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We present a detailed model describing the effects of surface stress on the equilibrium spacing and bi-
axial modulus of thin metal films. The model predicts that very thin films will equilibrate to a spacing in
the plane substantially smaller than the bulk spacing for the material, and that this biaxial strain will
vanish as the reciprocal of the film thickness. The model predicts enhancements in the biaxial modulus
of thin metal films which also scale with the reciprocal of the film thickness. The magnitude of both the
strain and the resulting change in biaxial modulus are proportional to the magnitude of the surface
stress. We verified the predictions of the surface-stress model by performing molecular-dynamics com-
puter simulations of thin metal films using an analytic form of the embedded-atom-method potential.
The model was found to predict accurately the equilibrium properties of thin metal films.

I. INTRODUCTION

Atoms at a free surface or interface experience a
different local environment than do atoms in the bulk of a
material. As a result, the equilibrium position and energy
of these atoms will, in general, be different from bulk po-
sitions and bulk energies. Properties of the solid which
are sensitive to the atomic positions or energies will
necessarily be affected at or near a surface or interface.
For geometries where the number of atoms near the sur-
face is small compared to the total number of atoms, such
effects are insignificant, and are rightfully ignored. For
thin films or layered structures, however, these surface
effects can be substantial.

In order to understand the effects that a surface may
have on the elastic properties of a thin film, we consider
the surface stress model originally presented by Cam-
marata and Sieradzki.! The essence of the model is the
explicit introduction of surface energy and surface stress
into the equations for equilibrium of a thin film. These
surface terms will compete with the volume strain energy
in determining the equilibrium spacing of the material.
We shall see that the magnitude of the effect which a sur-
face has on the elastic properties increases with the re-
ciprocal of the film thickness and depends on the magni-
tude of the surface stress.

Although the following discussion is phrased in the
language of thin films with free surfaces, the arguments
which we will be presenting describe equally well the
effect that interface stress will have on a layered struc-
ture. The equilibrium structural and elastic properties of
metallic multilayers have also been investigated and dis-
cussed within the framework of the surface-stress model.
These results will be presented in the following paper.?

II. SURFACE-STRESS MODEL

The energy required to equilibrate a thin film can be
separated into two parts—the work required to strain the
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volume of the material and the work done against the
surface stress:

AU=A Uvolume +A Usurface . (1)
The volume strain energy AU, ,me is given by classical
elasticity theory as

AU qume =V((€}) [ 0;({e])dey; @)

where V is the volume (defined at the equilibrium or final
value of strain) and o ; is the stress response, defined as

Uij({e})=fcijk1([5})d€k1 . (3)

Consider a cubic film with a coordinate axis taken to
be the principal axis. We write the relationship between
the principal stresses and the principal strains using the
primary elastic constants (neglecting for the moment the
strain dependence of ¢;;):
o;=cngtepetegses,
oy=cpgtep g tegses,

o3=c;3g tepetegses,
(4)
O47=Cy48yq »

O5=Cyy8s
O6=Ce6E6 »

where we have used Voigt notation, and explicit use has
been made of cubic symmetry in the plane. (Note that we
do not have complete cubic symmetry because of the sur-
faces, which break the symmetry in the z direction.)

For a state of biaxial stress 0, =0,=0¢ and €;=¢,=F¢,
with o;=0,=05=04=0. Using these relations in Egs.
(4), we can rewrite Eq. (2) to read

AU\ ppume =2V (e) [ a(e)de , 2)
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and similarly, for Eq. (3),
ole)= [ Y(e)de , (39

where Y is the biaxial modulus (which will depend on the
surface orientation as well as value of strain).

