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In the adjoining paper we presented a detailed model describing the effects of surface stress on the
equilibrium spacing and biaxial modulus of thin metal films. We extend the model to describe the effects
of interface stress on metallic multilayers. The model predicts that very thin layers will equilibrate to a
spacing in the plane smaller than the bulk spacing for the material, and that this effect will vanish as the
reciprocal of the layer thickness. The model predicts enhancements in the biaxial modulus of metallic
multilayers which scale with the reciprocal of the layer thickness. The magnitude of both the strain and
the resulting change in biaxial modulus are proportional to the magnitude of the interface stress. In or-
der to verify the predictions of the interface stress model, we performed molecular-dynamics computer
simulations of metallic multilayers using the "universal" form of the embedded-atom-method (EAM) po-
tentials, an analytic form of the EAM potential, and a slightly modified version of the analytic form.
The model was found to predict accurately the equilibrium properties of metallic multilayers. We dis-
cuss the limitations of the EAM potentials and the implications of this work for the supermodulus effect.

I. INTRODUCTION

The elastic properties of artificially multilayered metal-
lic thin films have been the subject of a great deal of in-
terest since the first reports, ' of significant enhance-
ments in certain elastic moduli of these materials when
the bilayer repeat length 1(, was reduced to about 2 nm.
These reports of the so-called supermodulus effect in-
volved increases of 100% or more in the in-plane biaxial
moduli of Au-Ni', Cu-Ni, and Ag-Pd. In the case of
Cu-Ni and Ag-Pd, an in-plane biaxial modulus approach-
ing that of diamond was reported. Since its initial an-
nouncement, the supermodulus effect has been highly
controversial. The investigations cited above involved
measurements of the biaxial modulus by a bulge tester,
and a detailed study of the actual apparatus used suggest-
ed that the supermodulus effect was in fact an experimen-
tal artifact. More accurate methods for measuring elas-
tic properties of thin films have recently been perfected
involving ultrasonic and nanoindentation techniques. In-
vestigations using these methods have revealed that much
smaller variations in elastic moduli (both enhancements
and reductions of about 5 —50%) do exist in certain mul-
tilayered films, such as Ag-Pd (Ref. 5) and Cu-Nb; how-
ever, two of the original supermodulus systems, Cu-Pd
(Refs. 7—9) and Cu-Ni (Refs. 10 and 11) showed no varia-
tions in elastic behavior with A, .

Recently, several atomistic computer simulations have
been performed to investigate the elastic properties of
metallic superlattices possessing both coherent (lattice
matched) and noncoherent (non-lattice-matched) inter-
faces. ' ' None of these investigations produced elastic
anomalies similar in magnitude to the original supermo-
dulus reports, but some of the simulations resulted in the
smaller modulus variations characteristic of the behavior

reported in the more recent experimental studies. While
there has been some disagreement as to whether there is
any effect in coherent superlattices, most of the simula-
tions involving noncoherent superlattices have displayed
modulus variations when A, is reduced to about 2 nm.

It has been suggested that the origin of elastic modulus
variations in multilayered metallic materials is based on
interface stress effects. ' Interface stresses induce large
elastic strains when the individual layer thickness is of or-
der 1 nm, resulting in higher-order elastic effects that are
manifested in the effective elastic moduli. Since it is ex-
pected that noncoherent interfaces will have interface
stresses larger in magnitude than coherent interfaces, '

more significant modulus anomalies are expected in non-
coherent superlattices as compared to coherent ones. In
this paper, effects of interface stresses on the structural
and elastic behavior of both coherent and noncoherent
superlattices are investigated.

II. INTERFACE STRESS MODEL

The arguments leading to the surface-stress model (dis-
cussed in Ref. 19, henceforth referred to as I) are equally
valid when applied to a thin layer which is subject to in-
terface stress. The equations derived are identical as long
as one redefines certain parameters in order to properly
account for the new geometry. Consider a metallic multi-
layer, shown schematically in Fig. 1. The composition
modulation wavelength in a multilayer is defined as the
distance over which the composition repeats, and will be
denoted by A,o. This quantity is the analog to the film
thickness of a thin film. The reference biaxial modulus of
the multilayer assembly is defined in a manner similar to
that used in I: Y„ is taken to be the biaxial modulus of
the structure in the limit of an infinitely thick modulation
wavelength. Note that for a thin film, this definition
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FIG. 1. Schematic of a metallic multilayer, defining the com-
position modulation wavelength A,o, the in-plane spacing a, and
the atomic separations z, z», and z».

