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In the efFective-mass approximation, the validity of the boundary conditions for an envelope
function F across an interface between two different materials is predicated on the similarity of the
nearest band-edge Bloch functions. Such approximations break down when the two materials are
very dissimilar, e.g. , a metal and a semiconductor. By studying one-dimensional model potentials
we derive more accurate functional relations between the total wave function and its envelope. From
these the usual boundary conditions are restored (continuity of F and E'jm') when similar band
edges are aligned at abrupt interfaces in semiconductor heterostructures. More importantly, we also
derive appropriate boundary conditions for the case when band edges with qualitatively different
Bloch functions are aligned. In particular, we 6nd unique boundary conditions for interfaces between
regions with and without periodic potentials. These boundary conditions are shown to apply to
semiconductor heterostructures described within the nested effective-mass approximation and are
arguably reasonable approximations for metal-semiconductor interfaces.

I. INTRODUCTION

The efFective-mass approximation (EMA) is a sim-
ple and extensively used method for determining elec-
tronic states in bulk semiconductors. The EMA is on
a solid footing in bulk semiconductors where the theory
has been shown to be asymptotically exact in the limit of
infinitely weak and slowly varying perturbing potentials.
Since the advent of semiconductor heterostructures the
approximation has been widely applied to these systems
as well, even though the use of the EMA is more difEcult
to justify in this case. 2 In such heterostructures the effec-
tive mass m* is in general position dependent. Since the
moment»~ operator p and a position-dependent effective
mass do not commute, a question concerning the correct
form of the kinetic operator has arisen. This question is
directly related to the form of the boundary conditions
to impose on the envelope functions at abrupt material
interfaces. The question regarding operator ordering, or
equivalently boundary conditions, has attracted much at-
tention, not only because of its theoretical interest, but
also because of its practical importance. For the case
of aligned I'-point conduction-band edges with spherical
effective masses and similar band-edge Bloch functions,
a single-band EMA is applicable. A wide range of ap-
proaches has been taken to determine the appropriate
boundary condition to impose at abrupt interfaces for
this simplest effective-mass theory. Even though other
choices for boundary conditions have appeared in the lit-
erature, the choice

1 dEI" = continuous, = continuousm* dx
is the most soundly based. Even though these bound-
ary conditions were used earlier by Conley et al. ,
they are best known as the BenDaniel-Duke boundary
conditions, and we will keep this name here. By study-
ing a two-band model White and Sham were able to

derive the BenDaniel-Duke boundary conditions in the
context of semiconductor heterostructures. Bastard de-
rived the second condition in (1) by assuming the first
one. Galbraith and Duggan found this boundary con-
dition to give a good fit when comparing effective-mass
results with photoluminescence excitation spectra &om
GaAs-A1Q 35GaQ 75As quantum wells. Einevoll and co-
workers@ i obtained the conditions (1) by comparing
effective-mass results with exact results on exactly solv-
able one-dimensional heterostructure models. Further-
more, both Young, 2 who studied the case of slowly

varying inhomogeneities, and Burt, who used another
envelope-function formalism on abrupt heterointerfaces,
obtained the same result. The BenDaniel-Duke bound-
ary conditions are only applicable when nondegener-
ate band edges with similar band-edge Bloch functions
are aligned. For heterostructures where band edges
with qualitatively different band-edge Bloch functions are
aligned, the situation is less satisfactory. An example is
I'-X mixing in GaAs-A1As superlattices where multiband
EMA descriptions with a phenomenological mixing coef-
6cient have been used.

Another important class of heterostructures are the
metal-semiconductor structures. A Schottky barrier is
formed at an interface between a metal and a doped semi-
conductor, and its height and shape determine the elec-
tronic transport through the interface. The simplest de-
scription of this system involves the single-band EMA
for the semiconductor and the &ee-electron approxima-
tion for the metal. In order to calculate the tunnel-
ing probability through the Schottky barrier, one might
be tempted to match the semiconductor envelope func-
tion F, with the metal wave function F at the metal-
semiconductor interface, and the question arises as to
what boundary conditions to use. The BenDaniel-Duke
boundary conditions are expected to apply only when
band edges with similar band-edge Bloch functions are
aligned. Since this criterion is certainly not ful611ed for
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the metal-semiconductor system, it is not to be expected
that the BenDaniel-Duke boundary conditions are appli-
cable.

In this article we derive boundary conditions for a wide
range of situations using a simple and intuitive approach.
We consider one-dimensional heterostructures and derive
functional relationships between the total wave function
4 and the single-band envelope function F. At heteroin-
terfaces the total wave function 4 and its derivative 4'
must be continuous, and by using the above-mentioned
functional relationships, boundary conditions imposed on
F and F' are found. The boundary conditions thus ob-
tained depend on all band-edge energies and band-edge
Bloch functions of the constituent semiconductors in the
heterostructure, and can in principle be calculated for all
one-dimensional potentials. However, it would be more
useful to have more general boundary conditions given in
terms of experimentally observable quantities such as the
effective mass, even if they are valid for a limited range of
systems only. In this spirit, we obtain for weak periodic
potentials the BenDaniel-Duke boundary conditions (1)
when band edges with similar conduction-band edges are
aligned, except at the lowest band edge. Furthermore,
our procedure yields boundary conditions for strained
heterostructures and heterostructures where band edges
with qualitatively difFerent band-edge Bloch functions are
aligned, which are in agreement with results from exact
studies of specific examples.

