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Film growth by molecular-beam epitaxy is modeled by a simple solid-on-solid model using Monte Car-

lo simulations. L XL substrates are used and both deposition and surface diffusion are allowed to occur

simultaneously. Surface roughness is studied by measuring different surface characteristics: interface

width, reflection high-energy electron-diffraction intensity, and kink density are calculated from

configurations generated by simulation. We find a region of temperature and Aux for which apparent

layer-by-layer growth occurs. For 1ong times, the interface width grows logarithmically with time, and

its saturated value diverges logarithmically with substrate size. This unusual result suggests that within

the context of this model all growing surfaces are asymptotically rough for infinite lateral extent. Be-

cause of the logarithmic behavior of the interface width, our model falls into the Edwards-Wilkinson

universality class. The growth is intermediate between two-dimensional and three-dimensiona1 nu-

cleation and is experimentally observed in many epitaxial systems.

I. INTRQDUCTION

The past two decades have been a period of remarkable
advances in the growth of thin-film semiconductor struc-
tures. ' Such progress has been possible mainly because of
the advent of molecular-beam epitaxy (MBE) technology,
which distinguishes itself from other vacuum deposition
techniques by its much more precise control of beam
fluxes, film thickness, and deposition conditions. Along
with the development of MBE, the availability of sophis-
ticated surface characterization techniques and surface
analytical tools like scanning tunneling microscopy
(STM) have made it possible to extract valuable informa-
tion about a growing surface, and this has in turn stirnu-
lated the search for theoretical models of crystal growth.
The morphology of a growing surface can be probed in
situ using reflection high-energy electron diffraction
(RHEED}, and certain general features of the time depen-
dence of the RHEED intensity are common to many ex-
periments. At low temperatures the RHEED intensity
drops smoothly as the film grows, signaling the creation
of a smoothly growing, rough surface; but, as the temper-
ature is raised, the overall intensity increases and begins
to show oscillations above some temperature known as
the epitaxial temperature. The oscillations, which slowly
decay with time, are interpreted as indicating increasing-
ly imperfect layer-by-layer growth, i.e., surface roughness
gro~s with successive layers. If the beam is temporarily
stopped, the RHEED intensity recovers (interpreted as
the recovery of flatness ), and it is thus a common prac-
tice to do "growth interrupt" to improve interfacial qual-
ity. The temperature at which oscillations are first ob-
served in the RHEED intensity depends on the deposi-
tion rate; however, in experiments the substrate ternpera-
ture is usually maintained between 300—800 C in order
to make device-quality layers. Such temperatures are low
compared to the equilibrium roughening transition tem-
perature, but sufficiently high to produce compact films.

Recent experiments have now succeeded in measuring
surface roughness directly by scanning force microsco-

py
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Because of the constant deposition of particles, the sur-
face never has the opportunity to assume an equilibrium
structure. MBE is thus a nonequilibrium process for
which the "distance" from equilibrium is controlled by
the substrate temperature and the incident flux. At any
instant of time during growth, surface roughness is deter-
mined by competition between surface diffusion, which
tries to flatten the surface, and deposition, which tends to
make the surface rough. At the present time, however,
we do not know how to express this "distance" from
equilibrium in a sensible, quantifiable manner.

Effective efforts to understand the general features of
MBE from a theoretical perspective began over a decade
ago when Edwards and Wilkinson studied a simple mod-
el with both deposition and surface relaxation. A physi-
cal realization of their model is sedimentation of particles
in a viscous Quid under the action of gravity. They de-
rived an equation of the growing surface in order to study
the evolution of the height-height correlations. Kardar,
Parisi, and Zhang later proposed a more general growth
equation by adding a new term to the Edwards-Wilkinson
equation to account for lateral growth. Recently there
have been numerous attempts to understand thin-film
growth by simulation of computer models and by nu-
merical solution of growth equations; analytical
theories also have been developed to understand the na-
ture of thin-film growth.