2 0
Y(AO) = Y„+ (B„+2'—3+f '/fo ),

0
(2)

where fo is the interface stress and f ' the strain deriva-
tive of the interface stress. The quantities B„and g de-
scribe how the biaxial modulus and the thickness, respec-
tively, vary with strain. The biaxial modulus can be ex-
panded in the normal way to include higher-order elastic
constants such as B„and C

Y(e, A, =DO)= Y„(1 B„E+—,'C„e +— ),

while the thickness of a layer will respond in a Poisson-
like fashion to a biaxial strain:

A.(E)=A,o(1 —gc.), (4)

which reAects the two predictions made by the model:
that the in-plane spacing and biaxial modulus of a layered
structure will vary with layer thickness, and the exact na-
ture of that variation will depend on the interface stress.
Equations (1) and (2) predict that very thin layers in a
metallic multilayer will equilibrate to an in-plane spacing
smaller than their bulk spacing due to the presence of an
interface stress, and that this equilibrium biaxial strain
will result in changes in the elastic properties of the rnul-

tilayer assembly.

leads to Y„being equal to the bulk biaxial modulus,
while for a multilayer Y„ is defined as the volume aver-

age of the bulk biaxial moduli of the constituents.
Using the definition of A,o given above, and recognizing

that Y„represents a volume average of bulk quantities,
we can write the relevant equations for the interface
stress model by rewriting Eqs. (17) and (20) from I:

—2fo —2fo
4fo+2f'+A, oY„A,O Y„

and

III. COMPUTER SIMULATION
OF METALLIC MULTILAYERS

We performed molecular-dynamics simulations of
transition-metal multilayers following the same steps out-
lined in I for the simulation of thin films. After creating
a sample in an initial configuration, we equilibrated the
sample by slowly removing kinetic energy while allowing
the system to evolve using a Parrinello-Rahman Lagrang-
ian. After the sample had reached equilibrium (at a
temperature which was nominally zero), we applied a
series of small biaxial stresses to the sample and mea-
sured the resulting strains. The total energy of the sam-
ple was recorded during the simulation, so that at the
finish of a sample run we had a stress-strain curve and a
strain-energy curve for the multilayer. From this point
analysis could proceed as outlined in I.

The initial configuration of a multilayer (either
coherent or noncoherent) involved the input of four spac-
ings: the in-plane spacing a, the interplanar separations
between similar materials z„~ and zzz, and the interpla-
nar separation between dissimilar materials, z~~. These
spacings are depicted in Fig. 1.

The initial in-plane spacing for a coherent sample was
taken to be the average of the bulk spacing of the two
constituents. The initial value of a for a noncoherent
multilayer was taken to be the bulk spacing of either ma-
terial, with the in-plane spacing for the other material
forced by the boundary conditions to be a rational frac-
tion of the first. Periodic boundary conditions constrain
the atoms at a noncoherent interface to maintain their
original registry. Thus if m-type A atoms are aligned
with n-type B atoms, we could pick the initial value of a „
to be the 3 bulk spacing (with as equal to m /n of the 3
spacing), or we could assign a~ to be the bulk B atom
spacing, in which case the 3 atoms would start at an in-
plane spacing of n/m times the B spacing. The residual
misfit c is given by

ma g nag

map +nag

For appropriate choices of n and m, typical values of c
are small (around 0.5%), and the multilayers would ap-
proach the same equilibrium state with either choice of
initial spacing.

The values of m and n are chosen by taking the ratio of
integers closest to the ratio a~ /a~. For example, in the
case of silver and nickel, aA /aN; is 1.1619. The smallest
set of integers with this ratio is 7 and 6, 7/6 = 1.1666.
(Note that 6a~ (7aN;, so that the residual misfit strain
will tend to expand the silver and compress the nickel,
despite the fact that silver has the larger atomic spacing. )

The residual misfit strain is an artifact of the computa-
tion sample size. The misfit strain described above using
m =6 and n =7 for silver and nickel results in
c. = —0.004. A better choice of integers would have
been m =37 and n =43, which results in a residual misfit
strain of c =0.0002. Such a sample would have re-

quired over 40 times as much computer time to investi-
gate, which necessitated the use of the smaller sample.
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IV. IN 1KRATOMIC POTENTIALS

We utilized three related embedded-atom-method
(EAM} potentials in our study of metallic multilayers: the
"universal" EAM potentials of Daw and Baskes and
Foiles, Daw, and Baskes, an analytic form of EAM po-
tential developed for fcc metals by Johnson, ' and a
form of this latter potential which the authors modified
in order to more closely describe the magnitude of the
surface stress. As the first two forms have been exten-
sively described in the literature, we will not further de-
scribe them here. Wuttig, Franchy, and Ibach estimat-
ed the surface stress on a (001} surface of Ni from
discrepancies in phonon-dispersion curves, calculating a
value of 0.16 eV/A . Menezes et ol. used a similar ar-
gument to calculate the surface stress on the (111)Ni sur-
face, which they found to be 0.10+0.01 eV/A . These
observations remain the only experimentally based values
of surface stress for a particular crystallographic plane in
metals to date. Table I compares the surface energies and
surface stresses calculated for the (001) and (111)surfaces
of nickel using both the "universal" EAM and analytic
EAM potential, along with experimental or theoretical
results where available. While both potentials yield
essentially the same (incorrect} value of surface energy,
we see that their predictions for surface stress disagree
substantially, both among themselves and with the exper-
imental values. The analytic potential is seen to be in-
correct by almost exactly a factor of 2 in y and f for both
surfaces, while the universal EAM potential depends sen-
sitively on the surface. Thus, while comparisons between
different metals modeled using the same potential are
possible, one should take care when comparing any re-
sults attained using different forms of embedded-atom po-
tential. It is well known that these EAM potentials can-
not accurately reproduce surface energies, although it is
often argued that they reproduce trends across the transi-
tion elements correctly. ' ' It is less well appreciated
that the surface-stress values are very potential specific.
Gumbsch and Daw calculated surface energies and
stresses for several fcc transition elements using universal
EAM potentials, and compared their work to some of the
ab initio calculations available, as well as to results ob-
tained with other EAM-like potentials, such as the
Finnis-Sinclair potential. ' They noted the same
discrepancies which we mentioned above, concluding

