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Nonspecular x ray reflection from rough multilayers

V. Holy

Department of Solid State Physics, Faculty of Science, Masaryk University, Kotlarska 9, 611 87 Brno, Czech Republic

T. Baumbach
Institut Laue La-ngevin, Boite Postale 156, Avenue des Martyrs, F 880$-9 Grenoble Cedez 9, France

(Received 18 October 1993)

X-ray re6ection from periodical multilayers with randomly rough interfaces has been described
within the distorted-wave Born approximation. The method is suitable for calculating both spec-
ular x-ray refiection and nonspecular (diffuse) scattering. In this paper, both in-plane and vertical
correlations of the roughness pro6les have been considered and it has been demonstrated that the
vertical roughness correlation substantially affects the nonspecular scattering. The theory can ex-

plain resonant effects observed in the beam scattered nonspecularly from a periodical multilayer.
The theoretical approach has been used for the study of interfacial roughness in a long-periodic
AIAs/GaAs multilayer and good agreement has been achieved between the experimental results and
the theory.

I. INTRODUCTION

X-ray reflection has frequently been used for structure
studies of crystalline and amorphous layers and multi-
layers. By measuring the specular refiectivity, the thick-
nesses and electron densities of the layers can be deter-
mined and, also, root-mean-square (rms) roughnesses of
the interfaces can be estimated. From the nonspecular
refiectivity (difFuse scattering), the correlation function
of the interface roughness profile can be reconstructed.

The specularly reflected (SXR) wave consists of the
coherent wave and of the part of the incoherent wave

propagating in the direction of specular reQection. The
nonspecularly refiected wave (NSXR) is incoherent. If
we neglect the divergence of the primary wave irradiating
the sample, the coherent wave is plane and the incoherent
wave is divergent (difFuse). The latter can be described
using the mutual coherence function or the formalism of
the differential scattering cross section.

Several theoretical descriptions of x-ray reQection &om
rough multilayers can be classified into two groups—
kinematical and dynamical methods. In the kinematical
approach the x-ray reQection is described within the con-
cept of scattering processes &om separate electrons, while
extinction and multiple scattering are neglected. " This
method [the first Born approximation (BA)j is suitable
for coherent and incoherent scattering calculations and
it can explain both SXR and NSXR. The BA is valid if
the angles of the primary and emitted beams with the
sample surface are large with respect to the critical angle
0, of the total external refiection (TER). Near 8, the BA
method fails, since it neglects the x-ray refraction and
TER.

Dynamical methods take account of multiple x-ray
scattering and therefore include the effect of TER. In the
coherent approximation the dynamical calculations lead
to the well-known concept of the effective complex refiec-
tivity of a rough interface. ' This reQectivity equals that

of a fiat interface multiplied by an attenuation coefficient
analogous to the static Debye-Wailer factor. In the in-

coherent approach ~o the dynamical calculations can be
performed on the basis of the distorted-wave Born ap-
proximation (DWBA). This method is applicable if the
incidence and exit angles are not too large.

Specular reQectivity curves of periodical multilay-
ers exhibit regularly distributed maxima analogous to
diffraction satellites occurring by x-ray diffraction on
monocrystalline periodical multilayers. Similar regular
peaks have been observed previously in the nonspecu-
larly scattered wave

In our previous paper we have calculated the inten-

sity of NSXR from thin layers and multilayers using the
DWBA. We demonstrated that resonant maxima occur
in the NSXR wave if the incidence and/or exit angles
equal 8, (so-called Yoneda wings). In the case of a lay-
ered system, additional resonant peaks occur if the angles
of incidence or exit coincide with the angular position of
a maximum of the coherent reQectivity.

The aim of this paper is to study the NSXR in peri-
odical multilayers. Using the DWBA we calculate the
distribution of the NSXR intensity in reciprocal space
and show the inQuence of the correlation of roughness
profiles of different interfaces on the NSXR distribution.
The method is used for the study of interface roughness
of a periodical A1As/GaAs multilayer and a good agree-
ment between theory and experiments is achieved.

II. THEORY

Let us consider a multilayer containing N interfaces
(N —1 layers). Each layer is characterized by its refractive
index n~ , local thickness Ds(x, y) .and mean thickness
D'~. The jth interface lies between the jth and (j+1)th
layers, and the interface j = 1 is the &ee surface. The z
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axis is perpendicular to the surface and its origin lies at
the surface (zq ——0); the z axis lies in the incidence plane.
The roughness profile of the j th interface is described by
the random function U~(z, y) (Fig. 1).