With our approach it is also straightforward to derive
boundary conditions for the one-dimensional analogue of
the metal-semiconductor interface. This question has, to
our knowledge, not been addressed before. As our most
striking result, we find that the boundary conditions

F —F
1 1 / 1

2 ma mp

where mp is the &ee-electron mass, are the right choice
with some caveats. The difference &om the BenDaniel-
Duke boundary conditions lies in the factor 2 on the
semiconductor side of Eq. (3).

The new boundary conditions are obtained on the ba-
sis of one-dimensional models, some of whose properties
do not hold in real three-dimensional systems. However,
these boundary conditions may well apply to realistic
layered heterostructures, since the conditions are consis-
tent with the particle Bux continuity along the growth
axis averaged over a unit-cell cross section. In addi-
tion to possible applications to effective-mass theory for
three-dixnensional systems, our results are directly ap-
plicable to realistic heterostructures described by the
recently introduced nested effective-mass approximation
(NEMA). In Ref. 17 the NEMA was introduced as a
simple way of describing electronic states in superlattices
of superlattices, which are structures consisting of peri-
odically alternating superlattices. In this approxixnation,
superlattice sections in semiconductor heterostructures
are represented by their position-dependent miniband
edges and associated miniband-edge effective masses. It
was demonstrated in concrete cases that in many situa-

II. THE EFFECTIVE-MASS APPROXIMATION

Our starting point is the well-established effective-mass
approximation for bulk semiconductors. Below we will

proceed initially in the same way as Altarelli~ and list
the main results in this version of deriving an EMA de-

scription for impurity states. For a more complete deriva-

tion we refer to Ref. 16. The wave function 4 of a per-
turbed state in a bulk semiconductor (for example due

to an impurity) satisfies the equation

h
V + V(r) + U(r) 4' = [Ko + U(r)j@ = E4,

2mp

(4)

where Hp is the unperturbed crystal Haxniltonian, and

U(r) is an additional slowly varying potential. @ is ex-

panded in eigenfunctions of Hp, namely,

where

nk

Kognk @rak4nk

Substituting (5) in Eq. (4) gives for the coefficient func-

tions 4„(k)

(E„i,—E)4„(k)+ ) (@„i,~U(r)~g„i, )4„(k') = 0 .

n'k'

(7)

If the energy E of the perturbed state is close to the nth
band edge and far from all other band edges, and U(r)
is shallow and changes little over one lattice spacing, the
EMA can be applied. In this approximation Eq. (7)
simplifies to

(E„i,—E)O„(k) + ) U(k —k') 4„(k') = 0,
kl

where U is the Fourier transform of U(r). The EMA
equation in real space is essentially the Fourier transform
of (8), and for a perturbed state close to an isotropic,
Dondegenerate band edge at k=0 one finds

tions of practical interest the NEMA provides accurate
results. In the NEMA the wave functions in the plane
of the heterointerface are simply plane waves, and the
in-plane directions trivially vanish &om the description.
Thus the one-dimensional results found here apply di-

rectly.
In Sec. II general expressions for the functional re-

lationships between the total wave function 4' and its
derivative 4', and the envelope function F and its deriva-
tive F', are obtained. In Sec. III these relationships are
used to derive boundary conditions for the envelope func-
tion in semiconductor heterostructures for a wide range
of situations. In Sec. IV we derive boundary conditions
for metal-semiconductor systems and give examples of
their application. A discussion is given in the final Sec.
V.



49 BOUNDARY CONDITIONS FOR ENVELOPE FUNCTIONS AT. . . 10 535

h
V + U(r) F„(r) = (E —E„p)F„(r), (9)

2m

where

+ O(V'F„),

f @' o(r)(—ibad')@„p(r)dr

f g' p(r)@ p(r)dr

(10)

In the derivation of the EMA equation (9) the interband
matrix elements of the type (g„g~U(r) ~g„g ) have been
omitted. These matrix elements yield corrections to the
wave function of the order ~hp „V'U/mp(E„— E ) ~,

smaller than the terms in Eq. (10). Thus, if the external
potential is sufficiently slowly varying at the interface,
these corrections can be safely neglected when deriving
boundary conditions for F„.

From the k p perturbation theory one also obtains a
formula for the isotropic eHective mass, namely,

1 1

mp
+

mo Eo —E pmgn
(12)

In Eqs. (10) and (12) the sum over m goes over all band
edges with an extremal point at k=0. Considering only
the lowest-order term in (10), F„can be viewed as a
slowly varying modulation of the rapidly varying band-
edge Bloch function. However, the term involving the
gradient of F„must be kept in order to derive boundary
conditions to impose on F„at heterointerfaces. It is this
essential inclusion of the second term in the matching of
wave functions at interfaces which makes it possible to
relax the usual explicit or implicit assumption of having
identical band-edge Bloch wave functions on two sides
of the interface (although with different band-edge ener-
gies).