The study of surface roughness is not a new subject.
Equilibrium behavior has already been studied by Monte
Carlo simulations of SOS (solid-on-solid), DGSOS
(discrete Gaussian solid-on-solid}, and three-dimensional
Ising models. Slightly more complicated systems
have been studied as well. In three dimensions there is
a nonzero roughening temperature above which the sur-
face produces steps freely, thus resulting in the rounding
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of crystalline facets. Roughening has been experimental-
ly observed on vicinal (stepped) surfaces, and the early
stages of roughening have been attributed to the
meandering of steps rather than to spontaneous creation.
Monte Carlo simulations have been carried out to un-
derstand equilibrium roughening on vicinal surfaces;
computer models and numerical simulations of growth
equations have been used to understand roughening in
growing vicinal surfaces. The question of a nonequilibri-
um roughening transition has also been addressed, ' and
it is evident from the extensive literature that roughening
is a very important problem. The numerical solution to
growth equations has generally been aimed at determin-
ing the long-time behavior of growing interfaces, while
MBE lattice simulations (except in Refs. 21 and 22) have
been concerned mainly with determining microscopic de-
tails of MBE growth.

The purpose of the current study is to attempt to un-
derstand the basic properties of this growth from the per-
spective of statistical mechanics, i.e., the behavior of a
large number of particles, rather than from employing a
realistic but complicated model for which only systems of
modest size can be used. We therefore do not attempt to
describe material-dependent characteristics. To accom-
plish this we have carried out large-scale Monte Carlo
simulations of a simple 2+1-dimensional model to deter-
mine the effects of competition between deposition and
diffusion for different fluxes and temperatures. We have
carefully examined the effects of finite lattice size and
finite growth time. Preliminary results have been pub-
lished elsewhere. In Sec. II we place this work in per-
spective by briefly reviewing previous theoretical and
simulation work. In Sec. III we describe the model and
the simulation method used, and in Sec. IV we present
our results. We conclude in Sec. V.

II. BACKGROUND

To place the present work in context, we briefly review
past theoretical and simulation studies of MBE growth.
Perhaps the first successful attempt to treat randomly
growing interfaces was by Hammersley (see Ref. 53), who
used a stochastic cellular automaton to study growth of a
film in d dimensions. Edwards and Wilkinson were the
first to study a model with deposition and surface relaxa-
tion. Their approach to the problem is more applicable
to our situation, and, although the problem has been
treated quite differently in our case, we find the same type
of dependence on system size of the steady-state height-
height correlation functions.

In an attempt to describe the behavior of a growing
surface from a phenomenological perspective, Villain
proposed a comprehensive growth equation that de-
scribes the evolution of the surface in the continuum lim-
it

BH =vV H+A(VH) +KV (V H)+oV (VH) +R+g,
at

where R is the renormalized deposition flux, g is the zero
mean random fluctuation in the fIux, and H is the height,

measured relative to the auerage height of the surface
Note that this equation contains the Edwards-Wilkinson
(EW) equation, and the equation by Kardar, Parisi, and
Zhang (KPZ), as special cases. By solving the growth
equation with X=K =o.=0, Edwards and Wilkinson
showed that the steady-state and dynamic height-height
correlation functions grow as ln(L) and 1n(t), respective-
ly. Guided by the ideas of universality, KPZ added a
first-order, nonlinear term to the Edwards-Wilkinson
growth equation to describe lateral growth, i.e.,
(E =o =0). In models such as the Eden model and the
ballistic deposition model, the KPZ equation provides a
reasonable description of surface evolution in 1+1 di-
mensions. Other growth equations have been studied as
well, where v=A, =o =0, v=A, =O, and o =0.

To characterize the universal behavior of growing in-
terfaces, Family studied dynamic scaling of rough sur-
faces in 1+1 dimensions, taking into account the effects
of surface diffusion. It is generally accepted that the in-
terface width satisfies the dynamic scaling equation

W(L, t)=L F (2)

for a system of lateral size L, where z =a/p is usually
known as the dynamic exponent, and for the KPZ equa-
tion a and p satisfy the relation a+a/p=2. According
to the dynamic scaling equation [Eq. (2)], the interface
width grows with time as

W(L, t)-t'~ for short times,

W(L, t)-t~ for intermediate times,

W(L, t ~ ~ )-L

(3)

(4)

(5)