In the Fraunhofer approximation the energy Bux of
the wave scattered into an elementary solid angle dO is
proportional to the differential scattering cross section

do = (Ivq2I )/(16m' )dO, (1)
where Vq2 is the element of the scattering matrix con-
taining the scattering potential V(r) = K2[1 —n(r)2].
K = 2x/A is the wave-vector length in vacuum and
n(r) is the reIractive index as a function of the coordi-
nates. The averaging ( ) is performed over the statisti-
cal ensemble of all macroscopically nonresolvable rough-
ness profiles.

The essence of the DWBA method consists in splitting
the potential V into two parts V = V~ l + VI~&, where
VI l(r) represents the undisturbed system (a multilayer
with flat interfaces) and V&~I is the disturbance due to
the roughness. Within this approximation, the matrix
element is"

v„=v, ,' + v,',"= (y, IV
'

Iy, ) + (y, IV
'

Iq, ), (2)

where Igq 2) are two independent eigenstates of the undis-
turbed system and

IPq) = exp(iK; r)
is the incident wave corresponding to IQq).

The wave fields Ig ) (m = 1,2) in the undisturbed sys-
tem are represented by plane waves with amplitudes T~

and R~ (the amplitudes of the transmitted and refiected
waves belonging to the mth eigenstate in the jth layer).
The eigenstate I/2) is time inverted. The wave vectors
of these waves are denoted K~ and K', respectively.
The cross section (1) is proportional to the probability
of scattering from IQq) into I/2), and the wave vector
of the incident and scattered waves are K;„=K1 and
K«t ——K2. These vectors make angles 8q (incidence
angle) and 82 (exit angle) with the sample surface.

The matrix element V12 is connected with the com-
plex refiectivity of the undisturbed system~ and it can
be calculated by the standard approach. s ~4 An explicit
formula for V~I2

l for a general multilayer has been derived

For the contributions 8~ we found the following formula

W =K (n — )E+ F E+ (4)2+1

Here
t' Ti

Eg
(

m

(R )
is the column vector of the amplitudes of the mth undis-
turbed state; the superscript T denotes the transposition.
The random matrix F& contains the roughness profile

U, (z, y)

F-, &+'(qo") +'(q~") &

&+'(qV') &'(qs") &

'

sj+Uj (a,y)
E~(q) = dzdy dz exp( —iq r),

S Sj

where 8 is the irradiated surface area The .wave vectors

Qo 3 are defined as follows:

qp
——K) —K~, q~ = K') —K~,

g~ = K~ —K'~ g~ = K' —K' .~2 2 1& ~3 2 1'
(6)

The intensity of the coherently refiected wave is pro-
portional to the coherent part of der:

d« = Iv&,'&+ (v,',")I'/(16~')dn,

where

N

(v,',")= ):(w,)

Thus, within the DWBA approximation, the correlation
of roughness profiles of different interfaces does not in-
fiuence the coherent refiectivity of the multilayer.

The incoherent intensity is proportional to the inco-
herent part of do".

in our previous paper. We expressed it in the form of
a sum of contributions of particular interfaces

N

V~2 = ) Wz.(1)

Z.
~ smsstmahh~

drrl = Cov(V~~2 l, V~2)/(16' )dO

N N

= ) ) Cov(W~, Wg)/(16m )dO,

Z ~

D
J

I ~

I

ICI

D.

j=1k=1

where Cov(a, b) = (ab*) —(a)(b)* is the covariance of
random quantities a and b Substituting .from (4) into
Eq. (9) we get the final formula for the incoherent cross
section. This formula contains the covariances,

qgCov[Pj(qy+1)Pa(qle+1)]

FIG. 1. Sketch of rough interfaces in a multilayer.

m, n=0, . . . , 3, ~, k=i, . . . , N,

whose explicit forms depend on the defect model chosen.
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III. ROUGHNESS MODELS

We will consider two models of the interface roughness
denoted by A and B [see Figs. 2(a), (b)].

model A

J-2

Model A: no vertical correlations

Within model A the roughness profile U~ (x, y) is repre-
sented by a Gaussian stationary random process with the
probability density N(0, o 2), where the symbol N(p, o 2)
denotes the Gaussian probability distribution with the
mean value p and the mean-square deviation 0 . The
correlation properties of this roughness type are ex-
pressed by the covariance