The volume of the film is given by the area times the
thickness, where both the area A (e) and the thickness
Ale) are functions of strain. The area is simply given by

A(e)=Ay(14+¢)* . (5)

The thickness is given quite generally by A=A(1+eg;).
We can relate the strain in the thickness direction (e;) to
the biaxial strain by solving Egs. (4) using the constraints
of biaxial stress. The ratio of strains is found to be con-
stant, in analogy to Poisson’s ratio,

——=9, 6

.= (6)

so that the thickness can be given as a function of biaxial
strain:

Me)=Ao(l—ne) , @)

where 7 will depend on the orientation of the surface.
The calculation described above for a (001) surface yields

_ 2c3

Moo1 = ) (8)
001 33

while a similar calculation for a (111) surface shows that

_2(C“+2Cx2_2644) (9)
M 2y, ey

The equations derived above for 7 are strictly only val-
id for a bulk material. Near a surface there will be relax-
ations normal to the surface which will affect the thick-
ness in a manner not described by the continuum analysis
just presented. However, the net effect of these surface
relaxations is of order 0.1 A. We will neglect these sur-
face relaxations, and express the thickness of the film as a
function of strain by Eq. (7).

The stress response of the volume is defined as the
strain integral of the biaxial modulus, Y(e,A), which is al-
lowed to vary with strain and is assumed to be a function
of thickness. We write the biaxial modulus for an
infinitely thick film (i.e., a bulk sample) as

Y(g,A=w)=Y_ (1—B_ e+iC e’+ ), (10

where the constants B, and C, are effective higher-
order constants for this material, and the subscripts re-
mind us that these quantities are defined for infinitely
thick layers, when €* is zero.

The work done against the surface stress is given by an
integral of surface stress times area,

AUsurfacezsz(E)dA

— d4 , _
=2[fe)5 de=4 [ fe)4o(1+e)de, (1D
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where the factor of 2 arises because there are two sur-
faces, and Eq. (5) was used for the area.

Although we do not know the functional dependence
of surface stress on strain, we can perform the integral by
expanding f (¢) as a Taylor series about zero strain:

fle)=fo+fletifre?+ -+ . (12)

The total work required to equilibrate a thin film can
then be calculated. Performing the integrals and dividing
by twice the original area, we arrive at an expression for
the total change in energy for a thin film:

AU

—:2f0€+(f0+f’+%}\,0Yw )82
24,

L2 +2f"+ Y, (3—1B,, —3Im]ed . (13)

This equation is the central result of the surface-stress
model. From Eq. (13) we will derive expressions for the
equilibrium biaxial strain and biaxial modulus as a func-
tion of the film thickness.

The equilibrium biaxial strain £* is given by minimiz-
ing AU with respect to strain:

d | AU
de |24,

=0. (14)

€=E*

The solution to (14) will involve the solution of an arbi-
trarily large polynomial in £*, since the expression for
AU involves terms from a Taylor series in €. Let us per-
form the derivative and write (14) explicitly as a polyno-
mial in £*:

0 | AU
— =X,+Xe*+X,e**+---=0, (15
aE 2A0 ‘E:Et 0 1E 25 ( )
where

Xo=2f, ,

X, =2fo+2f"+A,Y,, , (16)

X, =2f"+2f"+AY (3—1B_—1ig).

In all of the cases which we examined, we found the
strains small enough that the cubic term in (15) could be
neglected, so that €* could be found by solving (15) as a
quadratic equation. In the majority of samples, the quad-
ratic term could be neglected as well, and the equilibrium
biaxial strain is given as

e* ~ —2fy _ —2f
CAfot2f'+HAY,  AY,

(17)

The last form is due to the relative magnitudes of terms
in the denominator. Typical values are A,Y, ~15
eV/A?, f,~0.05eV/A% and f'~0.3 eV/A%

Equation (17) expresses a simple relationship between
surface stress and equilibrium strain. As positive or ten-
sile surface stress favors the reduction of surface area,
which requires a negative value of ¢*. The magnitude of
e* falls off with the inverse of the thickness, Ay,. The in-
verse thickness dependence is expected in physical sys-
tems responding to a competition between surface and
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volume effects, as the ratio of surface to volume goes as
the reciprocal of the same measure of length. In our
case, the competition is between the surface stress, which
favors a change in surface area, and a volume strain,
which favors the bulk equilibrium spacing.

