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Nonlinear dynamical response of a double-barrier resonant-tunneling structure
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The dynamical response of a double-barrier resonant-tunneling structure (DBRTS) on external ac bias
V(t) is studied. The rate equation for the occupation number of the level in the DBRTS well as well as
the conditions required for this equation are derived in the case of coherent tunneling. The analysis of
the equation in question provides the possibility to obtain easily the analytic results for the current
through the structure in all limiting cases of interest.

I. INTRODUCTION

There is a great deal of current interest in electron
transport through double-barrier resonant-tunneling
structures (DBRTS's). Besides other applications such
structures have been used as generators' and detectors of
microwave radiation, which have stimulated theoretical
investigations of DBRTS behavior under time-dependent
perturbations.

An attempt to study the dynamical properties of
DBRTS's has been reported in the paper by Stone et al.
The authors of Refs. 4 and 5 have discussed the DBRTS
interaction with infrared radiation, when the perturba-
tion frequency is comparable with the characteristic in-
terlevel spacing in the well g-10 meV, while in Refs. 6
and 7 the linear dynamical response of DBRTS to an
external bias has been studied (note that applicability of
the linear response approximation in such a case requires
the condition eVo « filr„,&&, where Vo is the characteris-
tic voltage amplitude, and ~„,&&

is the characteristic elec-
tron lifetime in the well). We should also mention the S-
matrix approach to time-dependent resonant tunneling
due to Coon and Liu.

At the same time there exist a number of papers"
where nonstationary tunneling through a DBRTS has
been discussed with the main attention to the nonlinear
regime. In these papers calculation of the change in the
electron transmission probability through the structure in
question resulting from an ac-voltage component across
the structure is presented. In the papers by Soko-
lovski ' the time- and space-dependent Schrodinger
equation has been analyzed, while in Johansson's treat-
ment" the tunneling Hamiltonian approach has been
used. It was shown that the physical picture of resonant
tunneling sigmncantly depends on the value of the
ratio eVO/Ace, where ~ is the characteristic frequency
of the external ac voltage. If eV0/A'co&&1, the DBRTS
response has been shown to be strongly nonlinear and to
have a Fourier spectrum of multiple-line form, while in
the opposite case eVo/Ace « 1 the transmission probabili-
ty has been shown to exhibit peaks at integer values of
(E;„—e~)/th'co, where c;„and Eu are the initial electronic
energy and the energy of the level in the well, respective-
ly.

Unfortunately, direct usage of these results appears to
have serious difBculties mainly due to the fact that the ex-
act formulas obtained for the transmission probability are
rather complicated. Evaluation of the limiting cases of
interest must be done with numerical calculations
even in such an intuitively simple case as the adiabatic
one (eVO/fico» l, cor„,s«1). In the present paper it
will be shown that under some not too restrictive condi-
tions the semiclassical rate equation for the distribution
function of electrons in the well can be derived. This
equation can be solved analytically for most of the limit-
ing cases of interest, which provides us with the possibili-
ty to obtain rather simple expressions for physical observ-
ables like current, etc. , instead of the complicated expres-
sions obtained in Refs. 9—11, requiring numerica1
analysis.

In the next section, a more detailed description of the
system in question wi11 be given. Then, the rate equation
for particles in the well of a DBRTS in the presence of a
time-dependent external signal will be discussed. The full
derivation of the rate equation in question using the Kel-
dysh nonequilibrium Green s function technique is per-
formed in the Appendix. In Sec. III a detailed study of
the DBRTS nonlinear response to an external signal will
be presented for the semiclassical case eVO/%co»1.
Simplified equations for the electron distribution function
and current will be derived and analyzed for adiabatic
(cor„,s « 1) and antiadiabatic (car„,s » 1) cases separate-
ly, while in Sec. IV the multiphoton case eVo/%co«1
will be studied. In Sec. V Anal remarks on the problem in
question will be given.