(b) z
model B

J+1

- J+2

J-2

Cov[U, (x, y), U (x', y')]:—K, (p) = b, K, (p), (10)

where p = g(x —x')2 + (y —y')2. The Kronecker delta
on the right-hand side of this formula means that the
roughness profiles of two different interfaces are not cor-
related (no vertical correlation). In-plane correlation is
described by the in-plane correlation function

( )2h~
K, (p) =~'exp —

~

~
~

~A, )

J+1

J+2

FIG. 2. Models of the interface roughness. (a) Model A:
roughness profiles are not correlated, (b) model B: roughness
profiles are partially correlated.

Model B:vertical correlations

In model B the actual thickness D~(x, y) of the jth
layer is randomly distributed with probability density
N(D'", (2). Since U~ q ——Uz + Dz —D', the proba-

bility density of U~ is N(0, o'~ + (N —j )( ), where o'~
is the rms roughness of the substrate surface. The rms
roughness of the jth interface is therefore

cr, = a~2+ (N —j)(' (12)

and the interface roughness grows towards the &ee sur-
face. The covariance of the roughness profiles is

containing the in-plane correlation length of the jth inter-
face A~, the rms roughness 0~, and its &actal dimension
3 —h~. If h~ = 1 the &actal dimension of the interface is
2 (it equals its topological dimension) and the interface
has a nonfractal (Gaussian) nature.

~ [U'(* y) U (*' y')]=K' (~)
= K~(p) + [N —max(j, k)]

x L(p). (13)

(p 2h,

L(p) =('~xr —
l, z) (14)

The in-plane correlation length of all interfaces is A and
their fractal dimension is 3 —h.

Formulas (10) and (13) can be used for calculating the
covariances Q . After some lengthy calculations we ob-
tained the formula

The roughness profiles of difFerent interfaces are there-
fore partially correlated (vertical correlation). The first
term on the right-hand side of this formula expresses the
inBuence of the substrate roughness; the second one is
determined by random Quctuations of the layer thick-
nesses. The in-plane correlation function L(p) of layer
thicknesses can be assumed similar to K~ in model A:

Q~ = . exP[—(crzq~+ ) /2]exP( —[oh(q"+ )*] /2) dxdyexP[ —i(q x+qvy)]TTLYI y+$
( h+y) 2 tTLs

S

x{exp[q~, (q„,+ )*K~h(gx2+y2)] —I},m, n = 0, . . . , 3, j, k = 1, . . . , N,

where the wave vector transfers go 3 are defined in Eq.
(6). From Eq. (11)it follows that in model A Q~"„

In order to show the role of the vertical roughness cor-
relation, we consider the same rms roughnesses o~ in both
models, i.e. , these roughnesses will obey Eq. (12) also in
model A. Moreover, within this model we consider the
in-plane correlation lengths A~ and fractal dimensions
3 —h~ equal for all interfaces. Then, within both rough-

ness models, the whole roughness structure is character-
ized by the following parameters: oN, the rms roughness
of the substrate surface; (, the roughness increment in
model A or rms deviation of the probability distribution
of layer thicknesses in model B; A, the in-plane correla-
tion length of all interfaces; and h, the fractal coefficient
of all interfaces.
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IV. NUMERICAL CALCULATIONS

The ababove theory has been used for calculations of the
intensity reflected from a long-periodic AlAs/GaAs mul-

ilayer. The multilayer consists of 20 d,
rio containing one 70-A. GaAs layer and one 150-4 AlAs
layer. We assumed the wavelength A = 1.50 A. Th e total
sca ered intensity can be expressed

'
1as an integral

q z

q

I =I; dO
dO

(16)

where . is t
over the entrance aperture an le 0 of th d
w ere; is the intensity (photon flux density~ of the in-
cident beam. 0 c~ can be obtained from the geometrical
parameters of the experiment in Table I.

The intensity has been calculated as a function of the
wave-vector transfer between the vacuum w ™. 3um waves jFig. 3

1q = qo = K()&t K. .

This vector epends on the incidence a d 't 1 on exl ang es l9i 2

TABLE I.
The win ow

eometncal parameters of the ee experiment.
e window widths are measured in the 8-28 plane. The

effective width of the d
an ular ve o

i o e etector window is determin d b the y e

al zer
g ar width of the re8ection curve of th hirdve o e t crystal (an-

a yzer) and by the sample-analyzer distance.