71»
fbi&

F001

fooi

Universal

0.090
0.027
0.098
0.079

Analytic

0.083
0.051
0.097
0.047

Previous work

0.15'
0.10
0.19'
0.12'

'Reference 33.
Reference 28.

'Reference 29.

TABLE I. Surface energies and stresses for nickel (001) and
(111) surfaces calculated with universal and analytic version of
the EAM potential, compared with previous experimental or

o 2
theoretical work where possible. All units are eV/A =16.022
J/m .

TABLE II. Nickel input parameters for analytic and
modified potentials, including the resulting values of the bulk
modulus (E), shear modulus (6), vacancy formation energy
(E„), surface energy (y, » ), and surface stress (f», ).
(eV/A =1.6022&10" J/m', eV/A =16.022 J/m ).

a

y.
a(A)

E, (eV)
E„(ev)

SC (eV/A')
6 (eV/A')

y, » (eV/A')

f»~ (eV/A )

Ni(111)

4.98
6.41
8.86
3.5196
4.45
1.70
1.13
0.59
0.083
0.051

"Ni"(111)

5.80
5.10
8.10
3.5196
4.45
2.62
1.53
0.66
0.133
0.104

TABLE III. Silver input parameters for analytic and
modified potentials, including the resulting values of the bulk
modulus (E), shear modulus (6), vacancy formation energy
(E„), surface energy (y», ), and surface stress (f»&).
(eV/A =1.6022X10» J/m, eV/A =16.022 J/m ).

a

r.
a(A)

E, (ev)
E„(eV)

I( (eV/A )

G (eV/A )

y1» (eV/A )

f()) (eV/A )

Ag(111)

5.92
5.96
8.26
4.0896
2.85
1.10
0.65
0.21
0.043
0.063

"Ag"(111)

7.60
4.75
7.70
4.0896
2.85
1.70
1.07
0.25
0.077
0.121

that they "should emphasize qualitative conclusions rath-
er than precise numerical results. "

We felt that it would be instructive to alter the analytic
EAM potentials so that the materials modeled would ex-
hibit more realistic values of surface energy and surface
stress. By altering the exponents a, P, and y which are
input parameters in the analytic EAM potentials, we can
manipulate the curvature of the potentials and hence
their surface stress. We created "Ni" and "Ag" poten-
tials in this way. Tables II and III display the input pa-
rameters for the original analytic potential and the
modified analytic potential, along with the resulting
values of surface energy and stress, for (111)Ni and (111)
Ag. The final values for a, P, and y were obtained by tri-
al and error, as an analytic expression for the surface en-

ergy was not obtainable. The "theoretical" value for the
(111}surface stress of Ag was approximated by noting
that in all cases the surface energy and stress calculated
by using the analytic potential differed from either ab ini-
tio or experimental results by almost exactly a factor of 2.
As there are neither ab initio nor experimental results for
the (111) Ag surface, we simply attempted to double the
original value. The modified materials are seen to have
properties similar to the actual materials. The properties
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which were seen to change the most were the bulk
modulus, shear modulus, and vacancy formation energy.
This is not surprising, as they are the three properties
which were used as primary input parameters in the orig-
inal potentials. The change in bulk modulus, while
severe for both materials, is irrelevant for the purpose of
testing the model. These potentials were not intended to
be used in a simulation of real Ni and Ag. Our intent in
creating these potentials was to test the prediction of the
model with a system which has greater (and hence more
realistic) values of surface stress than those which result
from the original potential.