II. GENERAL DESCRIPTION AND RATE EQUATION
FOR PARTICLES IN THE WELL

We will derive the rate equation for electrons in the
well using the tunneling Hamiltonian method, which pro-
vides a sufficiently accurate and rather transparent
description of the tunneling process. We will restrict our-
selves to the condition fm/g « 1, which allows us to con-
sider the levels in the well independently; for simplicity
we will take into account only one level of lateral quanti-
zation inside the well. Electron-electron interaction of
the particles in the well' will be neglected as well. In the
absence of external bias, the Hamiltonian for our system
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takes the form:

H=HL q+H~

+ g T~(cpLaq+aqcpt +cpzaq+aqcpt(), (1)

where

tant role of the parameter e Vo/1)ico (see, e.g., Ref. 10). Let
us write the Schrodinger equation for the electron wave
function fw(q, t) in the well, which follows directly from
Eqs. (1),(2),(4):

iA —Hw(q) fw(q t)Q

at

0Ht t( =g (EpL, cpL cpt. +E,pgcpt(cd )

P
(2)

=g T~[f„(p,t)+fL, (p, t)] . (5)
P

0 = y eqwaqaq .
q

Here the subscripts L,R indicate electrons in left and
right electrodes respectively; c~&,c& denote the creation
and annihilation operators for electrons in the electrodes;
aq, aq are the same operators for electrons in the well;

T~ is the matrix element of the tunneling Hamiltonian
(~w=Tw).

If the period of the ac signal is larger than the charac-
teristic time scale of onset of electron equilibrium in the
electrodes, one can describe the bias V(t) as the
difference of electron chemical potentials for the left and
right electrodes (all energies and corrections to the chem-
ical potentials will be related to the value of the unper-
turbed electrode chemical potential (uo):

eVo
p (L)a( )t= +( ) cos(cot) .

2

In what follows we will assume that

Uoh'
(eV, )'«

me

which provides the possibility to neglect the direct effect
of the electric field on the barrier (here Uo is the charac-
teristic height of the barrier, d the barrier width, m, and
e the electron mass and charge, respectively}. So the bias
can be accounted for by introducing the term

H'(t) = g[(uL (t)cpL cpL +pt((t)c pt(cpt( ] (4)
P

into the Hamiltonian (1}.
At 5rst it seems to be useful to emphasize the impor-

I

In the lowest perturbation-theory approximation one
can consider wave functions of electrons in the electrodes

ftc and fL [defined by equations analogous to (5) but
without the right-hand side] to be proportional to

l t

fL, (a)(p, t) "exp ——
epL, (a)t+ g

O' L(R)( tl) dtl
fi o

l eVo
=exp — sL (a)t—+( —}i sin(cot)

One can easily see that the physical picture of resonant
tunneling depends significantly on the value of eVO/fico.
In the case eVO/iIco «1, the infiuence of the external ac
voltage results in only small time-periodic corrections to
the phase of fr(i()(p, t), while in the case eVO/1)ico»1,
the phase exhibits strong rapid oscillations, which leads
to a nonlinear behavior. In this case, in order to solve
Eq. (5) one might use a procedure similar to that used in
semiclassical mechanics.

In view of the fact that the distribution function of par-
ticles in the well is far from its equilibrium Fermi form,
in order to derive the rate equation for electrons in the
well it is convenient to use the nonequilibrium Green's
function technique developed by Keldysh' for strongly
nonequilibrium processes (for a review see, e.g., Refs. 14
and 15; one should also mention the paper by Caroli
et al. ' where the tunneling problem has been considered
in the nonequilibrium Green's function approach). The
full derivation of the rate equation in question is given in
the Appendix; here we will put down the resulting equa-
tion for the distribution function n~ of electrons in the
well:

c)nw(t, q) +"
dt

J„
2pl(t ) 2(M„(t )

g~T~~ [n(e ) —nw(tt, q)]5(E„—e w
—nco/2) .

P

(6)

This equation can be used under the semiclassical con-
ditions discussed in detail at the end of the Appendix.

Now we will consider separately the semiclassical
( e Vo/(rico » 1 ) and multiphoton ( e Vo /ituo « 1 ) cases.