Input window
Effective

detector window
Sample-detector

distance

Width (pm)

50
40

50 cm

Height (ym)

4000
4000

q = K(cos(82) —cos (Hi))

q, = K(sin(82) + sin(Hi)).

The conditions 8i 2 ) 0 determine the accessible part of
the reci rocal'p q q, plane. This part is limited b the

,
'n ig. ese circlescircles Hi ——0 and Hs

——0; in Fi . 3 th
are denoted si and s2, respectively. The SXR intensity is
distributed along the line q = 0 th

The coh
in e reciprocal plane.

e coherent part chal~ of do has been calculated d-
namicall u

'
y using the effective complex reflectivities of he

encac ae y-

interfaces If t
eciviieso t e

metho
s. t e incidence angle is not too 1 thi

hod yields the same results as the DWBA. r One can
arge, s

then expect that the vertical roughness correlation has a
neg igible inHuence on the coherent scattering. The inco-

erent part dor of do follows from Eqs. (9,15). S' 'l l
to our previous paper the SXR ' t '

hin ensity has been ex-
pressed using the sum of do.~ and do.l weighted by a
shape function taking into account th e experimental ge-
ometry. According to Table I th d t te e ec or angular aper-
ure ~ is so small that the incoherent component of the

SXR intensity is negligible compared with th
e XR intensity has been calculated directly b

Eq. (16) using doI.
e iree y y

Figs. 4(a), (b) show the calculated NSXR intensity dis-
tribution in the reciprocal plane using both A and B
models. Comparing Figs. 4(a) and 4(b) we can see that

FIG. 3. Sc ecreme of the wave-vector transfer in th

scattering.
ca p ane. e shaded areas are inaccessible bi e y nonspecular
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without the vertical roughness correlation (model A) the
NSXR intensity is distributed into a broad vertical zone
along the q axis. The width of this zone in the q di-
rection is proportional to 1/A. With the vertical correla-
tion (model B) the NSXR distribution is quite different.
The intensity is concentrated in stripes, and far from the
TER region these stripes are straight and parallel with

q . Near the TER region they are curved so that they
approach the Ewald circles cq 2. Similarly to model A,
the size of the stripe in the q direction is proportional
to 1/A. In the q, direction, however, its size depends on
the rms roughness and on the multilayer thickness.

The intensity distribution can be measured along cer-
tain lines in the reciprocal plane. In the so-called ~ scan
it is measured along the line Oq + 82 ——28 =const. This
line (scan trajectory) approaches the line q, =const, if
the angles Hq 2 are sufBciently small [see Fig. 4(c)]. Fig-
ures 5(a),(b) show these scans calculated in models A
and B along the trajectories going through the third and
fourth Bragg peaks in the coherent re8ectivity as well as
between them.

In the 20 scan the scattered intensity is measured along
the trajectory eq ——const. Fig. 6(a) shows this scan cal-
culated for Hq corresponding to the fourth Bragg peak of
the coherent refiectivity.

The SXR intensity is measured along the line q = 0

in the u-28 scan. In the case of larger angular detector
aperture 0 ~ (using a detector slit instead of the analyzer
crystal, for instance) the diffuse contribution to the SXR
intensity cannot be neglected. Figure 6(b) demonstrates
the diffuse contribution to the u-28 scan calculated for
both roughness models.

In all scan types, several intensity maxima can be ob-
served. The concentration of the NSXR intensity into
the stripes is the cause of the resonant disuse scattering
peaks, dynamical scattering processes giving rise to the
Yoneda peaks and the Bragg-like peaks. These peaks will
be discussed in Sec. VI.