V. RESULTS

We performed computer simulations on coherent and
noncoherent fcc metallic multilayers using the "original"
form of the EAM potential due to Foiles, Daw, and
Baskes, the analytic EAM potentials of Johnson,
and a modified form of the analytic EAM potentials
which predict correct values of surface stress, as dis-
cussed above. Samples were created by juxtaposing in
correct stacking sequence slabs of two different fcc metals
(Cu-Ni, Cu-Pd, Au-Ni, or Ag-Ni) where each slab con-
tained the same number of layers. The sample interfaces
were oriented either (001) or (111). The multilayer inter-
faces were constrained to maintain coherence or incoher-
ence by using periodic boundary conditions in place of
the interface. Periodic boundary conditions perpendicu-
lar to the interfaces were used to remove any free surface
effects. The unit cell for the simulation included exactly
one repeat length in the direction of composition modula-
tion. We studied samples of unit cell size 2 and 3 as well
in order to insure that there were no finite-size effects.
The coherent samples contained 50 atoms per (001) or
100 atoms per (111) layer. The unit cell size of the non-
coherent samples depended on the sample. In the Au-Ni
multilayers, the Au layers contained 128 atoms per (001)
layer or 256 per (111) layer, and the Ni layers contained
98 atoms per (001) layer or 196 per (111) layer. In the
Ag-Ni multilayers, the Ag layers contained 98 atoms per
(001) layer or 196 per (111) layer, and the Ni layers con-
tained 72 atoms per (001) layer or 144 per (111) layer.
The equilibrium strain in a multilayered sample is defined
with respect to the in-plane spacing at infinite layer thick-
ness. For the coherent rnultilayers the in-plane spacing is
a, the common in-plane spacing for the two materials.
For the noncoherent samples, equilibrium strain was
defined relative to the area of the box at infinite layer
thickness. Note that this would not be the bulk spacing
of either material, due to the residual misfit strain.

A. Coherent multilayers

The nature of the interface, coherent vs noncoherent,
wi11 have a profound effect on the magnitude of the inter-
face stress. Consider the local environment of an atom at
a coherent or noncoherent interface. At a coherent inter-
face, all of the atoms have the same (bulk) coordination.

The redistribution of electronic charge which occurs at
the interface will be due solely to the chemical differences
between the constituent materials. In-plane bonds situat-
ed near the interface will not differ significantly from
similar bonds in the bulk. As surface stress is an excess
quantity (as is y), the surface stress for coherent inter-
faces will be small. By contrast, the environment of an
atom at a noncoherent interface will be substantially
different from the bulk. There will be a significant redis-
tribution of electrons in the plane of the interface, due to
the presence of dislocations, as well as the smaller contri-
bution due to the chemical differences. As a result, inter-
face stresses at an noncoherent interface will in general be
much larger in magnitude than at a coherent interface.
We studied three different coherent systems: copper-
nickel, copper-palladium, and gold-nickel, ranked in or-
der of increasing misfit strain c, using the analytic form
of EAM potential. The parameters Y„,8„,g, fo, and
f' calculated for the coherent multilayers are presented
in Table IV. A discussion of these results and a compar-
ison with the predictions of the thermodynamic model
follow.

We first note, however, that the interface energies for
Au-Ni are negative even though the heat of mixing for
this system is positive. This apparent discrepancy may be
due to the fact that the nature of the interaction is

strongly affected by the presence, in both metals, of the
relatively large elastic strains needed to make a coherent
interface. As discussed in Sec. V B, the noncoherent Au-
Ni interface has a positive interface energy, as expected.
One could also argue that the alloy potentials used are
not sufficiently precise to distinguish between a very
small positiUe y and a very small negatiue y. In any
event, the simulations result in values of y (as well as f
and f') that have the expected order of magnitude, and
therefore should be able to qualitatively describe the
magnitude of their effect on the elastic behavior. Figure
2 displays the equilibrium biaxial strain c.' and biaxial
modulus Y„, as a function of the composition modula-
tion wavelength A,o for coherent Cu-Ni superlattices
oriented (001) and (111). The extremely small values of
surface stress for these coherent multilayers, about a fac-
tor of 10 smaller than typical surface stresses for free sur-
faces, results in essentially no change in the in-plane spac-
ing as a function of the bilayer repeat length A, . The max-
imum strain is seen to be less than 0.1% in this system.
The biaxial modulus is unchanged over the modulation
wavelength range we studied, as we would expect given
the small biaxial strains which develop. The Cu-Ni sys-
tem is one of the most studied meta11ic multilayer sys-
terns, both experimentally and theoretically. Some of the
original results on the supermodulus effect were for the
Cu-Ni system, and much of the previous theoretical
work was performed on it. ' ' ' Recent experimental
results have discounted the existence of a supermodulus
effect in the Cu-Ni system, in agreement with this work
and the previous theoretical work cited. Figure 3
displays the biaxial modulus for the (111)-oriented multi-
layers as a function of A,o, along with experimental and
theoretical estimates. Aside from the unusual early ex-
perimental results, we see that our results are in good
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coherent (001)- and (111)-oriented Cu-Ni multilayers.
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Yq as functions of composition modulation wavelength Q for
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coherent (001)- and (111)-oriented Cu-Pd multilayers.
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FIG. 3. Biaxial modulus Yz for coherent (111)Cu-Ni films,
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comparing our results with other experimental and theoretical
work.

agreement with the recent experimental work of Moreau,
Ketterson, and Davis, and in almost perfect agreement
with the computer simulations of Mintmire and co-
workers, who studied coherent (111)-oriented Cu-Ni mul-

tilayers using the EAM potentials of Foiles, Daw, and
Baskes. Given the evidence, one is forced to conclude
that there is no modulus enhancement in coherent multi-
layers of Cu-Ni as a function of composition wavelength.