III. THE SEMICLASSICAL CASK

In this case (eVo/fuu» l, e w/1)ico»1), the direct
evaluation of Eq. (6) appears to be extremely complicated

and requires numerical analysis. However, as is shown in
the Appendix, the rate equation can be substantially re-
duced by taking into account the semiclassical form of
the electron Green's function in the leads [see Eq. (A22)].
The resulting reduced rate equation appears to be rather
simple:

c)nw(t, q} =I I (t, q}[nL (t, eqw) —nw(t, q)]at
+I „(t,q)[n„(t, eqw) —n„,(t, q)] . (7)
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A. Static case

At first we will rederive well-known results for the sta-
tionary situation, when the chemical potentials

eV0
PL=

2
Pz=

eVo

do not depend on time (see, e.g., Ref. 18). In this case the
rate equation takes the form,

nR(E w)~R(q)+nt, (e,w)~. (q)
nw(q)=

I 1((q)+I I (q)
(10)

Here I'L (R)(t, q) is determined by the equation,

=2~ 2I L, (&)(t,q)= &IT I &(s,w —s„(„)+(M,(,)(t)), (8)
P

nL and n& being the electron distribution functions in the
electrodes.

Note that Eq. (7) can be easily shown to be valid not
only for the case of a harmonic ac voltage V(t) ~ cos(cot)
but for a time-dependent signal V(t) of any type [the gen-
eral equation (6) is not valid for nonharmonic external
signal]. The only constraint is that the characteristic am-
plitude of this signal should be much greater than the lev-
el broadening I' [see Eq. (A21}].

Equation (7) was derived in the absence of any addi-
tional intrawell scattering and thus in the case of
coherent tunneling. At the same time the analogous
equation can obviously be obtained in the case of sequen-
tial tunneling as well, ' using simple probability con-
siderations. Thus we have shown that within the con-
straints of the semiclassical rate-equation approach there
is no difference between coherent and sequential tunneling
processes, at least for such experimentally measurable
quantities as level distribution function and current
through the DBRTS. (In the static case the same result
has been pointed out by Weil and Vinter. '

) The origin of
such an efFect appears to be clear if we remember that the
semiclassical conditions used imply the classical charac-
ter of I.+ W, R~S' transition, which are determined
only by particle transition probabilities (not phases). This
can be understood from (7).

An expression for the current through the structure can
be obtained in a similar way; the result is

j„=geI ~(q)[na(s w) —nw(q)]

ii= X«i(q)[nw(q) —ni(E, w)l . (12)

In the static case,

I „(q)l (q)
jR JL g e [nR(&qw) nL, (&qw)1.

(13)

B. Nonstatic case

In our further analysis we will consider resonant tun-
neling through a quantum dot (or two-dimensional quan-
tum well in the presence of a strong perpendicular mag-
netic field), so we will not take into account electron
motion in the plane of the barrier. In this case, electrons
inside the well are characterized by the same energy sw.
Neglecting the I I ~z] dependence on q and assuming
I L

= I z —=I, we obtain equations for the level occupa-
tion number nw(t) and currents in the form,

nw(t)+2I'nw(t)=I'[nt (ew, t)+nt((ew, t)], (14)

jR(t)=el [n~(Ew, t) —nw(t)],

jL(t)=eI [nw(t) —nL(ew, t)] .

(15)

(16}

We would like to note that in order to clarify the
analysis we will study the equations for jL and j& sepa-
rately, despite the fact that according to the Ramo-
Scheckley theorem the experimentally measurable
current is j= (jL+jR )/2.

Introducing the phase y=cot and considering for sim-

plicity the case of zero temperature, one obtains the solu-
tion of Eq. (14), remembering the initial condition
nw(q) =0)=0,

26 gr 2c gr
nw(q))= —exp —

q) dq), exp (p( 0 cos(Ip) — +8 —cosy&, —
Ct) CO 0 CO evo eVo

(17)

Here 6{x)is the theta function.

1. Adiabatic case I »cg

Let us consider the case of fast tunneling, when the characteristic electron lifetime in the well ~„,&&-I ' is much

smaller than co '. For convenience we will introduce two characteristic phases:

2E, p
QL =alccos

eV0

2c gr
pg =arccos

eVo

(18)
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Having in mind the initial condition n&(y=0) =0, we obtain the following results for the dynamical DBRTS response
in this case (compare with Ref. 7):

&w(m)

Q&g&g

1 2I
1 —exp

2 N

2I
—,'exp — y exp

2I

2I

eI nz(y)

eI
2

1+exp e—I nu, ((I())

eI'ns (p)