We now restrict our considerations to one-dimensional
crystals with a symmetric potential around the center of
the Wigner-Seitz cell. The one-dimensional versions of 4
and its gradient 4" are, &om Eq. (10),

@'(z) = F-(x)@-p(z)

+F„'(*)). (E E 4' o(x)
mp (@no E 0rn gn

+O[F."(x)l ~

@'(x) = F (z)@'o(x) + F'(x)& o(z)

+F„'(*)). E E,@'.(*)
mo E„o—E o)rngn

+O[F."(*)j (14)

where the envelope function F„(r) is the Fourier trans-
form of 4„(k), m„' is the effective mass, and E„p is the
energy at the nth band edge. In order to relate the enve-
lope function F to the total wave function 4', the peri-
odic part of the Bloch function Q„i, is expanded around
the band minimum at k = 0 using standard k p theory.
This gives

@(r) =F (r)~ o(r)+ ). E E 0 (r)
. —ibad'F„(r) p „

mgn
mp no mp

For the one-dimensional crystals all band extrema are
either at the zone center k = 0 or at the zone edge k =x/a
(where a is the lattice constant). The derivation of the
EMA equation (9) and the functional relation between
4 and E„are straightforward to generalize to the case
where the band extremum is at the zone edge. Equations
(10)—(14) are still valid if @ p(z) is replaced with the
Bloch function at the zone edge g„(x), and the sum
over band edges is set to include only band edges at k =
vr/a. The band-edge Bloch function is biperiodic, i.e.,

(x) = —Q„(z+ a) = g„(z+2a). For notational
simplicity we will in the following denote the band-edge
Bloch functions g„(z) both for k = 0 and k = m/a so
that Eqs. (10)—(14) apply for both cases. Likewise we

will omit the subscript 0 from the symbols for band-edge
energies and the subscript n &om the envelope function
F

In Fig. 1 the possible symmetries for the Bloch func-
tion at band extrema with symmetric atomic potentials
are illustrated. For band extrema at the zone center the
band-edge Bloch function g„ is either (i) of even par-
ity about the center of the Wigner-Seitz cell with zero
derivative at the Wigner-Seitz cell boundary, or (ii) of
odd parity about the ceO center and zero at the bound-
ary. For band extrema at the zone edge the band-edge
Bloch function also has two distinct possibilities, namely,
(iii) of odd parity about the cell center and zero deriva-
tive at the boundary or (iv) of even parity about the cell
center and zero at the boundary. For later use we will
designate band edges in categories (i) and (iii) as class
I, while band edges in categories (ii) and (iv) are called
class II.

In order to derive boundary conditions for the envelope
function, the total wave function 4' and its derivative @'

must be evaluated at the boundary of the Wigner-Seitz
cell. We first focus on a band edge n of class I where
the derivative of the Bloch function vanishes at a cell
boundary set to be at x = 0, i.e., vP„'(0) = 0. In this
case the contribution &om the sum in Eq. (13) vanishes
since p „g (0) =0 for all m. This follows &om the fact
that p „j0 only when Q„(x) and Q (x) have differ-

(iv)

FIG. 1. Sketches of the four symmetry categories of band-
edge Bloch functions Q for one-dimensional periodic poten-
tials. Categories (i) and (ii) occur for band edges at k = 0,
while categories (iii) and (iv) occur for k=s/a. Band wages
in category (i) or (iii) are labeled class I in this article, while
band edges in category (ii) or (iv) are labeled class II.



10 536 G. T. EINEVOLL AND L. J. SHAM 49

ent parity. When @ (x) has difFerent parity from @ (x),
however, g (0) is always zero. Thus the leading terms
in Eqs. (13) and (14), evaluated at the Wigner-Seitz cell
boundary, simplify to

(0) = F'(0)q„(0) + F'(0) ) E""
E

y' {0)
m0 n na

The coefficients a„and b in (17) and (20) can in prin-
ciple be calculated for all one-dimensional (symmetric)
potentials. However, it would be more useful to have
more general, though approximate, expressions for a„
and b„valid for a wide range of potentials. Moreover,
it would be even more desirable to have expressions in-
volving only quantities which can be measured experi-
mentally, such as for example the effective mass m*. We
will address this question in the next section.

where

16
III. SEMICONDUCTOR HETEROSTRUCTURES

). —ihp „g' (0)
mo(E„—E ) g„(0)

{17)

For band edges of class II, the Bloch functions them-
selves vanish at the cell boundary, i.e., @„(0)=0. In this
case the sum in Eq. (14) vanishes since p „Q' (0) is zero
for all m. This is because p „$0only when Q' (0) =0.
Equations (13) and (14) evaluated at the cell boundary
thus reduce to

4(0) = F'(0) ) "
g (0):—b„F'(0)g„'(0),

~'(0) = F(0)4.'(0)

where

) —ihp „Q (0)
- mp(E„—E ) g„'(0)

(19)

(20)

An important observation from Eqs. (15)—(20) is that the
leading terms in the functional relationships between cell
boundary values of 4 and 4' and the envelope function
divide into two distinct classes. For class-I band edges
4'(0) is proportional to F(0), while ill'(0) is proportional
to F'(0). For class-II band edges 4'(0) is proportional to
F'(0), while @'(0) is proportional to F(0). If @ and 4'
of two semiconductors with band edges belonging to the
same class are matched at an interface taken to be at the
Wigner-Seitz cell boundary, the boundary conditions for
the envelope function will couple F (F') on one side of
the interface with F (F') on the other. However, if @ and
4' of two semiconductors with band edges belonging to
difFerent classes are matched at an interface, the bound-
ary conditions for the envelope function will couple I" on
one side of the interface to I"' on the other.