V. EXPERIMENTS

SXR and NSXR were measured from an A1As/GaAs
multilayer with 20 periods grown by molecular-beam epi-
taxy (MBE) on a [001]-oriented GaAs substrate. The x-
ray experiments were performed with the triple crystal
difFractometer of the D23 beamline at LURE, University
Paris-Sud, using synchrotron radiation. The wavelength
1.5 A was selected by a Si (111)double monochromator,
and Ge (111) was applied as an analyzer crystal. The

10
44 SXR (a):

0 5

(a)— 10 '--

10

10
O
Q)

CL

—7

O
0)

10

1 0

-0.002

10

-0.001 0.000 0.001
a, (~/~)

I I I I I 1 I I

0.002

10
0.0

10'

10

1 22 33
B 1

44

0.5 1.0
(deg)

1.5

(b) =

10 10

1
O

Ck

0

O
—8

1
—9i0 I I I I I I I I I I I

—0.002 —0.001 0.000 0.001
q„(1/A)

. . . j
0.002

FIG. 5. co scans calculated for roughness parameters iden-
tical with those in Fig. 4. The scan trajectories were assumed
going through the third Bragg peak [line (3)] and the fourth
Bragg peak [line (4)]. The dashed line shows the cu scan with
trajectory between those Bragg peaks. The roughness models
A (a) and B (b) were considered.

10

10'
0.0 0.5 1.0

(deg)
1.5

FIG. 6. 28 scans (a) and the disuse component of the u-
28 scans (b) calculated for the same roughness parameters as
in Fig. 4. Roughness model A is shown with dashed lines and
model B with continuous lines. The 28 scans in (a) are calcu-
lated for the incidence angle 8~ corresponding to the fourth
Bragg peak in the coherent re8ectivity curve. The numbers
denote the indices pqp2 of the RqR2 BL peaks and the spec-
ular peak in (a) is denoted by SXR.
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10'

106

100

~ 10

0'

10

10

0.0 0 ' 5
I I I

1.0
(deg)

1.5

FIG. 7. ~-28 scan measured (points) on an AIAs/GaAs
multilayer. The line represents the best fit from the theory.

VI. DISCUSSION

Three types of maxima of the NSXR distribution in the
reciprocal plane can be established: (1) resonant diffuse

610 I I 1 I f I I I I I I I I I I 7 t g I I

10

CL
O

10

C
07

~ 10'

geometrical characteristics of the experimental setup are
in Table I.

We measured the SXR intensity in the u-28 scan and
the NSXR in the m scans. Figure 7 shows the measured
SXR intensity. The experimental curve has been fitted
with the theoretical one calculated by means of the ef-
fective refiectivities (we neglected the incoherent contri-
bution to the measured SXR intensity). From the fit we
obtained the roughness values o~ ——(8.6 6 0.7) A. , ( =
(1.6+0.2) A, and the layer thicknesses TG A, = (68+1) L
and TAiA, = (146 6 2) A. . The theoretical curve fits the
experimental one quite well except for the seventh Bragg
peak.

The measured ~ scans across the third and fourth
Bragg peaks are in Fig. 8. From the fit with the theory
(roughness model B) we estimated the in-plane correla-
tion length A = (2000+500) A. (from both scans), taking
the rms roughnesses from the fit of the u-28 scan.

scattering (RDS) peaks, (2) the Yoneda wings, and (3)
the Bragg-like (Bl ) peaks.

Resonant diffuse scattering

If the roughness pro6les of different interfaces are par-
tially correlated, the distribution of the diffusely scat-
tered intensity exhibits maxima in reciprocal space (res-
onant diffuse scattering). The intensity is concentrated
into stripes going through the lattice points of the one-
dimensional reciprocal lattice of the multilayer. The dis-

tance of these stripes in the q, direction is therefore
2m/D, where D is the multilayer period. If x-ray re-
fraction can be neglected, these maxima are straight and
parallel with the layer interfaces.

The concentration of the NSXR intensity in sheets par-
allel with the layers in the correlated case has been postu-
lated previously s without taking into account the bend-
ing of the sheets due to x-ray refraction. In Ref. 6 the
RDS effect has been documented by calculating the in-

tegral value of the NSXR intensity as a function of the
incidence angle. A similar distribution of the difFusely
scattered intensity can be establishedi5 by x-ray difFrac-
tion from rough single-crystal periodic multilayers. If
the roughness is vertically correlated, the difFusely scat-
tered waves accompanying the diffracted beams are con-
centrated in straight sheets parallel with the layers going
through the satellite reciprocal-lattice points.

If the line scan trajectory intersects the RDS maxima
in reciprocal space, RDS peaks occur in the intensity dis-
tribution curve. The shape of the peaks depends on the
scan trajectory. The trajectory of a v scan is nearly par-
allel with the stripes (the stripes are only slightly curved
due to x-ray refraction), and, therefore, the u scan con-
tains only one RDS maximum having the form of a broad
hump near the specular peak. This hump disappears in
the u scans between the stripes [Fig. 5(b)] and no RDS
maximum can be established within model A [no vertical
roughness correlation, Fig. 5(a)].