The physical meaning of this is very transparent. At
the time t =0, the chemical potential in the left electrode
becomes larger than c~, while the level in the well is
empty. This causes a current through the left electrode
jL(t =0) equal to et, while jz(t =0)=0. On the time
scale t-I ', the level occupation number approaches
the "constant" value n ~-[nz( s~) +n I( es )] /2- I/2,
while jz becomes close to jL, , Ijal =ljL, I=«/2=j .
After the time t =(pL /co, both pL and (Mz are lower than
e~, and the level occupation starts to relax. At the time
t =(pz /co, the chemical potential pz crosses ss, and the
cycle of response is repeated. The time-dependent
current behavior is shown in Fig. 1. The presence of

I

I~pl ] qL, +2
nu, = lim e """'~ g f d(p)exp+a+2n=1

discontinuities in the jL (z)(t) dependence is related to the
fact that in our approach we have omitted terms propor-
tional to A'I'/e Vo. The discontinuities can be smeared by
including A'I /eVO terms or by considering the case of
finite temperatures.

2. Antiadiabatic case I &&co

In this case the bias time dependence is much more
rapid than the characteristic time of the tunneling pro-
cess, so during one period the level occupation number
n~ changes by only a small fraction, while on a time
scale —I ' it begins to fluctuate near some plateau value
~W'

(20)

where I(x) means the integer part of x. Having in mind that q)L n /2 one can obviously see that ns is always smaller
than its "constant" value l/2.

At the same time, the currents are determined by the equation,

jL, (g)(&)=«[nL, (a)(ss, r )
—ns ] (2l)

It is useful also to put down here the expressions for the Fourier spectrum of the DBRTS frequency response.

= 2 rn~(k)= sin(kyL ) . for even k values,
n.k 2I —l cok

n~(k)=0 for odd k values,

eIjz(k)= sin(kyL ), jz(k)=jl (k) for odd k values,
~k
—icok e I

J (k)= sin(kgb~), jz(k)= jL(k) for even—k values .
2I —icok nk

(22)

It is clear that if yL (&1, odd-k current harmonics have
approximately the same amplitudes up to k -qL ', while
even-k harmonics do not vanish up to k -I'/co.

In principle another experimental situation may be of
interest, when the level in the well is perturbed by the
external signal

es, (t) =sf)+eVocos(cot),
while the difFerence between electron chemical potentials
in the electrodes is held to be independent of time,

.S
3

23

2')t —,P~
7(+Pf

pL
—

p& =eV& )&eV

In such situation one can easily find the Fourier spectrum
of the DBRTS response also:

FIG. 1. Time dependence of currents jL (solid line) and j„
(dashed line) in the adiabatic case.
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sin(k(pL }

2r —icok ~k

eI I —izaak
jL (k)= sin(ki((~L )

mk 2I 1 cok

js(k)=eI'nii (k) .

(23)

IV. MULTIPHOTON CASE

Let us consider the case %co»eVo. In this case the
equations for the distribution functions and currents can
be reduced to ( e ~ is assumed to be less than zero):

max

n~+2rnn, (t) =I' g J„
2pL (t} 2pt((t)

n(en, +nap/2), (24)

max

J s( L)(t)=+( )eI g J
n = —oo

2S n(i~(t}
n(en +neo/2) ns,—(t) (25)

n~=1 (26)

where n,„=—l(2~eii ~/fitp) Thi.s equation requires the
condition tp» I [see Eq. (49)]. Now we will discuss two
limiting cases.

(l) ~sic ((co. Taking into account only the terms pro-
portional to Jo and J& one can easily see that the L~W
and 8'~R transition probabilities are equal to each oth-
er, so

for the equation in question have been evaluated. It has
been shown that within the constraints of the semiclassi-
cal rate-equation approach there is no difference between
coherent and sequential tunneling processes, at least for
such experimentally measurable quantities as level distri-
bution function and current through the DBRTS (in the
static case a similar effect has been pointed out by Weil
and Vinter' ). A further detailed analysis of the rate
equation in question has been presented.

e I
JL Jn Vpcos(cgt),2' (27)

and we obtain the linear-response picture. One should
have in mind that this is not a trivial linear response; it is
a linear response using dressed states responding at co. In
this case the linearity is of another type than that dis-
cussed in Refs, 6 and 7. Here it occurs due to a frequen-
cy large with respect to the bias amplitude, while in Refs.
6 and 7 it occurs due to a large level broadening filr„,n.