The modulus of a material is related to the total energy
per volume by the second derivative with respect to an
appropriate strain. As Eq. (13) is the total energy as a

J

Y(e,A)=Y,, +%[f0(2n—3)+f']+e -Y_ B, +12—[3f0(2n2—3n+4)+f'(317—4)—+—f"]
0 0

Using (17) for €*, we can evaluate Eq. (19) at the equi-
librium strain, which allows us to write the biaxial
modulus as a function of thickness only. Note that since
the equilibrium strain scales with reciprocal thickness,
the second part of the term linear in strain will be second
order in Ay !. To first order in A, !,

2
Y(ko)=Yw+—i—co—(Bw+217—3+f’/f0) . (20
0

Equation (20) states that thin materials with large values
of surface stress can exhibit modulus enhancements due
to the cumulative effect of variation with strain of
modulus, thickness, and surface stress through the con-
stants B, 1, and f'.

III. COMPUTER SIMULATION
OF THIN FILMS

In the preceding section we discussed the surface-stress
model, which describes how the presence of a surface
stress will affect the in-plane spacings and biaxial moduli
of thin films. The model makes predictions which in
principle could be tested by performing appropriate ex-
periments on properly prepared samples. Unfortunately,
it is extremely difficult to measure experimentally the
properties needed for a test of the model, although they
are well defined in a computer experiment. The impor-
tant parameters for the model are the surface stress f,
its strain derivative f’, and the linear strain coefficient of
the biaxial modulus, B. We will discuss each in turn.

The surface stress f, is the most important parameter
which goes into the model. The equilibrium biaxial strain
e* is proportional to f,, and the change in biaxial
modulus that can occur as a result of this strain is also
proportional to f. The surface-stress model is very clear
in predicting that systems with very small values of sur-
face stress will exhibit correspondingly small equilibrium
strains and minimal variation in biaxial moduli. Any ex-
perimental verification of the model would require an ex-
perimental value for the surface stress present in the sam-
ple. However, there is at present, no established tech-
nique for measuring surface stress. The surface stress has
only recently been inferred from measurements of surface
phonon spectra on clean metal surfaces.>»* Prior to this
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function of biaxial strain, we can write the biaxial
modulus Y (g) as

AU
vV

2
Y(e)=L 94

18
2 de (18)

Using (13) for AU and V(g)= A(g)A(g), with area given
by (5) and thickness by (7), yields

+ e (19)

work the only estimates of surface stress on oriented met-
al surfaces were first-principles calculations.> ™8

The variation with strain of the surface stress comes in
a discussion by Price and Hirth on atomistic simulations
of metals.” As a result, their estimate (for iron) is depen-
dent on their choice of atomic potential. No attempt has
been made to measure this quantity experimentally; there
are no known estimates of its magnitude for an actual
metal surface.

Given the difficulty associated with measuring the bi-
axial modulus itself in thin films, it comes as no surprise
that there has been no determination of an effective
higher-order constant, such as B. In principle, this would
be the easiest of these parameters to measure, since tech-
niques for the measurement of the biaxial modulus have
improved to the point where accurate measurements in
differing states of strain might be possible. At the time of
this writing, however, no such measurements have been
made.

We performed molecular-dynamics computer simula-
tions of metallic thin films in order to test the predictions
of the surface stress model. A valid test of the model
must involve measuring the state of biaxial strain and the
value of biaxial modulus for films of different thickness.
As discussed above, the equations involve properties of
the material, such as the surface stress, which are not
known a priori. We must then measure values for these
properties from the computer samples as well.

The experiment which we performed by computer
simulation can be outlined as follows: (a) create a sample
in a “reasonable” initial configuration; (b) equilibrate the
sample with no applied stress; (c) apply a small biaxial
stress to the sample and reequilibrate; (d) store values for
the equilibrium energy and positions; (e) repeat steps (c)
and (d) several times.

The creation of thin-film samples posed no serious
complications; we could merely start the atoms in their
bulk lattice positions and let them relax. The initial posi-
tions of the atoms was quite irrelevant for these systems,
as the thin-film samples would relax to the same final
configuration for any reasonable choice of initial posi-
tions. The samples were created with either (001) or (111)
surface orientations. (The gold films were not allowed to
reconstruct, as periodic boundary conditions constrained
the atoms to remain in their original plane. Thus data on
the gold films is for a metastable configuration of gold
atoms.)
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The samples were equilibrated by removing a small
fraction of the kinetic energy at each time step. This was
accomplished by rescaling each component of velocity.
The temperature of the sample dropped exponentially
during the equilibration process, which was assumed to
be complete when the temperature dropped to machine
precision values.