Figure 4 depicts the equilibrium biaxial strain and bi-

axial modulus as a function of modulation wavelength for
coherent Cu-Pd multilayers. The Cu-Pd system is unique
among the systems we studied in that the stiffer material
(Pd) has the larger spacing. (apd =3.79 A and
a&„=3.62 A). Thus, in this system, the stiffer material is
forced to compress, while the softer material is required
to expand in order to maintain coherence. Since the bi-
axial modulus increases with increasing compressive
strain, coherency strain arguments would imply that by
compressing the already stiffer material, the Cu-Pd multi-
layers should display large biaxial modulus enhancements
as a function of composition wavelength. Unfortunately,
that is not the case. The Pd compresses very little in the

system, since the softer Cu can expand with a lower cost
of energy. Since the surface stress is very low, which we
would expect for a coherent system, there is again no
modulus enhancement seen. Figure 4 shows that the
values of equilibrium biaxial strain, while larger than
those for the Cu-Ni system, are still well below O. l%%uo. It
is no surprise, within the context of our thermodynamic
model, that the biaxial modulus shows no variation with
composition modulation wavelength. Figure 5 displays
the biaxial modulus of (111)Cu-Pd as a function of from
recent experimental and computer simulation results us-

ing the EAM potentials of Foiles, Daw, and Baskes as
well as our results. We see that although the scatter in
the experimental data is large, the data are clearly cen-
tered on our results, and show no superrnodulus effect.
The computer simulation by Gilmore and Provenzano in-
vestigated much thinner samples than we did, and used a
spherical sample geometry with free surfaces. Neverthe-
less, their results compare well with ours in predicting no
superrnodulus effect in the Cu-Pd system. They attribute
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the small decrease in biaxial modulus which they observe
with decreasing wavelength to the increasing coherence
of these very thin samples. We attribute their slightly
higher values of modulus to the presence of free surfaces.

The misfit in the Au-Ni system is 13.7%, which is
twice as large as the misfit in the Cu-Pd system (7.1%)
and more than five times as large as the misfit in the Cu-
Ni system (2.6%). Table IV shows that the interface
stress in the Au-Ni system has the largest value of any of
the coherent systems we studied. The size of surface
stress is not directly related to the size of the misfit strain,
however. The origin of the surface stress in coherent
structures, as discussed above, is the difference in the
electronic makeup of the two materials, as the arguments
based on loss of coordination do not apply at a coherent
interface. Consider the Au-Ni system: within the frame-
work of the embedded-atom method, the equilibrium
electron density (po) is given by the cohesive energy (E, )

divided by the atomic volume (0}. Nickel has a large
cohesive energy (E, = —4.45 eV), resulting in tight bonds
(0= 10.9 A }. Thus, in a nearest-neighbor model, where
each bond contributes one-twelfth the total energy densi-

ty, we see a value for po=0. 034 eV/A . For gold, the
cohesive energy is almost as high (E,= —3.93 eV} but

the volume is much larger, with A=16.98 A . Thus
each bond contributes po=0. 019 eV/A, almost a factor
of 2 less density than the nickel. At a coherent interface,
the juxtaposition of the two types of atoms leaves the
nickel atoms at the surface starved for electron density,
while the gold on the other side is suffering from an abun-
dance of electron density. The simple response to this sit-
uation is for the gold atoms at the interface to try to ex-
pand (to reduce their local electron density), while the
nickel atoms near the interface try to contract (in order
to increase their local electron density). As usual, this
surface-driven effect is counteracted by the volume ener-

gy that these changes would cost. Since nickel has the
larger biaxial modulus (by a factor of 2), the system
equilibrates at a spacing closer to the bulk spacing of
nickel, leaving the gold atoms too close together. The
bulk of the gold has to provide a compressive or negative
surface stress in order to keep its surface atoms so close
together. As the system becomes thinner, the volume
strain energies are not as dominant, and the system re-
laxes to larger in-plane spacings. The equilibrium biaxial
strain and biaxial modulus for the coherent Au-Ni multi-
layers as a function of modulation wavelength are shown
in Fig. 6. The large values of interface stress manifest
themselves in the large magnitude of the strains which
develop in the plane. The strains are positive, as dis-
cussed above. The largest strains (for films with
A.o ( 15 A) are approximately 0.5%. The biaxial modulus
of the coherent Au-Ni system is virtually independent of
composition modulation wavelength, despite the large
stresses (and strains) which develop. As discussed in I,
the presence of a surface stress is not suScient to produce
a variation in modulus. The second term in Eq. (2),
which describes the variation in biaxial modulus with lay-
er thickness, is the sum of three constants: B„,q, and
the ratio of f to f0. This sum is multiplied by the sur-
face stress to give the deviation from bulk in the biaxial
modulus. The ratio of f ' Ifo is of the same order as
—B„ in this system, so that they sum to a small number.
Thus the value of f ' is seen to be important in determin-
ing the magnitude of the thickness dependence of the
modulus.

There is no straightforward physical interpretation of
the quantity f '. It is merely the first term in a Taylor ex-
pansion of surface stress about zero strain, as described in
I. Since the deviation of a stress with respect to strain is
a modulus, we can consider f' a "surface modulus. " If

TABLE IV. Values of I'„,B„,r), y, fo f', and e determined from simulations of (001) and (111)
multilayers of coherent Cu-Ni, Cu-Pd, and Au-Ni, as discussed in the text (eV/A = 1.6022 X 10" J/m',
eV/A = 16.022 J/m').

