 2. (a) Bound-state energy spectra for three spin waves,
as derived in Sec. III E and given in Eq. (27). Bound-state ener-

gy spectra for E/E, &0 or k &0 are related to these curves by
63(E/K„k) =c3( —E/E„k+~)=c3(E/EC„—k ). (b) Regions
in which the three-spin-wave bound states with energies given in

Eq. (27) occur. The lower boundary reaches k =m/2 as E/E,
goes to infinity.

where 6 is the discrete Laplacian operator,

5 Y(p')=Y(p'+1) —2Y(p')+Y(p' —1) . (A2)

Accordingly, diagonalizing M is equivalent to solving the
one-dimensional discrete Schrodinger equation for a par-
ticle of mass m in an infinite well from p = 1 to p =N —1,
subject to a potential at the edge sites, namely

Thus, the corresponding three-spin-wave bound-state en-
ergies are

I'(p}= —&'/12m(K/K, )cos(k/2)
I

X[5(p, 1)+5(p,N —1)] . (A3)

—Pe3= 4K, +4Kx c—os(k /3+/)

= —4K, +4K (2K, +K cosk)l(4K, K) . —(27)

These bound-state energies are depicted in Fig. 2. The
particulate analogy to three interacting spin waves, from
the diagonalization of the matrix in Eq. (23), is noted in
Appendix A.

IV. CONCLUSION

As seen above, the continuum energetics of the elemen-
tary excitations of a d-dimensional quantum model are
contained in the equivalent (d +1)-dimensional classical
model, even though the latter is a discrete-spin model.
This is due to the fact that the extreme anisotropy of the
classical model reduces the problem to a diagonalization
of the Hamiltonian, as n~ ~. In this process, we have
derived three-spin-wave bound-state energies for the XXZ
Heisenberg chain.

The implementation of our method is rather different
from Bethe ansatz studies of quantum systems. The
method can also be generalized to, for example, spin-s
systems. Our method is also much simpler, and therefore
much more transparent, than the "quantum inverse
scattering method. ""

The absolute value is obtained by considering the vectors
( —1)~Y(p) when (K/K, )cos(k/2) &0. The particle of
this Schrodinger equation may have eigenstates bound to
the edges. The condition for this turns out to be
~( K/K, c}so(k/2)~ &1. The combination of two ma-
trices in Eq. (13) selects half of the even and odd eigen-
functions of M, for both bound and extended states.

Similarly, the three-spin-wave problem of Sec. III E is
equivalent to the two-dimensional discrete Schrodinger
equation for a particle in an equilateral-triangle infinite
well, with a potential along the sides that doubles at the
corners.

APPENDIX B: RENORMALIZATION-GROUP ANALYSIS
OF THE TWO-SPIN-WAVE EIGENVALUE PROBLEM

F=(1—A)/y and G=(1—a —A)/y . (B2)

A renormalization-group recursion' can be constructed

The eigenvalue A problem for the matrix M in Eq. (13)
reduces to the N —1 equations

Fex ] +&z 0 xp &
+Gxp +xp+ ] 0 for p 2 to N —2

x~ q+Fx~ i
=0, (B1)

where
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F'=1—FG and G'=2 —G2 . (83)

The procedure is repeated, but with one of the edge
coefficients having its recursion modified as

F'=1 G+—G/F, (B4)

if the starting number of equations is even, in which case

by substituting every other equation into the remaining
ones, resulting in N/2 equations of the same form, but
with renormalized coefficients:

this number is halved. In any case, the recursion of the
inner coefficient G depends only on itself. It has unstable
fixed points at G*=1 and —2, with a preimage of the
latter at G =2. This recursion remains chaotic in the in-
terval

~
G

~
& 2, and runs away to the fixed point G *= —~

and F*=—ca for ~G~ )2. The extended and bound
states found in Sec. III D, in fact, respectively fall into
the chaotic and runaway fixed-point renormalization-
group behaviors. In previous works on electronic' and
harmonic' chains, it was similarly found that extended
and localized states, respectively, have chaotic and fixed-
point renormalization-group behaviors. '
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