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The effects of tensile strain on the energy-band structures of semiconductor quantum wells and super-

lattices (SLs) are studied theoretically, with emphasis on structures with unique valence-subband

configurations achievable only through the use of tensile strain. Quantum wells are treated using finite-

element envelope-function calculations which fully treat interactions between the light-hole, heavy-hole,

and split-off valence bands, whereas strained SL's are modeled using a superlattice K p approach
modified to treat strain effects. The two models are described in detail, tested for appropriate cases

where both models should be applicable, and applied to prototype structures based on the III-V
GaAsi P„/A1~Ga& ~As and In Gai „As/InP heterostructure systems. Single quantum wells are con-

sidered first. Transition energies are calculated and conveniently plotted as functions of composition (or

strain) and layer thickness for both systems, and valence-subband band structures and k-dependent opti-

cal matrix elements are examined in detail for both systems in regimes where crossing of the uppermost

light- and heavy-hole bands is induced by composition or well-width changes. Superlattices in both ma-

terial systems are then considered, with emphasis on structures in which crossing of the uppermost

valence subbands is induced by variation of barrier width. Band structures and optical matrix elements

are calculated for wave vectors along directions parallel and perpendicular to the layer planes both in

free-standing GaAsl „P„/A1~Ga& yAs SL's with strain shared between the well and barrier layers and

In„Gai „As/InP SL's strained to lattice match to InP substrates. Finally, general features of band

structures and optical matrix elements in tensile-strained structures inferred from these studies are sum-

marized. Implications for tensile-strained quantum-well lasers are discussed briefly.

I. INTRODUCTION

Tensile-strain effects in layered heterostructures offer
unprecedented flexibility for band-structure engineering
in quantum wells and superlattices, providing more de-
grees of freedom than are available in lattice matched or
compressively strained systems. The splitting between
the uppermost light- and heavy-hole valence subbands
can be eliminated through careful manipulation of
tensile-strain and quantum-size effects in these structures
("merged" configuration}, and the normal ordering of the
uppermost subbands can even be reversed so the light-
hole valence subband lies at the highest energy ("light-
hole-up" configuration}. ' This is interesting from a fun-
damental point of view, and has proven useful for op-
toelectronic device applications as well. Semiconductor
lasers based on tensile-strained quantum wells have re-
ceived considerable attention recently, as have
polarization-insensitive optical amplifiers and phase
modulators and Stark-effect modulators exhibiting
enhanced low-field electroabsorption.

In this work, we theoretically explore the effects of ten-
sile strain on the energy-band structures of semiconduc-
tor quantum wells (QW's) and strained-layer superlattices
(SLS's). We focus specifically on structures with unique
valence-subband configurations achievable only through
the use of tensile strain, i.e., structures in which merged
or light-hole-up valence-band configurations are ob-
tained. Using finite-element and superlattice K-p models
for strained QW's and SLS's, respectively, we examine
GaAs& ~P~/Al~Ga& ~As and In~Ga, ~As/InP struc-

tures in which valence-band configurations can be tuned
through the merger point by variation of quantum-well
alloy compositions, quantum-well thicknesses, or—in
superlattices —barrier layer thicknesses. Growth on
( 100) substrates is assumed for all structures.

Our paper is organized as follows: In Section II, the
finite-element and superlattice K p models are described
in detail, and results from the two models are compared
for appropriate cases where both models should be valid
(i.e., isolated quantum wells). Results from finite-element
calculations for isolated quantum wells with unstrained
barriers are presented next in Sec. IIIA. Calculated
well-width dependence of electron —light-hole (e-lh) and
electron —heavy-hole (e-hh) optical transition energies in
GaAs, „P„/Ale 35Gao 65As and In„Ga, „As/InP struc-
tures of various alloy compositions are presented first.
Valence-subband band structures and wave-vector-
dependent optical matrix elements are then examined in
detail for both systems in regimes where crossing of the
uppermost light- and heavy-hole bands are induced by
quantum-well composition or thickness changes. Super-
lattices in both material systems are considered next in
Sec. III B, with emphasis on structures in which crossing
of the uppermost valence subbands is induced by varia-
tion of barrier width alone. Band structures and optical
matrix elements are calculated for wave vectors along
directions parallel and perpendicular to the layer planes
both in free-standing GaAs& P /Al Ga& As SI.'s
with strain shared between the well and barrier layers
and In Ga, As/InP structures lattice matched to InP
substrates. Valence-band crossing is shown to be achiev-
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able solely through barrier-width variations in both types

of structures. In Sec. IV, we summarize the general

features of tensile-strain effects on QW and SLS band

structures and optical matrix elements, and mention

some implications of our work for tensile-strained laser

design. Our models and results should be useful for a

variety of studies involving tensile-strained quantum

structures.