Y„
(eV/A')

y. 2
(eV/A )

fo
(eV/A )

I

(eV/A ) (%%uo)

Cu-Ni(001)
Cu-Ni(111)
Cu-Pd(001)
CU-Pd(111)
Au-Ni(001)
Au-Ni(111)

1.23
1.93
0.97
1.61
0.87
1.42

14.0
14.6
13.7
14.7
14.5
16.3

1.14
0.70
1.44
0.97
1.54
1.17

0.003
0.011
0.005
0.001

—0.002
—0.003

—0.004
—0.005

0.004
0.004

—0.019
—0.032

0.03
0.05

—0.01
0.02
0.23
0.43

2.7
2.7
7.3
7.3

14.7
14.7
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I TABLE V. Values of Y„,8„,ri, y, fo f' determined from
simulations of (001) and (111) interfaces of noncoherent Au-Ni
and Ag-Ni, as discussed in the text. (eV/A =1.6022X10"
J/m, eV/A =16.022 J/m ).

fo. ,
(eV/A ) B„g (eV/A ) (eV/A ) (eV/A )

—0.0050
I I I I I I I I I I I I I

20 40 60
~, (A)

Au-Ni(001)
Au-Ni(111)
Ag-Ni(111)'
Ag-Ni(111)
"Ag-Ni" (111)'

1.04
1.69
1.8
1.65
2.07

14.6 1.36 0.071
15.2 0.98 0.047
15.6 0.64 0.026
15.0 0.77 0.060
13.4 0.95 0.093

0.037 —0.42
0.036 —0.28
0.024 —0.61
0.040 —0.28
0.083 —0.90

1.50

~ 1.00
nn, wean n
CJ 'LI 'LJ M 'L/

(ooi)
050 « i I » i I

0 20 40
z, (A)
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FIG. 6. Equilibrium biaxial strain c and biaxial modulus

Yq as functions of composition modulation wavelength A,0 for
0

coherent (001)- and (111)-oriented Au-Ni multilayers.

we presume that the surface modulus acts over a distance
on the order of an interlayer separation zo, then we can
compare the relative importance of f'/zo, where zo is of
order 2 A, to Y„, the biaxial modulus. For the Au-Ni
system, f' is —0.3 eV/A, so f'/zo is approximately
—0. 15 eV/A . The biaxial modulus is approximately 1

eV/A, so the surface modulus is seen to be on the order
of 15% of the biaxial modulus. The region of solid near
the interface will, in this interpretation, responds to a
stress with an effective modulus which is the sum of the
normal modulus and this surface modulus. As the sur-
face moduli which we have measured are negative, this
would amount to approximately a 15% softening of the
modulus at the surface. There is experimental evidence
to support the notion of force-constant softening in noble
metals. Estimates range from a 10% to 15% softening in
Cu(111), to 47% on (111) Au, all in agreement with the
crude picture given above.

'Universal EAM.
Analytic EAM.

'Modi5ed EAM.

0.005 I I
I

I I I
I

I I I

0.000—

-0.005—

—0,0100 20 40
~, (A)

60

(compare with Tables IV and V). Since f'/f o is negative,
while 8„ is positive, we see that the magnitude off will

reduce the enhancements in Y„due to surface stress in
these multilayered systems, as discussed in connection
with the coherent Au-Ni samples. Figure 7 displays the
equilibrium strain and biaxial modulus as a function of A,o
for the noncoherent Au-Ni multilayers. The solid lines
are plots of the equations for e'(Ao) and Y(Ao) given
above by Eqs. (1) and (2), respectively. The unexpected
nonmonotonic behavior of the shortest wavelength (111)
Au-Ni multilayer is consistent with the unexpectedly
small value of interface stress measured on this sample.
The value of interface stress on the A,o=12.3 A sample is
about half that for the other samples. (The other three
samples show very little variation in either fo or f
among themselves). Were we to use the value offo mea-

B. Noncoherent multilayers
2.0 I I I

I
I 1

We studied noncoherent Au-Ni and Ag-Ni multilayers
using the same Johnson analytic EAM potentials which
we had used for the thin films and coherent multilayers.
The silver-nickel system was also studied using the
universal EAM potentials and the modified form of the
analytic EAM potential. The values of Y„,8„,g, fo
and f ' were measured using the techniques described
above, and are presented in Table V. The interface stress
which develops in the noncoherent Au-Ni system is fairly
large (about one-half of a typical free surface stress).
Note that the values off ' are much larger than the corre-
sponding values for thin films or coherent multilayers

1.5—
Q

1.0—

(oo1)
I I I I I I I I I I I

20 40 60

FICx. 7. Equilibrium biaxial strain e and biaxial modulus

Yz as functions of composition modulation wavelength A,0 for
0

noncoherent (001)- and (111)-oriented Au-Ni multilayers.