The rate of equilibration depended on several factors,
including the time step. The unit of time (7) in our simu-
lations is given by

172 1/2

2
L ) 2D

E

m (kg)

16.022

where m denotes the atomic mass, L is a unit of length
(A in our simulation) and E denotes a unit of energy (eV
in our simulation). As an example, the mass of a gold
atom is 3.27X107% kg, so in a simulation of gold
7=0.14 ps. The time step At was chosen to be smaller
than the time required for a phonon to move an atomic
distance. A typical value of At ~0.017.

The equilibrium state can be checked in several ways.
Two tests which we performed were to remove the damp-
ing at equilibrium to insure that the system oscillated
about a stable set of positions, and to heat the sample up
and cool it down again, to insure that we had reached a
global minimum.

We applied a series of small biaxial stresses to equili-
brated samples using the formalism of the Parrinello-
Rahman Lagrangian.!® The resulting total strains never
deviated from €* by more than 107°. The system heats
up upon the application of each new stress, and the added
energy is slowly damped out of the structure to reach a
new equilibrium state.

In order to analyze the results of a simulation, we re-
quired values for the equilibrium thickness, A, the Pois-
sonlike ratio 7 which defines the strain dependence of the
thickness, the biaxial modulus Y (A;) of the film at thick-
ness A, the bulk or reference biaxial modulus Y, the
higher-order elastic constant B _, and the surface stress
fo and its first derivative f’.

A. Determination of A, and 7

The lack of periodicity in the z direction for the thin
films meant that the z component of the Parrinello-
Rahman box no longer reflected the thickness of the film,
since the atoms were free to cross this boundary. We
defined thickness for the thin films by adding to the sepa-
ration of the outermost layers a quantity which
represents the distance that the outermost atoms extend
into the vacuum. As shown in Fig. 1, we took this dis-
tance to be simply one half the separation immediately
below the surface, so that the whole scheme was
equivalent to adding a first-layer separation, assuming the
layers relaxed symmetrically. Obviously this algorithm is
not unique. As long as the definitions were applied con-
sistently, however, any number of different definitions of
thickness would produce results similar to those which
we will present here. The model is insensitive to the pre-
cise definition of thickness.
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FIG. 1. Schematic depiction of a thin film, showing the quan-
tities used in a calculation of thickness. The thickness is given
by ¥z, +z,, as discussed in the text.

The values of 7 were determined in a straightforward
manner by measuring the strain in the plane (due to the
applied biaxial stress), and measuring the thickness strain
which results. The negative of the ratio of these two
strains is defined to be 7, in analogy to the definition of
Poisson’s ratio. The values of 1 could also be calculated
from their bulk elastic constants, as discussed above. The
measured and calculated values agreed to better than five
parts in 1000 in all cases.

B. Determination of Y(A,), Y, ,and B,

The biaxial modulus (and higher-order elastic con-
stants) was determined by fitting a polynomial to the
stress-strain curve. We write the stress for convenience
as a series in strain about the equilibrium value of strain
e* for a given sample thickness:

ole—e*)=C,(e—e*)+C,(e—e*)
+Cye—e*)+ -+, (22)

where the C,’s are polynomial coefficients.
The biaxial modulus Y (A,) is defined as the derivative
of the biaxial stress with biaxial strain:

¥ (hg)=2Z . 23)

0E |g—c*

By analogy with Eq. (10), we can write an expression for
the biaxial modulus involving higher-order constants:

Y(E’}\’O):Yko[l—BKO(E_S*)+%C}»O(E_£*)2+ e ] .
(24)

The quantity of interest is Y}‘o’ which is the biaxial
modulus for a finite A, structure. The value Y, is the

quantity one would measure in an experiment on a thin
film. By performing a polynomial fit to (22) and the
derivative shown in (23), we can readily equate
coefficients with the series shown in (24) to determine
values for Y, and B, .

The quantities Y, and B, were determined for pure
metals by creating bulk samples of the various metals



49 SURFACE-STRESS EFFECTS ON ELASTIC... . L ...

0.010 — T

T T
1

0.005

0.000 -

stress o (eV/A%)

-0.005— —

| IR

20.010

-0.010%

Ll

0.000
strain (e—e*)

FIG. 2. Typical curve of stress vs strain used in determining

the biaxial modulus. The solid line is the result of a polynomial
fit to Eq. (22).