II. THEORETICAL MODELS

A. General

Both of the models used in this study are based on
envelope-function approaches. 6 Such approaches involve

matrix solution of Schrodinger's equation using Bloch-
like basis functions of the form

~v, k) =u„(r)exp(ik. r),

where k is the electron wave vector, r is the position vec-
tor, and u „is the cell-periodic component (assumed k in-

dependent) for band v. These functions, while not true
Bloch functions, approximately describe bulk band states
near the Brillouin-zone center. Functions u, typically
used to construct a basis set adequate for describing
near-gap heterostructure states are, in angular momen-
tum notation

~ J,Mz ),

(3)

for the conduction bands,

for the heavy-hole bands,

I
—'„——,

'
&
= —

( I /&6) I (X i Y) l &
—Q:,'—I Z L &,

atomic p„,p~, p„and s orbitals, respectively, and 1 and )
denote spin-up and spin-down states. These basis func-
tions diagonalize the "unperturbed" bulk crystal Hamil-
tonian at k=O, including both the k.p interaction and
the valence-band spin-orbit interaction. The 8X 8 Hamil-
tonian matrix constructed from these functions describes
interactions between the various bulk band states such as
those arising from the k-p interaction, internal potentials
induced by band offsets at heterointerfaces, and addition-
al potentials arising from other internal and externally
applied perturbations. Particular interactions expected
to be small are typically neglected to make the Hamil-
tonian matrix more sparse and/or decouple it into small-
er blocks.

In this work, strained single quantum wells (SQW's)
are treated by constructing an 8 X 8 Hamiltonian matrix
which includes all k p and strain interactions except
those which couple the conduction bands (CB's) to the
valence bands (VB's}. Neglect of the CB-VB interactions
decouples the Hamiltonian into a 2 X 2 CB block and a
6 X 6 VB block, both of which depend explicitly on strain
and wave vector. The CB block is solved directly,
whereas the VB block is further simplified to two 3 X3
blocks via a unitary transformation. A finite-element ap-
proach is finally used to solve the resulting sets of cou-
pled differential equations directly to obtain eigenfunc-
tions and eigenvalues at each in-plane wave vector k~~ of
interest. Interband matrix elements are then obtained for
various k1 directly from the normalized conduction and
valence subband eigenfunctions.

The modified superlattice K p approach we use to
treat strained-layer superlattices utilizes the envelope-
function scheme in a somewhat different way. (Here K
denotes the wave vector describing the superlattice Bloch
states, which replaces the bulk wave vector k as a useful
quantum number in the presence of the superlattice po-
tential. ) Strain-dependent envelope functions for superlat-
tice subband states at K=O are obtained in closed form
by suitably simplifying the general 8 X 8 Hamiltonian ma-
trix and treating strain effects in the quantum well and
barrier layers perturbatively. This allows for evaluation
of momentum matrix elements between superlattice sub-
band states at K=0, which, with energies of these super-
lattice zone-center states obtained using a modified
Kronig-Penney model, facilitates solution of a superlat-
tice K.p equation for eigenenergies of states with finite
K. Eigenfunctions and interband matrix elements for
KAO are then obtained numerically. The two models
will now be described in further detail.

for the light-hole bands, and B. Finite-element model for quantum wells

~ —,', +—,
' ) =(I/v'3)~(x+iY)i)+(1/v'3) ~Zt ), (8)

( —,', —
—,
' ) =(I/&3))(X—iY) 1 ) —( I/v'3))Z& ), (9)

for the split-off bands. Here J and MJ are the total and
azimuthal angular momentum quantum numbers, X, Y,
Z, and S represent functions with the symmetries of