The exponents a and p characterize the scaling proper-
ties of the surface fluctuations for a given growth model
and determine its universality class. In the ballistic depo-
sition model, p is found to be —, in 1+ 1 dimensions

whether surface relaxation is allowed or not. p is —,'for
the one-dimensional MBE growth model by Das Sarrna
and Tamborenea, which agrees with the 1+1-

dimensional lattice simulation by Wolf and Villain. '

In 2+1 dimensions p=O for the Edwards-Wilkinson
model, 0.22 for the Ballistic Deposition model, and 4 for
ballistic deposition with restructuring. For a restricted
SOS model by Kim and Kosterlitz, p is found to be —,

'

and z = 1.60. Richards studied the steady-state
behavior of the interface width in a model for which par-
ticles were allowed only to hop down, and the rate at
which the steps were smoothed out was independent of
step height. This model gave steady-state behavior simi-
lar to the Edwards-Wilkinson model. Although an exact
solution of the KPZ equation is not available in 2+ 1 di-
mensions, numerical studies of the KPZ equation by
Family indicate that, when the nonlinear term is large,
the value of a is close to the conjecture of Kim and Kos-
terlitz. When the nonlinear term is very small, the inter-
face width grows very slowly with time, possibly indicat-
ing a logarithmic behavior, and when the nonlinear term
is absent the exact solution to the Edwards-Wilkinson
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equation is obtained. This observation suggests that dy-

namic scaling in accordance with Eq. (2) will be satisfied

in models where the nonlinear term is large, but eventual-

ly there will be a crossover to the Edwards-Wilkinson re-

gime when this term is small. In this paper we develop a
scaling theory in that regime.

III. MODEL AND METHOD

where E„=nJ is a site-dependent activation energy, J is
the "effective" bond energy, and n is the number of
nearest neighbors. Note that J is not actually the physi-
cal total bond energy on a perfect lattice but is rather
some effective value that results dynamically from corre-
lated motions of the neighbors.

After breaking bonds, a particle that undergoes
diffusion moves to a nearest-neighbor column subject to
the restriction that its final position is not higher than the
initial one. The probability for a particle to move to the
kth nearest-neighbor site (assuming that it is empty) is
given by

—E /k Tb

pk e
—E'rk rb

(7)

We consider a solid-on-solid model growing on an
L XL square lattice substrate with periodic boundary
conditions. h(r, t) represents the height of the surface
above the two-dimensional substrate at position r and
time t. Particles are deposited randomly on the surface at
a constant rate, and deposition of a single particle at posi-
tion r increments the height by unity. The time scale can
be related to a physical time scale in the following way:
deposition of L particles per Monte Carlo time unit cor-
responds to the growth of one layer per second for a sys-
tem with a lattice constant of 10 A and a flux of
10' /cm sec. Typical values of the flux actually used in

the simulations are between 10' /cm sec and
10' /cm sec. In a single time step a small number of
particles are deposited randomly on the surface, and then
particles on the surface are allowed to hop to nearest-
neighbor sites.

In principle, each particle on the surface can hop with
probability P, and thus each particle should be tested.
For very low hopping probabilities a different procedure
is used to reduce the computer time needed: only some
fraction f of the sites (randomly chosen) is actually al-
lowed to hop, but with probability P/f. The size of the
time step, i.e., the number of particles deposited, the
probability P, and the fraction of particles allowed to hop
in a given time step, are adjusted with temperature and
deposition rate to avoid any systematic errors. This re-
sults in significant speed up of the computer program,
thus enabling us to do large-scale simulations of the
long-time behavior of MBE growth. The thermally ac-
tivated hopping probability is given by the equation

(6)

W(L, t)=[(h (r, t)) —(h(r, r)) ]'

where the thermal averages ( h ") are calculated via

(8)

energy available at the ith site. Thus the probability is

highest for the particle to jump to that site, providing it
with the highest coordination. Surface evaporation is not
allowed, and this restriction limits the maximum temper-
ature for which the results have physical relevance. Since
we have only allowed the particles to hop down, we have

effectively suppressed defect excitations, and the system
has access only to those states that will tend to minimize

the interfacial free energy. One can show that, for the
temperatures of MBE growth and for the realistic values
of bond energy and creation entropy of defects, the prob-
ability of defect formation is extremely small.