Even in the absence of a perturbing potential U(r) the
expressions {15), (16), (18), and (19) are only approxi-
mations. The corrections to the relations (15) and (19),
where the dominant term is proportional to F(0), are of
order I"". Correspondingly, the corrections to the rela-
tions (16) and (18), where the dominant term is propor-
tional to F'(0), are of order F"'. Thus the corrections
are in both cases typically of order k, where k is a char-
acteristic wave number of the envelope function for the
eigenstate in question. For states energetically close to
the nth band edge, k is small and the formulas (15), (16),
(18), and (19) are valid.

jgpo g(o '(0) me —ibad)o '(0)
( )

m, (E —El) y„'(0) 2m' p'/ 0'(0)
Here we have used Eq. (21) and introduced the notation
Qe for the unperturbed Bloch function at band edge n.
With a Wigner-Seitz cell located between 0 and a, the
appropriate Bloch function is given by

@.'(~) = cos(q,.x) (23)

q~
———

) g=1)2 3, . . . (24)
a '

where even and odd values of j correspond to band edges
at k =0 and k = z./a, respectively. The Bloch function at
the adjacent band edge is

4'(*) = sin(q, x) (25)

Then simple algebra gives

We now consider weak one-dimensional periodic poten-
tials where the band structure essentially is &ee-electron-
like except at q~

= +jm/a, j = 1, 2, 3, . . . , (in the ex-
tended zone picture) where gaps open up. For weak po-
tentials the size of the gap is 2(V(2q, ) (, where )V(2qi)(
is the Fourier transform of the perturbing periodic po-
tential. In the sum over band edges in the expressions
for m„*, a„, and b„[(12),(17),(20)] the energy differences
between the band edges appear in the denominator. For
weak potentials where the gaps are small, the contribu-
tion f'rom the adjacent band edge l will dominate. Thus
in the weak-potential regime the expression for the eEec-
tive mass at band edge n is approximately given by

0 01 1 2 ). p„p ~ 2 p"'pi" (21)m* mo m02 - E.-E m20E. -E/n mWn

Here p„& denotes the matrix element (11) between the
zeroth-order Bloch functions. The final expression in {21)
is of order V i, and the corrections are of order Vo. This
is similar in spirit to the two-band model of White and
Sham (see also Bastardr and Eppenga et at. is).

First we focus on conduction- or valence-band edges
of class I. In this case we have from Eqs. (15) and (16)
4(0) = F(0)g„(0) and 4'(0) = a„F'(0)g„(0). For weak
potentials a„can be approximated as

). —ihp „Q' (0)
mo(E„—E ) g„(0)
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—ihgiP '(0)
p'.i&.'(0)

so that to dominant order in V one ends up with

(26)

The band-edge Bloch functions are now given by (25)
while the Bloch functions at the adjacent band edges are
given by (23). Then one finds

—ihgiP'(0) 1

p.'&&.'(0)

so that to dominant order in V one now ends up with

@'(0) = —— '. F'(o)&.'(0) (31)

@'(0)= F(o)&.'(0) (32)

Note that the results (27), (28), (31), and (32) are inde-
pendent of the choice of sign and. normalization factors
for the band-edge Bloch functions. Also one gets the
same results for the Wigner-Seitz cell boundary located
at z=a.

The efFective mass m„' in Eqs. (28) and (31) is the
electron efFective mass which can be either positive or
negative. While the expressions above are valid also for
valence-band edges where m„' is negative, it is more cus-
tomary to use the hole mass, defined as —m„', in these
cases.

We can now derive boundary conditions to impose on
the envelope function at a material interface for systems
in the weak-potential regime. The heterostructure is as-
sumed to be built up of Wigner-Seitz cells joined together
so that the material interface is located at a boundary
between two diferent Wigner-Seitz cells. The boundary
conditions for I" and I"' follow &om the required conti-
nuity of 4' and 4' at this interface.

First we consider an interface where the band edges
(labeled A and B) which are aligned are both of class I.
Then from the continuity of @ and 4' in (27) and (28)
one obtains the boundary conditions

F~(0)&~(0) = F~(0)&~(0)
1 / 1.F~(0)@~(0)= .Fa(0)&~(0)

mg mg
(34)

where we have canceled the common factor mp j2 in (34)
and omitted the subscript n for notational simplicity.
Only the ratio F'/F is of physical importance. We will

@(0) = F(0)&-(0) (27)

~'(0) =, .F'(o)~-(0) (28)

Next we discuss band edges of class II. From Eqs. (18)
and (19) we have 4(0) = b F'(0)@' (0) and. '0'(0)
F(0)g„'(0). Again, for weak potentials b„ is approxi-
mately given as

) —ihp „Q (0)
mp(E„—E ) g„'(0)

—ihpiP„giP(0) mp —ihgiP(0)
( )mp(E„—Ei) QP'(0) 2m„' p„,Q„'(0)

therefore for compactness describe boundary conditions
only by this ratio in the following. For the boundary
conditions above one obtains

1 F„'(0) 1 F~(0)
m& Fg(0) m& Fg(0)

(35)

These boundary conditions are recognized as the
BenDaniel-Duke boundary conditions discussed in the In-
troduction.

Next we consider a heterointerface where two band
edges of class II are aligned. From (31) and (32) one
6nds

1 1 F~(0) 1 1 F~(0)
q~2 m'„F~(0) q~2 m~ F~(0)

(36)

Here q~ ~ = j7rja~ ~ (j = 1, 2, 3, . . .) is the wave vector
at the point in the Brillouin zone where the band gap in
question opens up. If the two crystals which are joined
together at the heterointerface have the same lattice con-
stant, and the aligned band edges correspond to the same

gap, q~ equals q~. Then the boundary condition (36) re-
duces to the BenDaniel-Duke condition (35). If the lat-
tice constants are difFerent while the aligned band edges
correspond to the same gap, i.e., same j, the boundary
condition turns into

a~ F„'(0) a~ F~(0)
(37)gF (o) a ~(0)

Thus for strained heterostructures where the longitudinal
lattice constant varies with position, the lattice constant
also enters into the boundary condition.