(i.e., using periodic boundary conditions in all three
directions) and performing the same calculations as
above. We found that the values of Ylo and B’~o mea-

sured on thin films approached Y, and B, as the film
thickness approached infinity. The difference between
the values extrapolated to infinite thickness and the
values measured on bulk samples was typically less than
one part in 10* in ¥, and one part in 10° in B.

A typical stress-strain curve is shown in Fig. 2, along
with the results of a polynomial fit. The fits are seen to be
very accurate, with chi-squared estimates of error on the
order of 10~° and 107!° not uncommon for a fourth-
order polynomial fit to (22). The uncertainty in Y and B
due to uncertainty in the polynomial fit routine is far less
than the uncertainty inherent in extrapolating these
quantities to infinite thickness.

C. Determination of f and f’

The surface stress is determined from a curve of energy
versus strain. We calculate the quantity AU /24, as
defined in Sec. II, which we write as a polynomial in
strain:

AU Ag=Eg+HE e+ 62+ 683+t + -, (25)
where the §; are the polynominal coefficients, and ¢ is
measured with respect to bulk. By performing the fit we
can compare the coefficients with (13):

AU
24,

=2foe+(fo+f +1AY , )E?

+L[2f +2f"+ A Y, (3—1B, —3n)]ed,  (26)

allowing us to calculate values of f; and f’ using previ-
ously calculated values for Y, 9, B, and A,,.

The surface stress f, could be determined without
difficulty using this procedure, as it was simply half of the
linear coefficient §;. The practical difficulties in extract-
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ing a precise value for f' can be appreciated if one real-
izes that, for our simulation results,

=AY, > fo+f' . 27

We found that in the best case f' was on the order of 1%
of the AyY , term. The quantity f’ determined using this
technique is thus seen to be the very small difference be-
tween two larger numbers. Great care was taken while
performing the polynomial fits to insure that we obtained
consistent results for f’.!!

The surface stress and its derivative were also deter-
mined from the equilibrium positions of the atoms by cal-
culating the forces acting on a line element of the surface.
Ackland and Finnis describe how one might do this in an
atomistic model, presenting an expression for the surface
stress in terms of derivatives of the interatomic potential:

du;
Acafap=2 2 (RkB_RiB)a(_ , (28)
i k ka

where A is the area of the simulation cell, R, is the a
component of the position vector R, of the kth atom,
and u; is the energy of the ith atom.'> The k summation
extends over all of the atoms interacting with atom i,
while the i summation is restricted to atoms in one layer.
Repeating the sum for each layer yielded a layer by layer
contribution to the surface stress.

The surface stress per layer calculated using (28) is
shown in Fig. 3. The sum of all of the contributions is
zero, since there can be no net force, so that the surface
stress is balanced by bulk forces. This bulk force is seen
as the small constant deviation from zero at the center of
the film in Fig. 3. As the surface stress is a surface excess
quantity, we define the surface stress by summing the
contributions from the top several layers and subtracting
out the “bulk” contribution from the center of the
film.'>!* The resulting values for surface stress agree

0.05+ -

0.00

surface stress (eV/A%)

—0.05} : |

P S BT S S I U S S S N S N RS E S T

5 10 15 20 25
layer number

-
—0.100

FIG. 3. Surface stress as a function of layer number calculat-
ed using the method described by Ackland and Finnis. Note
that the six-layer sample has a substantially larger stress in the
interior of the film.
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with the values derived from the polynomial fits to better
than 1% for the thick films, but disagreed by as much as
7% for the thinner films. The reason for the disagree-
ment lies in the calculation of the surface excess quantity.
To be rigorously correct, the reference state should be an
otherwise identically strained slab of material embedded
in an infinite volume. Since the interaction potentials are
not that long ranged, we are justified in using the interior
of the film as a reference state, as long as the interior is
far enough away from the surfaces to prevent any in-
teraction. For very thin films (less than six atomic layers,
for instance) every atom in the film interacts with the sur-
face, and there is no “bulk” region available for use as a
reference state. The error is manifested as an apparent
decrease in the surface stress, owing to an apparent in-
crease in the “bulk” stress. Figure 3 shows the layer by
layer contribution for a six-layer-thick film as well,
demonstrating the difficulty in identifying a correct value
for the “bulk” contribution to the surface stress.