(2) ~ea,
~

&&fico. Having in mind the well-known rela-
tions for the Bessel functions:

J„(z)= I, (28)

we obtain

max pL (R)J„
n= oo

(t)
~

'
"max

=1+a, (29)

so the level occupation number n ~= 1, while the currents
are very small, jL ~z~-eI a &(eI .

V. CONCLUDING REMARKS

In summary, the nonequilibrium Green's function
technique has been exploited in order to analyze the
time-dependent behavior of a double-barrier resonant-
tunneling structure. The semiclassical rate equation for
the particles in the well has been derived in the case of
small level broadening; the conditions which are required
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APPENDIX: DERIVATION OF THE RATE EQUATION

We will follow the notation and Feynman rules intro-
duced in the review paper, Ref. 14. In the Appendix we
are working with units where %=1. In order to derive
the rate equation we shall use at first the time-coordinate
representation for operators. One should mention that
such coordinates do not correspond to physical DBRTS
coordinates. Final equations will be formulated in terms
of physical observables. Let us take g~(~"'(t, r) to be
the exact solutions of the Schrodinger equation with the
Hamiltonian H~~L z~, which are extended into the whole
space (for definiteness one can extend g (r) in a periodic
or antiperiodic manner). Thus the Green's functions
G~ (t &, r&, t2, r2) of electrons in the well take the form:

GPv (t, , r(, t2, r2) = g Gw (t, ,p(, tz, p2}
Pl P2

Xg* (t, ,r, )f (t, r );
the equations for the other Green's functions can be ob-
tained in an analogous way. Note that we do not assume
homogeneity of the electronic density in the well.

Let us write the Dyson's equation for the exact Green's
function G~+(X(,X2) of electrons in the well:
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G +(X, ,X )=6' ' +(X„X )+fd X d X Note that Eq. (Al} can be written in an alternative
way:

a,P= I+, —
f

6"'- (X X )

XX ~(X3,X4)G~+(X4,X2) .

G~+(Xi,X2)=Gg' +(Xi,Xq)+ f d X3d X4

X g G~ (X),X3 )

(Al)

Here Gg' +(X;,X ) is the Green's function of electrons
in the well in the absence of tunneling; X,:(t;—, r;);
X ~(X, ,X ) is the self-energy term:

X~(Xi,XJ )=—T(X; )[GL ~(X, ,X )

+Gg~(X„X }]T'(X.} . (A2)

a,P= I+,—I

XX ~(X3 X4)Gg++(X4,X2) .

(A3)

Acting on Eqs. (Al) and (A3) with the operators
[iBlBt, —H~(r, )] and [—iBlBt2 —Ha, (r2)], respective-
ly, and subtracting the second resulting equations from
the first one, we obtain

i
~

+i
~

Gs, +(X,,X2)+ [Hs, (r2) —Hs, (r, )]Gs,+(X„X2)
Br( Br2

3 $,X3 G f/' X3yX2 +G~ XJ y 3 g X3yX2
a= I+, —

I

Here we have used the well-known relation for the free-particle Green's functions

(A4)

i Ha (r, } —6„',' +(X„X2) =5(X,—X2 ) .
r)

(A5)

Now we will examine the energy representation in Eq. (A4}, taking into account the semiclassical character of the
time dependence of the Green's functions. Let us introduce the new variable t =(t, +t2)I2 and consider the typical
term from the rhs of Eq. (A4), taking t—:t, —t2 =0,

dr36pr r] jr2$
aP

t++t,
, t —t X~~ r r,

t++t,
2

, t3 —t = t36~ r&, r2, t , t3 —t X ~ r&, rz, t , t3 —t

(A6)

The latter transformation is valid under the condition
~t3 t+~ —I—/K&&I ', where s-s~ is the characteristic
electronic energy. In the cases where such a condition is
not met, it appears to be impossible to derive a simple
semiclassical rate equation for the DBRTS dynamical
response (see, e.g., Ref. 7) and the equation for the distri-
bution function nz becomes an integral-differential equa-
tion with respect to energy. Note that for difFerent rela-
tions between the frequency and amplitude of the exter-
nal signal, the semiclassical condition in question corre-
sponds to different necessary relations between them and
the level broadening I [see Eqs. (A20) and (A21)].