F. H. STREITZ, R. C. CAMMARATA, AND K. SIERADZKI

0.000—
I I I

(
I I I

)
I I I

—0.002—

W —0.004—

-0.006—

—0.008
0 40 60

I I I
j

I I I
I

I I I

~~ 2.0

1.8

I I I I I I I I I I I

40 60

FIG. 8. Equilibrium biaxial strain e* and biaxial modulus
Fz as functions of composition modulation wavelength A,o for

noncoherent (111)-oriented Ag-Ni multilayers modeled using
different forms of the embedded-atom-method potential, as dis-
cussed in the text.

sured on this sample in (2), we would see that the model
predicts the variation shown in Fig. 7 quite closely. The
interface stress f0 is expected to be a constant for a par-
ticular interface, independent of strain or thickness. We
believe that the variation in f0 which we observed in the
(111)Au-Ni samples is a result of the gold and nickel lay-
ers each being only three atomic layers thick, so that
every atom in the system interacts with the interface.
There is no "bulk*' region in this sample, a point which
we will return to in Sec. VI of this paper.

We studied noncoherent silver-nickel multilayers using
the universal EAM potentials, the analytic EAM poten-
tials, and the modified analytic EAM potentials. Figure 8
displays the equilibrium biaxial strain and biaxial
modulus as a function of composition modulation wave-
length for the Ag-Ni multilayers modeled using each of
the potentials. The solid lines are plots of Eqs. (1) and (2)
using the values given in Table V. The small strains
which develop in the multilayers interacting with the
universal EAM potentials are due to the small value of
surface stress which they exhibit. The larger value of sur-
face stress attained in the modified potential samples
clearly increased the magnitude of the biaxial strain seen
in these samples. The "Ag-Ni" multilayers modeled with
the modified potential developed strains greater than
0.5% for the thinnest samples, as compared to less than
0.2% strain in the thinnest universal EAM sample. The
biaxial moduli of multilayers which were modeled with
universal EAM potentials display a reduction of 3.8%
with decreasing modulation wavelength. This surprising
result comes about because of the larger value of f' in

these films, as in the coherent Au-Ni films mentioned
above. Inspection of Table V reveals that the ratio of f '

to fo is larger in magnitude than 8„, and negative.
(Note that the small value of fo exacerbates this effect. )

The simulation results for the analytic potential multilay-
ers show a slight enhancement of 1.6% with decreasing
wavelength. In this case the ratio of f ' to fo is smaller,
aided in part by the larger surface stress. The modified
potential yielded the largest interface stress and biaxial
strains of the three potentials used, suggesting that the
modulus would display significant variation with layer
thickness. However, by inspecting Table V, we see that
the values of the surface modulus f' are also larger for
the modified potential samples than in either the analytic
potential samples or the universal potential samples. The
unexpected increase in f ', coupled with a slight decrease
in the value of B„compared to the other potentials, led
to a only slight (2.3%) enhancement in the biaxial
modulus of (111)-oriented "Ag-Ni" multilayers.

VI. DISCUSSION

The thermodynamic model accurately predicts the bi-
axial strain and biaxial modulus at equilibrium in thin
films and layered structures. We believe that the small
differences between the computer simulation results and
the prediction of the model through Eqs. (1) and (2) result
from surface effects which only become relevant for sur-
faces which are extremely close together. We did not in-
clude these surface effects in the model. The surface
stress is the stress which the bulk of the solid must exert
on the surface atoms in order to maintain registry.
Atoms at a surface will, in general, have different equilib-
rium in-plane spacings than atoms in the bulk due to
their different local environment. As long as the surface
does not reconstruct, the surface atoms will maintain
coherence with the bulk, so that they share a common
in-plane spacing. For surface equilibrium spacings small-
er than this shared spacing, the surface atoms are
stretched with respect to their own equilibrium spacing,
which requires the presence of a tensile surface stress.
Likewise, a compressive stress develops if the equilibrium
spacing of the surface is larger than the bulk equilibrium
spacing. These stresses are parallel to the plane of the
surface or interface, and will result in biaxial strains.
Strains will develop in the plane of the interface due to
forces normal to the interface as well, owing to Poisson
effects. As the samples are not constrained in the direc-
tion normal to the surface or interface, the layers are free
to relax in such a way as to accommodate the normal
forces. If the layer becomes su%ciently thin, however,
atoms at the two surfaces will start to interact with one
another, and it may no longer be possible for the normal
forces to be accommodated as they were in a thicker sam-
ple. In this case the equilibrium strain state wi11 not be
properly described as arising solely due to a biaxial stress.
In order to properly analyze extremely thin layers (less
than four monolayers thick) we would have to reformu-
late the model to account for uniaxial stresses normal to
the unrelaxed surface. This would entail the addition of a
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6U„ term to the energy balance equation [Eq. (1) in I]:

volume +~ surface +~Unormal (6)