The strain derivative of the surface stress could be cal-
culated numerically by using Eq. (28) for a film at equilib-
rium with an applied stress and comparing it to the sur-
face stress on a film with no applied stress. Values of f’
calculated in this way agreed to within 3% of values
determined from the polynomial fits. This remarkable
agreement is rather fortuitous, given that the values for
f' determined from the polynomial fits depended sensi-
tively on our arbitrary definition of A,. However, the fact
that they agreed consistently gave us confidence in our
polynomial fit results. This technique worked best on the
thickest films, as the values of surface stress calculated
using (28) could not be used with confidence in the
thinner films.

In order to avoid the ambiguities in calculating the sur-
face stress and its derivative in thin films, we used the po-
lynomial fit technique for all values of f, and f’ present-
ed in this work.

Previous simulations of thin unsupported metal films
using these potentials have shown that very thin (<4
atomic layers, or about 10 A) metal films with (001) sur-
face orientations will undergo a structural transformation
in order to close pack their surfaces.!>!'® This incipient
instability is manifested by a marked decrease in the
shear modulus and a sharp rise in Poisson’s ratio as the
thickness of the film is decreased. As we did not wish
these changes in the elastic moduli to affect our results,
we limited our investigation to films with thickness at
least four layers.

IV. SIMULATION RESULTS

We performed simulations on thin oriented films of
copper, nickel, silver, and gold. The films were from 4 to
24 layers thick with (001) or (111) surface orientations.
The films were unsupported to remove the complication
of a substrate. Periodic boundary conditions were used
in the plane. The unit cell was chosen to contain 32
atoms per (001) layer, or 64 atoms per (111) layer, al-
though samples as large as 900 atoms per plane and as
small as 18 atoms per plane were also studied in order to
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ensure that there were no finite-size effects.

The atomic interactions were modeled using the ana-
lytic form of the embedded-atom-method (EAM) (Ref.
17) potentials developed by Johnson.'®!° These potentials
have been thoroughly described in the literature, so we
will not describe them further here. The simulations
were performed using the “universal” EAM potentials of
Ref. 17 as well. The two potentials yielded results which
were qualitatively equivalent. The exact form of the po-
tential was not relevant to our model, as long as the po-
tential contained some many-bodied term. (A purely
pairwise potential is incapable of describing a surface
stress properly, and would yield results which were quali-
tatively as well as quantitatively incorrect.'”) In this pa-
per we will discuss only the results obtained using the an-
alytic potential.

Table I lists the values of Y, B, 1, f,, and f' for
(001)- and (111)-oriented films of Cu, Ni, Ag, and Au.
The values were measured from the computer samples us-
ing the techniques discussed in Sec. IV. Values for % and
Y, were also calculated using the bulk elastic constants
determined for these potentials.!""!'”~!° The two methods
agreed to within the precision quoted in all cases. Equa-
tion (20) suggests that films with the largest value of sur-
face stress will have the largest enhancement in the biaxi-
al modulus. In general, it is true that materials with
small surface stresses cannot acquire large equilibrium
strain, and thus cannot exhibit large modulus anomalies.
However, materials with large surface stresses (and there-
fore large equilibrium strains) may nevertheless display
little in the way of modulus anomalies. The factor f,/f"
in (20) is typically negative, while B is always positive.
Since 7 is usually much smaller than either, it is the com-
petition between B, and f,/f’ which determines how
effective the surface stress will be in changing the biaxial
modulus. For pure metal films, inspection of Table I
shows that the ratio f,/f’ is on the order of —3, so that
the changes in biaxial modulus are dominated by the
value of B, which is ~ 14.

The surface stresses we calculated using the Johnson

TABLE 1. Values of Y, B, 7, ¥, fo, and f' determined
from simulatio}ns of the (001) and (111) sgrzfaces of Cu, Ni, Ag,
and Au (eV/A =1.6022X 10" J/m?, eV/A =16.022 J/m?).