To allow studies of the statistical properties of an
evolving interface, growth must proceed to very long
times so that a scale-invariant state has been reached in
which the surface has developed large-scale (long-
wavelength) structures. In the long-time regime the sur-
face is expected to have long-wavelength fluctuations, so
in the steady state the microscopic details of the interac-
tions are no longer important to the interface. Effective
interactions between particles are then suScient to repro-
duce the correct deformations in the surface.

Simulations have been carried out for 20~L ~1000,
with the number of layers grown varied from run to run.
Multiple growth runs have been made for the same pa-
rameters but with different random number sequences,
and the results have been averaged together to reduce
statistical fluctuations. For the longest single run, 250
different runs have been averaged together for L =200,
with 2500 layers growth for each run. This corresponds
to adding a total of 2.5 X 10' particles.

It is well known that random number sequences may
have hidden correlations, which could in turn introduce
unwanted correlated movements of adatoms and thus
spurious behavior of the shape and size of clusters. We
implemented a minimal standard random number genera-
tor that is a prime-modulus multiplicative linear
congruential generator ' with multiplier 16807 and a
prime modulus of 2 ' —1. No "unusual" patterns have
been seen in surface projections, and comparison with
data generated using other random number generators
showed no obvious differences. "Snapshots" of the sur-
face were generated using a Silicon Graphics (Indigo)
graphics station. All the results presented in this paper
have been performed on a cluster of IBM RS/6000 work
stations. Vectorization of the algorithm is nontrivial due
to the double stochasticity of deposition and diffusion.

To characterize the quality of the growing surface, we
measured the interface width W(L, t), RHEED intensity
I, and kink density D from the configurations produced
by the simulation. If h (r, t) is the height of the surface at
position r and time t, measured from the flat substrate,
then the interface width is

where rn is the number of available sites and E is the site Here the overbar denotes an average over the statistically
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independent runs. The kink density D is defined as the
number of kink sites per unit area. The RHEED intensi-
ty is calculated by a method given in Ref. 64. Denoting
c; as the coverage of the ith layer above the highest fully
filled layer, the intensity of scattering in the out-of-phase
condition from the first five layers (at any instant of time)
is given as

5 4 3

0 X i X i i +1 g i i +2
i=1 i=1 i=1

the sequential adsorption of particles on an essentially fat
surface. The time dependence of the width then changes
fairly rapidly and begins to show oscillations as the tern-
perature increases. Although we have not presented any
results at a different flux, it is not diScult to see that such
behavior will be independent of flux, too, since it arises
because of the absence of correlations among particles at
very short times. When nucleation commences on the
surface, correlations appear and the mean width increases
as

2

2 g c;ci+3+2c)cg

4 2

+4Gi g c;c;+)+4G3 g c'c'+3 (10)

where Go, G1, and G3 are instrument response functions.
(On the short-time scales for which we measured the
RHEED intensity, we found no configuration with more
than five layers above the highest completely filled layer. )

The sensitivity of the RHEED intensity to the surface
structure can be improved by adjusting the instrumental
response functions. Wide response functions (i.e., G&,
and G3 comparable to Go) would obscure the diminish-
ing of the diffracted intensity by steps. For our measure-
ments we assumed that G, =G3=0.025GO. This pro-
cedure is sensitive to the coverage of the surface, but does
not give any information about the compactness of clus-
ters.

IV. RESULTS

A. Short-tine behavior

The analysis of a growing surface can be broadly divid-
ed into three categories, namely its behavior at short, in-
termediate, and long times. Figure 1 shows a plot of in-
terface width W versus time t for relatively short times.
For very early times the width is independent of tempera-
ture and consistent with an increase as t ', in agreement
with Ref. 56. This behavior is a trivial consequence of

W(L, t)-ln(t) for r; « t «r, ,

where v.; is the induction time, i.e., the time taken for the
initial transients to damp out, and ~, is the time taken for
the interface width to saturate.