It is gratifying that our procedure always yields the
BenDaniel-Duke boundary conditions when band edges
of the same type are aligned, and the lattice constant is
the same on both sides of the heterointerface. It should
be noted, however, that the BenDaniel-Duke boundary
conditions are apparently only generally applicable when
the periodic potential in the semiconductor is weak, i.e.,
when the dominant term in the k p perturbation sum
(for the effective mass and wave function) comes from
the two bands forming the narrow band gap. In semi-
conductors with small conduction-band efFective masses
such as GaAs and InAs, this criterion is well fulfilled and
the BenDaniel-Duke boundary condition should be appli-
cable. The requirement of including the lattice constant
in the boundary conditions for strained heterostructures
is not new. In recent studiesiP ii boundary conditions
were obtained by considering simple Kronig-Penney b-

function periodic potentials in one dimension. For het-
erostructures made up of Kronig-Penney materials exact
closed-form expressions for the eigenstate energies can be
obtained. By comparing exact results with approximate
EMA results for states close to the conduction-band edge,
it was found that the EMA is valid if, and only if, the
boundary conditions (35) and (36) are used for class-I and
class-II band edges, respectively. In fact it was found that
these boundary conditions ensure asymptotic agreement
between EMA results and exact results in the limit when
the eigenstate energies approach the conduction-band
edges, for arbitrary values of the strength of the b-well
potential. However, the observed validity of (35) and (36)
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in the strong-potential limit at conduction-band edges in
Kronig-Penney potentials is not generalizable to all one-
dimensional potentials. In the Appendix we have calcu-
lated the coefficients a (17) for a class-I conduction-band
edge and b„(20) for a class-II conduction-band edge in
Kronig-Penney b-well crystals to the next lowest order
in the h-well strength. The corrections to (28) and (31)
are found to be identically zero, in agreement with the
observation in Refs. 10 and 11.

An important point is that none of the boundary con-
ditions above apply to the lowest band edge (labeled
0), i.e. , to the bottom of the only "band" present in
the free-electron case. This can be shown by the fol-
lowing simple argument: At the lowest band edge the
zeroth-order Bloch function is simply a constant, which
means (i) the band edge is of class I, and (ii) pp is zero
for all m. The perturbing weak potential couples g
from other band edges into gp, and the leading term in
pp cc (gp~d/Ch~f ) is found to be of order V. For the
lowest band edge all the energy differences in the denom-
inator of the sums in (12) and (17) are of order V . Thus
from (12) one sees that the inverse effective mass will be
of the form

= 1+c,V +O(V ) .
mo

(38)

Since the derivative of the band-edge Bloch function is
zero, we consider Eqs. (15)—(17) to find 4 and @' at the
Wigner-Seitz cell boundary. The dominant term in the
sum in the expression for ap (17) is of order V. Thus for
small V the ratio between 4'(0) and @(0) has the form

~'(0) = (I + c,V+ O{V'))
F'(0)

(39)

Since in (38) the correction to the free-electron mass is
seen to be of order Vz, it is obvious that (39) is only com-
patible with the BenDaniel-Duke boundary conditions to
O(VP) (where mp = mp). The results above suggest that
the best approximation is to use the &ee-electron mass
combined with the "normal" boundary conditions

F' (o) F.'(o)
Fg(0) Fg (0)

(40)

for heterostructure states energetically close to these low-
est band edges.

The EMA has predominantly been used for semicon-
ductors where the aligned band edges have extremal
points at the same point in the Brillouin zone. For
heterostructures where widely separated extremal points
contribute to the wave function, the conventional EMA
is unable to account for the mixing. Since the con-
duction bands of GaAs and AlAs have global min-
ima at the I' point (k = 0) and X point (close to
the zone edge), respectively, effects of I'-X mixing has
been sought in GaAs-A1As heterostructures in the tight-
binding approximation. Attempts have been made to
extend the EMA to describe I'-X mixing, but the exten-
sions have not always been based on microscopic consid-
erations. Such extensions have been made at the ex-
pense of adding new parameters to the effective-mass

description.
The one-dimensional analogue to I'-X mixing is mix-

ing between band edges with extremal points at k = 0
and k = vr/a. Boundary conditions for the case when
band edges at different extremal points are aligned can
be found from the expressions (27), (28), (31), and
(32) valid for weak periodic potentials. Let us consider
for instance a heterostructure where a conduction-band
edge at q~ = j~vr/aA with even j~ is aligned with a
conduction-band edge at q~ =j~vr/u~ with odd j~. Fur-
thermore, let us assume that the atomic potentials are
such that the Fourier transforms V(2q~) and V(2q~) are
negative. Then band edge A will be of class II with the
minimum located at k = 0, while band edge B will be
of class I with the minimum at k = x/a~. Continuity
of 4 and 4' at the interface then gives the boundary
conditions

1 mp F&(0) 2m~ Fgy(0)

qz 2m& Fg(0) mp F~(0)
(41)

It has been shown that these "inverted" boundary con-
ditions assure agreement between EMA and exact re-
sults for a one-dimensional "I'-X" Kronig-Penney S-

well superlattice for states energetically close to both
conduction-band edges. It is interesting that a super-
lattice described by single-band EMA, where the wave
function is alternately I'-like (k =0) and X-like (k =z /a)
in consecutive superlattice layers, gives an accurate de-
scription, and that a multiband description is superfluous
in this case. However, a single-band EMA is not appro-
priate if the I' and X valleys in both materials are close
in energy.