We presented a model which describes the effect that
surface and interface stresses have on the structural and
elastic properties of metal films and multilayers. The
model, originally proposed by Cammarata and Sieradzki,
was developed in detail and led to specific predictions
concerning the presence of a biaxial strain at equilibrium,
and to a biaxial modulus which depends on the film or
layer thickness. ' The equilibrium strain was shown to
vary with the magnitude of the surface stress, and in-
versely with the film or layer thickness. The biaxial
modulus was shown to display an inverse thickness
dependence which scaled with the magnitude of the sur-
face stress and its derivative with respect to strain, along
with higher-order elastic constants. We studied coherent

where AUno „is the work done against a normal force
per unit area. By analogy to 6U,„&„„hU„„,&

would be
given by

b, U„, ,&=2Jf„(e„)dd(e„),
where f„ is the normal stress, and e„ is the normal strain.
Clearly, such a term would produce a linear contribution
to the total-energy equation, Eq. (13) in I. Lacking an f„
term, all biaxial strains will be erroneously attributed to a
biaxial stress, since there is no other mechanism for a bi-
axial strain to appear. Thus, for films so thin that normal
stress is not properly accommodated, performing a fit to
Eq. (13) in I cannot yield correct values for fo.

Let us make an estimate of the change in biaxial
modulus predicted by Eq. (2) for real or experimental sys-
tems. We estimate the following values as reasonable or
typical: Y„=1 eV/A, 8„=14, g = 1, f0

=0. 1 eV/A,
and f '=0. 15zo Y„, where zz =2 A is an interplanar

P

spacing. For a wavelength of 20 A, we would expect a
14% enhancement in the biaxial modulus, due to surface
effects. Experimentally, most of the work to date has
bet;n done on coherent superlattices, motivated by early
reports of a large supermodulus effect. Current reported
results for these systems are unanimous in denying the
existence of a supermodulus effect. ' " Two recent ex-
perimental studies reported enhancements in the biaxial
modulus for noncoherent metallic multilayer systems,
one on an fcc/fcc superlattice' the other on a fcc/bcc
multilayer. Dutcher et al. reported enhancement of ap-
proximately 14'%//in the c» elastic constant measured in
Ag-Pd multilayers with modulation wavelength below
about 60 A, while Fartash et a/. reported a 15% increase
in the biaxial modulus for Cu-Nb films with wavelength
below about 100 A. Both results agree with the magni-
tude of effect which we would predict due to interface
stress.

VII. CONCLUSIONS

Cu-Ni, Cu-Pd, and Au-Ni multilayers with either (001) or
(111) surface orientations by molecular-dynamics com-
puter simulation using an analytic form of the
embedded-atom-method (EAM) potential developed by
Johnson. ' The coherent multilayers were found to
have very small values of surface stress, which resulted in
virtually no change in biaxial modulus with composition
modulation wavelength. The thermodynamic model was
again found to yield an extremely accurate description of
the changes in modulus and biaxial strain with thickness.
Incoherent multilayers of Au-Ni and Ag-Ni were studied
by molecular-dynamics simulation using the analytic
EAM potentials. The noncoherent interface was shown
to have a surface stress substantially larger than seen in
the coherent interfaces, amounting to approximately —,

' of
a typical surface stress on a free surface. The values for
f', or the "surface modulus, "were determined to be large
and negative at these noncoherent interfaces, resulting in
small or negligible variations in biaxial modulus with
modulation wavelength. Incoherent Ag-Ni multilayers
were also studied using the universal EAM potential of
Foiles, Daw, and Baskes and a form of the analytic
EAM potential which had been modified by the authors
to correctly reproduce known values for surface energy
and surface stress on Ni and Ag(111) surfaces. The Ag-
Ni multilayers were found to display biaxial strains in
proportion to the surface stress, as described by the mod-
el. The exceptionally large "surface modulus" measured
for samples by Foiles, Daw, and Baskes resulted in
dehancements in the biaxial modulus with decreasing
thickness. Multilayers which were simulated using the
modified potential exhibited the largest variation in biaxi-
al modulus, approximately 2.5%. Here again the value of
f' was extremely large, efFectively canceling the effect of
the larger surface stress. Both the analytic and universal
EAM potentials of were found to yield values of surface
energy and surface stress approximately a factor of 2
lower than experimentally observed values or those pre-
dicted by ab initio calculation for metal surfaces. We
presume that interface energies and stresses were similar-
ly reduced from their "true" values. As a result, the
enhancements in biaxial modulus observed in our com-
puter study are almost certainly smaller than one might
observe in nature, or by using a better set of potentials.
Using reasonable estimates for all of the quantities in-
volved, we finally predict that a multilayer formed with
noncoherent interfaces whose composition modulation
wavelength A,o was approximately 20 A would display an
increase in biaxial modulus of about 14% due to interface
stress effects. This estimation is in excellent agreement
with recent experimental work on the elastic properties
of Ag-Pd (Ref. 5) and Cu-Nb (Ref. 6) multilayers. The
effect would diminish as 1/A, o. We conclude by stating
that we observed no "supermodulus" e6'ect {modulus
enhancements of 100% or more) in either coherent or
noncoherent fcc/fcc transition-metal multilayers.

'Present address: Chemistry Division, Code 6179, Naval
Research Laboratory, Washington, D.C. 20375.
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