Figure 2 shows a semilog plot of interface width versus
time for kbT/J=1. 7 and fiux=10' /cm sec. Although
oscillations are clearly seen, the mean value of the width
evolves as log&0(t) over a range of time that begins at less
than t =1 sec and extends all the way to t =20 sec. A
comparison of the time dependence of the surface width
W, RHEED intensity I, and kink density D for a range of
different temperatures is shown in Fig. 3. At high tem-
peratures the width shows oscillations that vanish as the
temperature is decreased. These oscillations indicate
layer-by-layer growth, and the increase of the interfacial
width with time indicates evolution of surface roughness.
One can see striking similarities between experimental
and simulation results for the effect of growth interrupt
on the RHEED intensity. In this model we have allowed
the particles only to hop down the step edge; thus the
equilibrium interface width would be zero at all tempera-
tures. This restriction is certainly not physical at high
temperatures, where the surface will tend to create de-
fects spontaneously; but at MBE temperatures, particu-
larly around the epitaxial temperature, this assumption is
realistic. If the particles are allowed to hop both up and
down a step edge, the equilibrium interfacial width is
nonzero. We have measured the equilibrium interface
width in a separate simulation for a fixed lattice size, and
for comparison these values are indicated by arrows in
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FIG. 1. Time dependence of surface width 8'at short times
for L =800, flux=10' /cm'sec, and different values of kb T/J,
where J is the effective bond energy. Data points are from aver-

ages over 15 different runs.

FIG. 2. Semilogarithmic plot of surface width 8' vs time for
L = 1000, kb T/J =1.70, and flux= 10' /cm sec. Data are aver-

ages over five different runs. The position of the arrow shows
the approximate location of the induction time ~;.
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FIG. 4. Time dependence of surface width 8' for L =100,
Flux=10' /cm sec, and a variety of kbT/J. Data represent
averages over 20 different runs. The position of the arrows indi-

cate the value of the equilibrium interface width at the corre-
sponding temperature. Note that the time scale is 100 times

larger than in the case of flux=10' /cm sec, implying a direct
dependence of growth rate on flux, since desorption is absent.
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FIG. 3. Time dependence of surface width 8' kink density

D, and RHEED intensity I for L =800, flux=10' /cm sec, and
different values of kbT/J. Data represent averages over 15
different runs. The position of the arrow indicates when the flux

was turned off.

Fig. 4 at the corresponding temperatures. Note that the
equilibrium values show the opposite temperature depen-
dence compared to the values of the width when the sur-
face is far from equilibrium.

There are mainly two rates in the system: (l) the rate
for surface processes to occur R,d (mainly surface
diffusion), and (2) the deposition rate Rf. One can ob-
serve very difFerent growth modes depending on the ratio
of R~/Rf. Thus, by appropriately adjusting Rf, it is
possible to obtain epitaxial growth at room tempera-
ture. For true layer-by-layer growth to occur, each lay-66

er must be completely filled before a new layer can grow;
however, in the context of our model, we will show that
such a condition is never achieved.

To better understand the manner in which growth
proceeds, we generated pictures of the surface at a series
of diferent times. Figure 5 shows a sequence of
snapshots of a growing surface for a near-layer-by-layer
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FIG. 5. Sequence of snapshots of a growing surface at
different coverages (top to bottom) 0.0, 0.25, 0.50, 0.75, and 1.00.
The simulation parameters are I. =128, kbT/J=2. 50, and
lux=10' /cm sec. Lighter areas are at a greater height above
the substrate than dark areas.
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FIG. 8. Growth of surface fluctuations with time is shown in
these pictures. The snapshots are taken at times (top to bottom)
t =10, 20, and 600 sec. The interfacial width saturated around
t =300 sec. The lattice size is L =128, kbT/J=1. 70, and
flux=10' /cm sec.
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system. Note that in a real system, the correlations be-
come constrained due to the finite grain size of the depos-
ited material. From our simulation results (Fig. 10) we
find W(L, t ~ oo ) = Wo(lnL },where 5 depends in gen-
eral on flux and temperature. From the analysis of the
scaling plot in Fig. 10, we find the empirical relation