Ym°3 Boc n 702 fOoz f’oz

(eV/A") (eV/A") (eV/ A’) (eV/A))
(0o1)
Cu 0.968 13.10 1.25 0.076 0.056 —0.14
Ni 1.542 14.70 1.08 0.098 0.047 +0.07
Ag 0.623 13.73  1.36 0.053 0.050 —0.19
Au 0.628 14.61 1.58 0.049 0.077 —0.38
(111)
Cu 1.550 14.08 0.80 0.063 0.069 —0.01
Ni 2.364 15.05 0.60 0.083 0.051 +0.37
Ag 1.027 14.66 0.93 0.043 0.065 —0.14
Au 1.108 16.08 1.27 0.039 0.107 —0.31
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EAM potentials are seen to be a factor of 2 smaller than
experimentally observed or predicted from ab initio cal-
culations. Thus the equilibrium strains which we observe
in our simulations are expected to be smaller than what
one might observe in nature, by about a factor of 2.

Figures 4 and 5 depict €* as a function of film thick-
ness for (001) and (111) films. The size of the strains
which develop as a result of the surface stress in these
metals is quite large, amounting to almost 3% for the
(001) gold film. The dashed lines are plots of Eq. (17) us-
ing values given in Table I. The agreement between the
computer experiment and the model predictions is ex-
tremely good. The solid lines in Figs. 4 and 5 are plots of
¢* determined by solving (15) as a quadratic, which
would be correct to second order in Ay . We see that Eq.
(17) is a good approximation for thin films, which justifies
its use in the expression for biaxial modulus.

The presence of such large strains in thin metal sys-
tems is worthy of study in its own right, as they will
affect many physical properties in a measurable way. The
epitaxy of a thin film onto a substrate, for instance, will
depend on the amount of misfit strain present in the sam-
ple. For a very thin overlayer, the equilibrium spacing
might be several percent smaller than bulk, reducing or
increasing the misfit strain by the same amount. Calcula-
tions of the critical thickness for epitaxy which are based
on misfit strain values assuming bulk lattice spacings
could be seriously in error.?’

The elastic properties of the material in the plane of
the surface will be affected by a large biaxial strain as
well. Figures 6 and 7 show the variation in biaxial
modulus, Ylo’ as a function of film thickness for the (001)

and (111) films, respectively. We see that modulus
enhancements due to the presence of a surface stress can
be quite substantial in very thin (<20 A) films. Gold
films with (001) surface orientation which were ~8 A

0.00— -

-0.01—

-0.02 -

-0.03

40
Ao (R)

FIG. 4. Equilibrium biaxial strain €* as a function of thick-
ness A, for (001) Cu, Ni, Au, and Ag films. The dotted lines are
plots of Eq. (17). The solid lines are plots of Eq. (15) solved as a
quadratic.
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FIG. 5. Equilibrium biaxial strain ¢* as a function of thick-
ness A for (111) Cu, Ni, Au, and Ag films. The dotted lines are
plots of Eq. (17). The solid lines are plots of Eq. (15) solved as a
quadratic.

thick displayed a 43% enhancement in the biaxial
modulus, while (001) nickel films of comparable thickness
manifested a more modest 17% enhancement. As men-
tioned at the outset, the gold films were not allowed to
reconstruct. The reconstructed gold surface (in either
orientation) will have a smaller value of surface stress, re-
sulting in smaller equilibrium strains and smaller
enhancements in the biaxial modulus. The softer metals
(such as Cu or Ag) displayed sizable increases in the biax-
ial modulus (=20%).

The solid lines in Figs. 6 and 7 are the variation in bi-
axial modulus with thickness predicted by the surface-
stress model Eq. (20). The curve is not a fit to the data, it

2.00— O Ni g Cu A Au O Ag

1.50 B

1.00 \E\Q\B\B\B——G—B\ a

=3 & =

0.50+— -
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(0] 20 40
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FIG. 6. Biaxial modulus YAO as a function of thickness A for

(001) Cu, Ni, Au, and Ag films. The lines are plots of Eq. (20),
using values given in Table 1.
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FIG. 7. Biaxial modulus Y"o as a function of thickness A, for

(111), Cu, Ni, Au, and Ag films. The lines are plots of Eq. (20),
using values given in Table I.

is a plot of (20) using the bulk values Y, B, 7, f;, and
f' given in Table I. The model is seen to describe quite
closely the effect of finite thickness on the biaxial strain
and modulus in thin films.