In a 28 scan a number of these peaks can be found [Fig.
6(a)]. Comparing the radius of the 28 scan trajectory
(the Ewald sphere) with the distance of the RDS stripes
we find that the angular distance of the RDS peaks in
this scan is about

+8RDs ~/D

The incoherent part of the SXR intensity measured in
the u-28 scan exhibits RDS maxiina, too [Fig. 6(b)].
Simple geometrical considerations show that the angular
distance of these peaks is

b,8, s = A/(2D).

10
-0.002 —0.001 0.000 0.001

q„(1/Al
0.002

FIG. 8. u scans (points) measured along trajectories go-
ing through the third [line (3)] and the fourth Bragg peaks
[line (4)]. Line (4) is shifted upwards by a factor of 10. The
lines are the best theoretical Sts.

The RDS eKect can be described by means of the Born
approximation as well. In this approach the states I@i 2)
are two independent eigenstates of the vacuum wave
equation

I@i) = I&i) = exp(iK r) I&2) = exp(iKo i r)- (19)

Figure 9(a) shows the distribution of the NSXR inten-
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~t'ai) = exp(iK, " r); ~y2) = exp(iK2" r). (20)

sity calculated with the vertical correlation (model B) in
the BA. The stripes of the NSXR maxima create a one-
dimensional reciprocal lattice parallel with q, with the
lattice parameter 27r jD. X-ray refraction is neglected so
that the stripes are straight.

The BA approach can be improved by replacing the
vacuum states by the plane waves propagating in an av-
eraged medium with the mean re&action index n:

The Yoneda peaks

Unlike the RDS peaks, the Yoneda and Bragg-like
peaks are caused by multiple scattering processes so that
they have purely dynamical nature. The Yoneda peaks
occur if the angles of incidence Hi and/or exit 02 equal the
critical angle 0 of TER. Those peaks follow from DWBA
calculations and, in addition, they can be included in BA
formulas by multiplying ~gi 2) in Eq. (20) by the complex
transmittivities of the averaged medium surface.

0. 1 5

0.10

0.05

0.00

y.
+ j

/ y+y+P5) I

~ r~ / /
I I

/
~ ~

ej/ C ~
~ r / /

\ ~
~ I

(o)
r - W = r - -I ==I —-e——1= = g - - I- -r - ~

-0.002 0.000 0.002

q„(1/A)

0.15 I I ~

Then, x-ray refraction and reHection (TER) are taken
into account giving the NSXR distribution in Fig. 9(b).
The stripes are curved in the same way as those &om
the exact calculation [Fig. 4(b)]; the other peaks (the
Yoneda peaks and Bragg-like peaks) are not present.

The Bragg-like peaks

2D n —cos g = p A (21)

Here n is the mean re&action index, D is the multilayer
period, and pi 2 are integers denoting the orders of the
BL peaks. The TqR2 and BqT2 BL peaks are stretched
along the Ewald spheres 82 ——8& ——const and Oy

ei L =const, respectively (Fig. 10). The process RiR2

The positions of the Bragg-like (BL) peaks can be un-
derstood using the concept of Umiseganregung. i 'i In
our sense, the Ummeganregung means the excitation of
a scattering process (leading to the Bragg-like peaks) by
another scattering process (RDS scattering). Four diffuse
scattering processes and consequently 16 terms of covari-
ances q „have to be taken into account for calculating
the resulting intensity. The scattering processes can be
interpreted as a primary scattering with the wave vector
transfer qo (scattering of the transmitted wave into the
transmitted wave again with the amplitude TiT2) and
three processes of Umtoeganregung with the wave-vector
transfers qi 23 (the processes TiR2, T2Ri, and RiR2,
respectively) .