W(L, t~ ~ )= Woexp[(J/kb T)"ln(lnL)~j, (12)

where Wo =0.50+0.02, itt,
= 1.67, and /=0. 48+0.03, im-

plying 5=/( Jlkb T)". At a given temperature, if the Aux

is changed, the interface width also changes. This offset
in the width can be nullified by appropriately adjusting

FIG. 7. (a) Surface growth at kb T/J =0.7, flux
=5X10' /cm sec, and coverage of 0.25. Light areas indicate
the adatoms. (b) The surface shown in this figure is first grown
up to a coverage of 0.25 with the same simulation parameters as
in (a). The flux is then turned off, and the surface is quenched to
a temperature of kb T/J=0. 5. The picture shown here is taken
10 sec after the quenching.
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to form clusters such that the longest wavelength is much
larger than the lattice constant. At t =600 sec the inter-
face width has already reached saturation, and the pic-
ture shows that the most dominant mode on the surface
has the longest wavelength. The long-time results for the
interface width are shown in Fig. 9. To understand the
results in Fig. 9, we note that there are two correlation
lengths in the system, one perpendicular and the other
parallel to the substrate. On a growing surface, these
correlations would grow indefinitely for an infinitely large

055— 80
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FIG. 9. Long-time behavior of the surface width 8" for
different lattice sizes L at kb T/J = 1.20 and flux
=5 X 10' /cm sec. The approximate location of the saturation
time for L =80 is shown by the arrow. The line through the
data points is a guide to the eye, and clearly shows the oscilla-
tions in the interface width.
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FIG. 10. Scaling plot of the saturated interface width
W(L, tab oo ) for various lattice sizes L and different tempera-
tures kb T/J. Flux=10' /cm'sec. A line drawn through the
data intercepts the y axis at —0.68, as denoted by the arrow.

the temperature. We expect Eq. (12) to be valid at all
fluxes for which apparent layer-by-layer growth is ob-
served, and p can be regarded as the growth exponent
that characterizes surface fluctuations with temperature
in the apparent layer-by-layer growth regime.

We now consider dynamic scaling at a single tempera-
ture. The time needed by the surface fluctuations to
reach the order of the system size is v.„which has a
power-law dependence on the system size, i.e., ~, =boL',
where z is the dynamic exponent. This leads us to define
a dynamic scaling equation

W(L, t) = Wo(lnL) V
7 c

where

(13)

t

r, (L)
(14)

~ln
r, (L) r, (L)

for w; ((t ((~, . (15)

At kb T/J= l. 50 and a flux of 10' /cm sec, we obtain
5=0.25+0.02 bo =0.082+0.002 and z =1.61+0.02.
Note that a comparison of Eqs. (13) and (2) gives us a=0
and P=O. Thus, the relation a+a/P=2 is not applica-
ble for our model. However, a/P approaches some limit-
ing value z that sets the time scale for the crossover to the
scale-invariant state. In other 2+ 1-dimensional models,
the value of z has been found to be 1.6 to 1.7. ' The
plot of scaled width %V= W(L, T)/Wo(lnL)s versus
scaled time t/~, is shown in Fig. 11. We see that scaling
is obeyed nicely in the limit of large system sizes. Note
that the scaling of data was attempted at a difFerent tem-
perature than in Ref. 52. We expect this scaling form to
hold when the temperature is not too high or too low.
This unusual scaling result suggests that, within the con-
text of this model, the surface width diverges for an

FIG. 11. Dynamic scaling plot for different lattice sizes at
kb T/J=1. 50, and flux=10' /cm'sec. The region where oscil-
lations in the interface width are observed has been smoothed
out by using average values over a time interval of ht =1 sec.
The scaled width is %= 8'(L, t)/8'0(lnL)~, and the scaled time
is t/~„where v, =boL'. The plot is for 8'0=0.50, 5=0.251,
bo =0.082, and z =1.61. Note that the time axis is logarithmic,
showing the consistency of the data with a logarithmic scaling
function.

infinitely large substrate. Hence no growing surface can
be "ideally" smooth. Note that, if the flux is weak, the
deformations in the surface have extremely large wave-
lengths; thus, to obtain the correct size effects, the system
size in a simulation has to be at least the size of the long-
est wavelength.