Now one can examine the representation of quantum
numbers p and q of the Hamiltonian (2). Having in mind
that in the absence of any processes except tunneling all
Green's functions are diagonal in this representation, we
obtain as a result:

Bn~(t, q) f «[6+—(r+ g —+(r+ )()t+ z~
—G~+(t+, q, E)X+ (t+,q, e)],

(A7)

where

nz, (t+,q)= i f Gs, (t—+,q, s) (A8)

is the semiclassical distribution function of electrons in
the well. Here we have used the well-known relations for
the exact Green's functions and self-energies (see, e.g.,
Ref. 14):

a+++a--= —(r-++&+-), (A9)

G~, ++6~ =6~++6' (A 10)

Let us calculate now the retarded Careen's functions
GL ~z~ for the electrons in the electrodes in Wigner's rep-
resentation. Making use of the expressions for the wave
functions of electrons in the leads (see discussion of the
Schrodinger equation (5}in Sec. II, we have
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GL(R) (t +,p, c)=i J dt exp i(c—cpL(„)+i )})t
0

2t PL (i()( t +
)+

functions in the electrodes in calculating the self-energy
term:

X ~(t+, q, c)=X„~(t+,q, c)+XI~(t+,q, c)

X sin(cot /2)

(A 1 1)
+glT l

Gt~(t+, q, c), (A17)
P

where g is a positive infinitesimal.
Having in mind the well-known relation

+ 00
eizsinP y J (z}einP (A12)

where J„(z) is the Bessel function, we obtain simultane-
ously for the retarded Green's functions:

and also to take in the rhs of Eq. (A7) the expressions for
the Green's function in the well in the absence of tunnel-
ing. In the absence of tunneling, the electron wave func-
tion in the well is determined by the stationary
Schrodinger equation with the Hamiltonian Hip [see Eq.
(2)], which leads us to the corresponding expressions for
the Green's functions

GL(R)(t+ p c)= X Jn
2pt (tt)(t+ )

(A18)GIi
' +(t+,q, c)=2min)p(t+, q)5(c —cq)p),

G)((,)+ (t+,
q,

c)=2mi[n )p(t+, q) —1]5(c—c )p) . (A19)X,(A 13)
c cL (t()—+n co/2+i g

whereas for the kinetic Green's functions we have

+ 00

Gt (tt)(t+, p, c)=2mi g nL (s)(t+,p)

PL(R)
n

E F L (R) CO +O'I (A20)

[see Eqs. (A14),(A15)], while in the case coleV(t) «1
such a condition is equivalent to

Here one should note that the use of delta functions in
Eqs. (A18) and (A19) requires the additional condition
that the characteristic energy c—c L (s) (for those values
close to the energy spectrum be much larger than I . In
the case co/e V(t) » 1 such a condition is equivalent to

X5(c—c L(s)+neo/2), c —c I (t()
-

l
e V( t )

l
» r . (A21)

(A14)

Gt+(it)(t+, p, c)=2m i g [nL ()t)(t+,p) —1]
n= 00

O'L(R)
n

X5(c c L ()t)+net)/2)

(A15)

where nL and nR are the electron distribution functions
in the electrodes:

1
nt (i()(c)=

~ + ( p (g))e
(A16)

Here, e is the lattice temperature.
In what follows we will work in the lowest

perturbation-theory approximation, which allows us to
use free-particle expressions for the electron Green's

[see Eq. (A22)]. Now one can easily obtain the rate equa-
tion in the final form (6), assuming the electron dispersion
laws in left and right electrodes to be the same

(cpL cpR cp}'
In the semiclassical case (eVO/co » l, cq)pleo»1), in

order to simplify the further analysis, we will reduce the
rate equation (6) by taking into account the semiclassical-
ly slow character of the time dependence of the external
signal. One can show that, neglecting terms of the order
of +co/eVO, the integral over all possible values of the
momentum p used in (A17) is determined by the usual
semiclassical Greens functions with a time-dependent
shift of the chemical potential. So one can take the re-
tarded Green's function of the electron in the electrode in
the form

Gt" (i()(t+,p, c)=
c c +p (gL(t ))+(7}

(A22)

(instead of A13}while the reduced rate equation takes the
form (7}.
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