In one-dimensional systems an interface matrix, which
relates F~ and F& on one side of an interface with F~ and

F& on the other, has been shown to be either purely di-

agonal or purely off-diagonal. The boundary conditions
(35) and (36) correspond to the diagonal case, while the
"inverted" boundary condition (41) corresponds to the
off-diagonal case.

IV. METAL-SEMICONDUCTOR INTERFACES

1 1 F,'(0) 1 F' (0)
2 m* F, (0) mp F (0)

(42)

The new and striking factor 1/2 on the semiconductor
side of the equation distinguishes this boundary condi-

With the results from the previous section, it is
straightforward to derive boundary conditions for the
one-dimensional analogue to a metal-semiconductor in-

terface. For the metal we use the &ee-electron approxi-
mation, while the semiconductor is modeled with a weak
periodic potential as in the previous section. Since the
periodic potential is absent in the &ee-electron approxi-
mation, there are no underlying periodic Bloch functions
in the metal, and the (total) metal wave function is sim-

ply denoted F . This wave function must be matched
with the total semiconductor wave function at the inter-
face.

With the use of Eqs. (27) and (28) one obtains for
semiconductor band edges of class I
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Lw LB

tion kom the BenDaniel-Duke condition. The necessity
and importance of this factor will be demonstrated in
concrete applications later in this section.

For semiconductor band edges of class II one corre-
spondingly obtains from Eqs. (31) and (32)

11 1 F,'(0) 1 F (0)
2 q2 m„' F, (0) mo F' (0)

Except for the factor 1/2 this boundary condition has
some similarity to the "inverted" boundary condition ob-
tained for the I'-X mixing case in the previous section.

As an application of these boundary conditions we
consider electronic transmission through a barrier super-
lattice (Fig. 2). The transmission probability through
any one-dimensional potential profile is easily calcu-
lated numerically using the transfer-matrix technique.
For the barrier superlattice the transmission probabil-
ity can also be calculated using the nested effective-mass
approximation. In the NEMA the periodic superlat-
tice potential is replaced with its miniband edges and
miniband-edge effective masses (see Fig. 2). For energies
close to miniband edges, where the NEMA is expected
to be valid, the transmission coeKcient can be evalu-
ated analytically. However, the question arises as to what
boundary conditions to use on the edges of the barrier-
superlattice region. These edges are interfaces between

regions with and without periodic potentials and thus
correspond to the one-dimensional metal-semiconductor
interfaces discussed above.

To test the boundary conditions we calculate the trans-
mission probability analytically in the NEMA and com-

pare with exact results obtained numerically for the pe-
riodic square-well potential (within the standard EMA).
We focus on miniband edges above miniband gaps and
thus have positive superlattice effective masses. In the
numerical example below we focus on energies close to
the class-I miniband edge above the first miniband gap.
With the class-I metal-semiconductor boundary condi-
tion (42) the NEMA transmission probability is found to
be

T =
~

cos (qLsL)
2

2 *2 q /4msL + " /mo+ mpmsg »n (q sLk2q~

where

(44)

E —ESI
2mp

h
(45)

Here LSL is the width of the barrier superlattice region,
Esp refers to the energy of the miniband edge, and msL
is the superlattice effective mass. Correspondingly, the
transmission probability using BenDaniel-Duke bound-
ary conditions is

T =
i

cos (qLsr, )
t'

Standard EMA

Ls.

2. minigap

1.minigap

Nested EMA

FIG. 2. Qualitative sketches illustrating the difference be-
tween the standard EMA picture and the NEMA picture for
the case of electrons tunneling through a barrier superlat-
tice. The upper portion shows the standard EMA picture
with a position-dependent conduction-band edge represent-
ing the superlattice. The lower portion shows the simpler
NEMA picture where the barrier superlattice is represented
by its miniband edges (and corresponding superlattice effec-
tive masses). Only the first and second miniband gaps are
shown. The edges of the barrier-superlattice region, which
correspond to metal-semiconductor interfaces in the NEMA
picture, are indicated (dashed lines).

+ —momsL sin (qLsr. ) ~

. (46)
1 2 2 q'/msr. + k /mo
4 k2q2

Results from a comparison between exact numerical re-
sults and the approximate NEMA formulas using class-I
boundary conditions (44) and BenDaniel-Duke bound-
ary conditions (46), respectively, are shown in Fig. 3.
In this example the barrier potential is small compared
to the miniband widths, and we have used the analyti-
cal formula &om Ref. 22, valid for weak superlattice po-
tentials, for the superlattice effective mass ms&. The
miniband-edge energy ESL has been obtained numeri-
cally. In our example the superlattice region consists of
200 barriers, and the transmission probability for energies
corresponding to miniband gaps is negligible. From Fig.
3 it is evident that, while the use of the BenDaniel-Duke
conditions gives substantial errors, the use of our new
class-I band-edge metal-semiconductor boundary condi-
tion gives results in perfect agreement with the exact
curve close to the miniband edge. To demonstrate this
further it is useful to expand the expression for the trans-
mission probability above the miniband edge. We then
find

—1

T(E)
~

cos (qLsr, ) + ' '" »n'(qLsL)
mo & —&sL )