From the scaling results we conclude that our system
can be described by the Edwards-Wilkinson equation. To
understand the origin of the logarithmic behavior in our
model, we see that in the Edwards-Wilkinson equation
such behavior arises because of the term V h, which tries
to reduce the absolute local curvature at each point h (r)
on the surface, i.e., it tries to make the surface growth
two dimensional. In our model at very low temperatures
the growth is totally three dimensional, and the width is
expected to scale as

W(L, t~ ao )-L (16)

W (L, t ~ co ) —L (lnL ) (17)

where 6~0 as the temperature goes to zero and +~0 as
the temperature is increased. Above the epitaxial tem-
perature the correction to scaling comes from the term
L, and the amount of correction depends on the value of
temperature and Aux at which the simulation is done. A

in agreement with the analysis by Family. As the tern-

perature is increased, the three-dimensional character of
the growth is lost by the activated hopping of adatoms,
and growth proceeds via two-dimensional nucleation of
successive layers. Above the epitaxial temperature
three-dimensional islanding still persists, but growth
proceeds mainly by two-dimensiona1 spreading. This is
responsible for the logarithmic character of growth.
Hence the most general scaling equation (for growth with
surface diffusion) for the interface width should be
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striking similarity exists between a growing MBE system
and the sedimentation model of Edwards and Wilkinson.
Since growth starts from an initially flat substrate, the
average number of bonds available at each nucleation site
is highest in the layer closest to the substrate and lowest
in the topmost layer. This creates a downhill attraction.
In the Edwards-Wilkinson model there is a gravitational
potential gradient, and hence the particles move downhill
to the lowest possible height; in a MBE system particles
prefer to move downhill to the highest-coordinated site to
minimize the step free energy. A similar explanation of
this downhill motion has been given by Kessler and
Orr. In an equilibrium system, atoms hop up and down
the step edge and the net current is zero. In a MBE sys-
tem the adatom concentration is supersaturated because
the incident flux keeps supplying particles on the ter-
races. Because of the difference in adatom concentration
between the layers, there is a net downward current of
adatoms that travels down the hill to increase coordina-
tion. Recently, surface diffusion currents have been mea-
sured in a simulation for a variety of one- and two-
dimensional solid-on-solid models. A downhill current
is produced in the asymptotic regime of the Wolf and Vil-
lain model (WV), ' and Edwards-Wilkinson behavior is
observed after the system crosses over a characteristic
time scale. The observation of Edwards-Wilkinson
behavior after a characteristic time scale is consistent
with our simulations. Krug, Plischke, and Siegert also
find that a downhill current produces a stable surface,
which is required for epitaxy. This observation supports
our conclusion that ideal MBE growth must belong to
the Edwards-Wilkinson universality class.

growing islands have fractal-like structures. When
growth proceeds in a thermodynamic condition that is
not too far from equilibrium, the islands are compact,
and growth occurs predominantly by step flow. In this
case, the islands are large and uniformly shaped. The
surface pictures are most interesting in the long-time re-
gime where large-scale structures develop. The pictures
explicitly show the saturation of the interface width when
surface fluctuations cannot increase any more because of
finite system size. We find a growth exponent of @=1.67
from the scaling of long-time results for the interface
width at different temperatures, while the dynamic scal-
ing yields a dynamic exponent of z =1.61. The dynamic
scaling results of the interface width suggests that, within
the context of this model, true layer-by-layer growth does
not exist. Since the dynamic and steady-state height-
height correlation functions have logarithmic behavior,
our model falls within the Edwards-Wilkinson universali-
ty class. A surface growing by deposition and diffusion in
2+ 1 dimensions (under SOS restrictions) and the
Edwards-Wilkinson model belong to the same universali-
ty class. In the former, particles tend to move downhill
driven by the bond attraction to minimize step free ener-
gy; in the latter, particles travel downhill driven by gravi-
tation to minimize potential energy. From the analysis of
the Edwards-Wilkinson growth equation, we find that the
logarithmic character of our model is caused by the
characteristic two-dimensional spreading and three-
dimensional islanding of thin films. This is similar to
Stranski-Krastanov growth mode and is observed in
many epitaxially-growing systems.
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