Wolf has performed similar simulations on thin unsup-
ported gold films, demonstrating as well the thickness
dependence of the in-plane spacing.?’ He monitored
changes in Young’s modulus in various directions and
found that although the (111) films behaved as one might
expect (i.e., increasing Young’s modulus with decreasing
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in-plane spacing), the (001) films behaved in an “entirely
counterintuitive” manner. We attribute the unexpected
behavior the thin (001) films to their instability with
respect to a (011) shear, which enables them to close pack
their surface. [Both the shear modulus and Young’s
modulus of the (001) films tend to zero as the film thick-
ness was decreased.'> %]

V. CONCLUSIONS

We have presented a model which describes the effect
that surface stresses have on the structural and elastic
properties of metal films. The model was developed in
detail and led to specific predictions concerning the pres-
ence of a biaxial strain at equilibrium and a biaxial
modulus which depends on film thickness. The equilibri-
um strain was shown to vary with the magnitude of the
surface stress and inversely with the film or layer thick-
ness. The biaxial modulus was shown to display an in-
verse thickness dependence which scaled with the magni-
tude of the surface stress and its derivative with respect
to strain, along with higher-order elastic constants.

We discussed the results of computer simulations per-
formed on (001) and (111) Cu, Ni, Ag, and Au films
modeled using the analytic form of the embedded-atom-
method potential!” developed by Johnson.'®!° The equi-
librium biaxial strain which develops in each of these sys-
tems was measured as a function of film thickness and
found to agree with the predictions of the model. The bi-
axial modulus was measured and found to vary with
thickness as predicted by the model. The model was
found to provide an extremely accurate description of the
equilibrium effects resulting from the presence of a sur-
face stress.

*Present address: Chemistry Division, Code 6179, Naval
Research Laboratory, Washington, D.C. 20375.

IR. C. Cammarata and K. Sieradzki, Phys. Rev. Lett. 62, 2005
(1989).

2F. H. Streitz, K. Sieradzki, and R. C. Cammarata (unpub-
lished).

M. Wiittig, R. Franchy, and H. Ibach, Z. Phys. B 65, 71 (1986).

4W. Menezes, P. Knipp, G. Tisdale, and S. J. Sibener, Phys.
Rev. B 41, 5648 (1990).

50. H. Nielson and R. M. Martin, Phys. Rev. B 32, 3780 (1985).

6R. J. Needs, Phys. Rev. Lett. 58, 53 (1987).

"D. Vanderbilt, Phys. Rev. Lett. 59, 1456 (1987).

8R. J. Needs and M. J. Mansfield, J. Phys. Condens. Matter 1,
7555 (1989).

9C. W. Price and J. P. Hirth, Surf. Sci. 57, 509 (1976).

10M. Parrinello and A. J. Rahman, Phys. Rev. Lett. 45, 1196
(1980).

HIF, H. Streitz, Ph.D. thesis, Johns Hopkins University, 1992.

12G. J. Ackland and M. W. Finnis, Philos. Mag. A 54, 301
(1986).

13). W. Gibbs, Collected Works (Longmans, Green, New York,
1928).

14R . Shuttleworth, Proc. R. Soc. London, Ser. A 63, 444 (1950).

ISF. H. Streitz, K. Sieradzki, and R. C. Cammarata, Phys. Rev.
B 41, 12285 (1990).

16F, H. Streitz, K. Sieradzki and R. C. Cammarata, in Thin
Film Structures and Phase Stability, edited by B. Clemens and
W. L. Johnson, MRS Symposia Proceedings No. 187 (Materi-
als Research Society, Pittsburgh, 1990).

17, M. Foiles, M. S. Daw, and M. I. Baskes, Phys. Rev. B 33,
7983 (1986).

18R. A. Johnson, Phys. Rev. B 37, 3924 (1988).

I5R. A. Johnson, Phys. Rev. B 39, 12 554 (1989).

20R. C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 55, 1197
(1989).

21D, Wolf, Appl. Phys. Lett. 58, 2081 (1991).