The last three processes occur only if the re8ected
waves Ri s in the states ]pi 2) are present, i.e. , if the
angles Hq or 02 obey the modified Bragg equation
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+ +
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Q QQ -0.002 0.000 0.002

q„(1/A) Q QQ I I I I

-0.002 0.000 0.002
FIG. 9. Nonspecular intensity distribution in the recip-

rocal plane calculated vrithin the first Born approximation
without (a) and with (b) x-ray refraction. Crosses denote the
positions of the RqRq BL peaks. The dotted lines represent
the Herald circles eq, 2. The NSXR intensity in the inaccessi-
ble regions of (a) is denoted by dashed lines. The roughness
parameters are the same as in Fig. 4, and roughness model
B is assumed.

q„(1/A)

FIG. 10. Distribution of the BL peaks in the reciprocal
plane. Dotted lines are the Emald circles cq 2 defining the in-
accessible regions, dashed lines are the positions of the Yoneda
peaks, and continuous lines express the positions of BL peaks
of types R&Tz and T&R2. The isolated R&R2 BL peaks are
denoted by black dots.
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yields sharp BL peaks in points Hy = Hi fl 82 = 82
These BL peaks are depicted in Figs. 4(c), 9(a), 9(b),
and 10.

The positions of BL peaks do not depend on the rough-
ness properties; they are only jn6uenced by the undis-
turbed multilayer structure, mainly by the multilayer pe-
riod. The forzn of the BL peaks in the line scans depends
on the mutual position of the scan trajectory and the
BL maxizna in reciprocal space. The trajectories of the
~ scans can intersect the sharp RiR2 znaxizna only inci-
dentally and the sharp resonant peaks in these scans are
mainly caused by the processes TiR2 and RiT2.

If we perform a 28 scan with the incidence angle Hi

obeying the Bragg formula (21) the scan trajectory goes
along the znaximuzn of the RiT2 process and it intersects
the isolated maxima RiR2 in reciprocal space (Fig. 10).
Therefore, the resonant peaks observed in this scan [Fig.
6(a)j are caused mainly by the RiR2 scattering. In Fig.
6(a), the indices pi 2 of those peaks are depicted. The
angular distance of those peaks in a 28 scan follows from
the Bragg law (21)

so that 682 2682 . Thjs js demonstrated jn Fjg.
6(a), where the curve A (no vertical correlation) contains
only BL peaks and curve B (with the vertical correlation)
contains both BL and RDS maxima. Every second BL
peak is enhanced due to the RDS effect. It is worth men-
tioning that the forms of the two peak types are different.
The RDS peaks are nearly symmetrical, whereas the BL
peaks are S-shaped. Similar behavior can be found in
Figs. 9(a),(b). The RDS stripes lie along the rows of
the RiR2 BL peaks with the indices pi+ p2 ——0, 2, 4, . . .,
while those with pi + p2 ——1,3, 5, . . . are between the
RDS stripes.

From the NSXR distributions in Figs. 9(a),(b) it fol-
lows that in a ~-28 scan, the RDS and BL znaxima of the
diffuse intensity coincide and their separation is equal.
The trajectory q = 0 of this scan goes through the RiR2
BL peaks with the indices 11, 22, 33,. . . and these peaks
lie in the RDS stripes. This is demonstrated in Fig. 6(b),
where the RDS peaks in curve B coincide with BL peaks
in curve A.

From the DWBA theory it follows that the coherently
reBected intensity does not depend on the degree of ver-
tical roughness correlation. This finding has been sup-

ported elsewhere by another method.
In our calculations we have restricted ourselves to

the case h = 1, i.e., we have assuzned the non&actal
(Gaussian) nature of the interfaces. A detailed statisti-
cal description of a rough interface of a multilayer has
deznonstrated that in MBE-grown multilayers h = 0.5
holds. In our previous paper we have shown that in
the region 0.5 ( h ( 1 the NSXR intensity depends only
slightly on k. The assumption h = 1 allowed us to use a
more efficient numerical procedure for calculating NSXR.

Frozn the coincidence of the measured and theoretical
NSXR distributions it follows that the actual roughness
structure of the multilayer corresponds rather to model B
(with vertical correlation) than to model A. We believe
the discrepancies in the resonant peak shapes are not
caused by the roughness but, most likely, by the DWBA
approximation itself.

VII. CONCLUSIONS

The distorted-wave approach has been used for calcu-
lating the intensity of the waves refiected nonspecularly
&om a rough multilayer. It has been deznonstrated the-
oretically that the correlation of the roughness profiles
of different interfaces plays a crucial role in the distribu-
tion of nonspecularly scattered intensity in the reciprocal
plane. If the interface roughness profiles are partially cor-
related, the diffusely scattered intensity is concentrated
in stripes of the reciprocal plane going through the reso-
nant maxima. This behavior has been proved experimen-
tally and a good fit has been found of the experimental
nonspecular intensity distribution with the theory.
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