(47)

for the class-I band-edge boundary condition and
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Kronig-Penney barriers there will be states localized in
the vicinity of the well region. Using the analytic result
in Ref. 10 one can readily obtain exact transcendental
equations for the energies of these localized states. When
comparing with the corresponding effective-mass expres-
sions, one finds that, when the energy of the localized
state approaches the conduction-band edge of the barri-
ers, asymptotic agreement between exact and effective-
mass results is obtained if, and only if, the boundary
conditions (42) and (43) are used for class-I and class-
II band edges, respectively. If, on the other hand, the
BenDaniel-Duke boundary conditions are used, no such
asymptotic agreement is found and effective-mass theory
gives erroneous results.

with previous studies. It would be particularly inter-

esting if our metal-semiconductor boundary conditions
could be tested against experiments or more comprehen-
sive theoretical (presumably m~merical) work. A natural
extension of the work presented here would be to investi-

gate whether our approach could be used directly to de-
rive boundary conditions in two- and three-dimensional
systems.
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V. DISCUSSION

In this article we have derived boundary conditions for
envelope functions at abrupt interfaces for a wide range
of situations using a simple and intuitive scheme. The
BenDaniel-Duke boundary conditions are found to be
applicable for unstrained semiconductor heterostructures
when qualitatively similar band edges are aligned and
the periodic potentials are weak. However, when qual-
itatively different band edges are aligned or when the
heterostructure is strained, other boundary conditions
should be used. Most importantly, we have also derived
boundary conditions to impose at metal-semiconductor
interfaces.

In deriving the relatively simple boundary conditions
in Secs. III and IV we assumed weak periodic potentials
in the semiconductor. In this case it follows that in the
k p perturbation sum over the bands (for the effective
mass and the wave function) the dominant term comes
from the two bands forming the narrow band gap, which
holds for real semiconductors with small conduction-
band effective masses such as GaAs and InAs. An indi-
rect verification of this is the apparent applicability of the
BenDaniel-Duke boundary condition, found in the weak-
potential limit in Sec. III, to conduction-band states in
heterostructures consisting of semiconductors with qual-
itatively similar band-edge Bloch functions (e.g. , GaAs-
Al Gaq As with z ( 0.4). The assumption of weak pe-
riodic potentials translates to assuming the energy gap to
be substantially smaller than the bandwidths. In super-
lattices the ratio between miniband gaps and miniband
widths can be made arbitrarily small by choosing suf-
ficiently low barriers or short superlattice periods. We
therefore expect our boundary conditions to be applica-
ble in NEMA calculations in many situations of practical
interest.

The fact that the boundary conditions have been de-
rived in one-dimensional systems may seem to pose a
more serious limitation to the applicability of our re-
sults. However, our results apply directly to semiconduc-
tor heterostructures described with the nested effective-
mass approximation since the in-plane directions vanish
trivially in this description. Regarding the applicability
to true three-dimensional systems, it is encouraging that
our approach yields the BenDaniel-Duke boundary condi-
tions when similar band edges are aligned, in agreement

APPENDIX

In this Appendix we will do a perturbation expan-
sion to calculate the first correction terms to the co-
efficients a„(22) and b„(29) at two conduction-band
edges in Kronig-Penney crystals. The perturbing peri-
odic Kronig-Penney potential is taken to be

OO

HKp(z) = — V ) b(z —(i —1/2)a)
moa

(Al)

so that a b-function well is positioned in the center of a
Wigner-Seitz cell located between 0 and a. V is the di-
mensionless potential strength. The Kronig-Penney crys-
tals have conduction-band edges at

h q-
2E.

2mQ
1$ 2' 3) ~ ~ ~ )

2moa
(A2)

for all values of V. At these conduction-band edges the
effective mass m'., is given by~a

m'

mo
(A3)

Here we will evaluate a„ for a class-I conduction-band
edge (j = 1) and b„ for a class-II conduction-band edge

(j = 2) including terms of order V ~ and Vo in order
to look for the first correction terms to the lowest-order
expressions. From (17) and (20) we see that p „,E„—
E, g' (0), and Q (0) must be calculated. For weak
potentials the energy difference E„—E between the band
edges on each side of a gap is proportional to V while all
other energy differences are of order V . For the band-
edge Bloch functions standard perturbation theory gives

rn jg

(A4)

where g and E denote the zeroth-order Bloch func-
tions and band-edge energies, respectively. In (A4) we
have assumed the normalization (g ~go ) = 1 (which is
used throughout this paper). Since HKp is even with re-
spect to the center of the Wigner-Seitz cell, only Bloch
functions go&with the same parity as Qo give a contri-
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bution to i/i . Since the Bloch function at the band edge
adjacent to m has di8'erent parity than g, this band
edge does not contribute in the sum in (A4). Thus g (x)
can be written

(*) = g' (*)+V ) &'i/'„'(*)+0(V') .

(A5)

It is easy to show that one can generally replace the pe-
riodic part of the band-edge Bloch function with the to-
tal band-edge Bloch function g in the expression for the
interband matrix element p„ in (11). To make the pre-
sentation valid for band edges with minima both at the
zone center and at the zone edge, we will use the total
wave function Q below. We then have

f.@' (x) (—ih g'. )@-(x)dx (&-I —ih g". I&-)

f, &* (x)&-(x)dx (& I&-)
(A6)

From (A5) one finds (@ Ig ) = (g IQ ) + 0(V2),
and it is therefore consistent to replace (g Ig ) with
(Qo Igo ) = 1 in the denominator of (A6). For the numer-
ator one has

Since gi, (x) is identically zero at the position of the b

wells, (gi, IHKp I/i ) is zel'0 foi' all k. Thel'efoi'e Qi, (x) =
Qoi, (x) and gi, (0) = gi, (0) = —. In order to find

Qi„(0) to order V one needs the Bloch function at all
other valence-band edges with maxima at k = vr/a.

These are given by g.„(x) = —sin(qix), q~

j = 3, 5, 7, . . . . We have

~',.(o) = (~'.)'(0) ) E. E.
"

(~,'.)'(0),
1v jv

and by using
2r'

V( 1)i+'-

order V

(A10)

E,' =, "...i'~', (0,'„IHKpIWi, )

and (go.„)'(0) = ~— one obtains to

(A11)aa(m)
Since (Q&PIHKpIgi ) =0 for all k, Ei, equals Ei„and one
finds to order V2 for the energy difference in (A9),

E1c —@1v = @]c—E1v0

(~p IH I~p ) ) I (&,'.IHKp I&i.) I'

1v 2v

+) c a gi, —g„+0(V ).
(A7)

16V
4V+

2mpa 7r2

2h t' Vb
, V 1+ —,

m a2 ~2

):
j=357...

(A12)

—ihpi„i, g', „(0)
mp (E„—Ei„)g, (0)

(A9)

The lowest-order term in (A7) is nonzero only when m
and n are adjacent band edges. For adjacent band edges
it also follows that the correction terms of order V are
zero. For nonadjacent band edges p „ is of order V.
Since (E —Eo) 0(V ) for these band edges, the con-
tributions to a„and b„ from nonadjacent band edges are
of order V. Thus to order V the only contribution to
a„and 6„ from the sum over band edges comes &om the
adjacent band edge.

For the band-edge energies we need the expansion

Eo+ (~oIH I@o) i ) - I(@'
I Kpl&.')I'+

mgn

(A8)

First we focus on the class-I conduction-band edge at
qi ——vr/a which is located at k = 7r/a and is labeled lc.
The properly normalized Bloch function at this band

edge is gi, (x) = 2 cos(z'x/a). The adjacent valence-

band edge is labeled 1v, and the corresponding Bloch

function is @io„(x)= 2 sin(mx/a). From (17) and the
discussion above it follows that

Finally, with

(@i-I — hg". I&i )

=i h +0(V'), —
a

one finds

ihpl i 4 i (0)
( )+0 V

mp(E„—E,„) it i, (0)
2vr'( Vi( Vi1+ I1- —,

I
I1+ —,

I
+0(V)

4V i 7r2p i vr2)

7r2
+ 0(V) = + 0(V),

a1, ——1+

(A13)

(A14)

where we have used the expression for the effective mass
in (A3). Thus, we have shown that for the conduction-
band edge at qi ——vr/a there is to order Vo no correction
term to (28).

Next we consider the class-II conduction-band edge
at q2 ——2'/a which is located at k = 0. The prop-
erly normalized Bloch function at this band edge is



49 BOUNDARY CONDITIONS FOR ENVELOPE FUNCTIONS AT. . . 10 543

42.(z) = sin(2mz/a), while the Bloch function at the

adjacent band edge 2v is gzo„(z) = cos(2xz/a). In

analogy to (A9), we have from (20) and the discussion
above that

—ihpz„z, @z„(0)
m (Ez, —E „)@2,(0)

(A15)

Since $2o (z) is zero at the position of the h wells,

(Q&IHKplgz, ) is zero for all k, and we have gz, (0)

gz, '(0) = — —. In order to find gz„(0) to order V

one needs the Bloch function at all the other valence-
band edges with maxima at k = 0. These are given by

go„(z) = —cos(qsz), qs = ~, j = 4, 6, 8, . . . . In ad-

dition one needs the unperturbed Bloch function at the
bottom of the lowest band. This Bloch function is simply

a constant, i.e. , goo(z) = . Thus

0E2c —E2e = E2. —E2e

(go IH I@o ) ) - l(@g', IHKP11 z.)l'
2e k

h ( 2Vz 16Vz
I4V-

2moa2 ( n'2 7r
s=4, s,s, ... j

Thus, with

I 2%72C

2A, ( Vi
, V 1+

moan' q 4xz
y

(&2. I

—&g". I@2.)

2v 2v

Q~„—~h —cPt,) + O(V )

(A18)

Since (@&IHKplgz, ) = 0 for all k, Ezco equals E2o,o and
one finds to order V2 for the energy difference in (A].5),

(Q) $0 (Q) + ) ( ~l Kpl 2v) lbo(0)
2v k

ih +—O(V—),2x 2

a
one finally finds

(A19)

For the matrix elements

(Wo IHKP 1&2.)",2V( —1)s, and with Eo =

, one finds to order V

in (A16) one finds

and (g,'.IHKplgzo. )

, jzz.z and ego„(0) =

-ihp, „,. g,'„(0)
mo(Ez, —Ez„) Qz, (0)

az ( V) ( V)
I I

1+
2V q 4z'y g 4m')

( V
I
1+

27r

4V ).
2 =4,6,8,

V )
4z' )

(-1)'l
jz 4)
( V )1+

4vr' )
(A17)

,
' —,+ O(V),

2 m2 g2
(A20)

where we have taken mz, from (A3). Thus, we conclude
that for the conduction-band edge at qz ——2n/a also
there is no correction term of order Vo to the lowest-
order result (31).
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