In constructing the Hamiltonian matrix for treating
the strained SQW's, we use the Luttinger-Kohn form for
the k p interactions ' and the Pikus-Bir Hamiltonian
for treating energy shifts and interband interactions due
to strain. Neglecting interactions between conduction
and valence bands, the resulting 8X8 matrix decouples
into a simple diagonal 2X2 conduction-band matrix and
a 6 X 6 valence-band matrix of the form
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Hvn(k) =
i—/v'2b '
i V'2c * i—Q ,'b—*

i /&2b —i &2c

iQ ,'b—

iQ ', b-i&2c
if—* i /&2b

(10)

C i Q—,'b '—if
i —&2c * i W— '2b '

where

$2
a+ = — [(ri+r2)(k +k )+(y~ —2y2)k,']+ Vhh,

2mp

$2
[(r&—y2)(k +k )+(y +2] 2)k ]+V]h,

2mp

and g, ——,') in generating the Hamiltonian matrix given

above.
Applying the unitary transformation described in Ap-

pendix A, the valence-band Hamiltonian matrix trans-
forms to a block diagonal form. With the axial approxi-
mation (i.e., y2, y3~y in Eq. (14) with y = [y2+y3]/2),
the upper and lower 3X3 blocks of this matrix take the
form

b =i&3 y3k, (k„—ik ),
mp

(12)

(13) HvB(kII k. )= C+iB

C +iB ~ac+ 'B

FTig ,'B—

3 [(k„—ky )y2 2ik„—k y3],2 mp

y&(k, +k~+k, )+ Aa„s —b, + V„,
2mp

(14)

(15) with

&2C W — F+i Q ,'B—
2

(20)

$2f &2 [y~(k +ky 2k )] Bb e
2mp

(16) + = — [(ri+r2)kII+(r —2r2)k, ]+ Vhh
2 2

2mp
(21)

Here
~
k =k =k„+k +k, , fi is the reduced Planck's

constant, mp is the free-electron mass, y1, y2, and y3 are
the Luttinger parameters, and a„and b„are the hydro-
static and uniaxial valence-band deformation potentials.
A and 8 are parameters de6ned in terms of the elastic
constants C» and C12 as

f2
[(ri —r2)kII+(r +2y2)k ]+Vlh

2mp

B=&3 y3k, kII,
mp

(22)

(23)

A=2 C» C12

and c. is the strain

C„+2C,2B=3

(17)
$2

D = — y&(k
II
+k, )+ Aa„s —6+ V„,

2mp

F= —&2 y (k —2k )
— Bb,e .

&z
2m ~~ 3mp

(25)

(26)

II
a —a

(19)

where a~~ is the in-plane lattice constant of the strained
layer and a is the unstrained lattice constant. Vhh and

V1h correspond to the strain-dependent energies of the
heavy-hole and light-hole valence-band edges, respective-
ly, and V„ is the energy of the split-off band edge absent
strain and spin-orbit interactions (i.e., the unstrained
values of V„h and V,„). These energies will obviously
differ for matrices describing the quantum well and bar-
rier layers. Note that the VB basis functions were or-

a
HVB kII& ~ 0 EVB(kII Waz

(27)

Conduction-band energies are simply the eigenvalues of

The upper and lower signs appearing in the off-diagonal
terms correspond to the upper and lower blocks, respec-
tively, and k~~ is the magnitude of the in-plane wave vec-

tor. Making the usual substitution k, ~ i (c}/dz ) res—ults

in two 3X3 matrix operators from which the valence-
band dispersions can be obtained given appropriate
boundary conditions. The eigenvalue equation for each
block is of the form
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the operator

Hca(ki )
=— 2 2 iri2k 2

, + ii+V, , (28)
2m,' Bz2 2m,

where m,* is the electron effective mass and V, is the
strain-dependent conduction-band edge energy.

Explicit solution of Eqs. (27) and (28} requires
knowledge of the energy-band offsets. In this work, we
obtain the strain splitting of the energies Vhh and V&h in
the quantum-well layer and their values relative to the
degenerate valence-band edge in the unstrained barriers
using strain-dependent tight-binding heterojunction ofFset
calculations. ' Deformation potentials a„and b„are then
obtained which would lead to these same band energies
through degenerate perturbation theory based on the
Pikus-Bir Hamiltonian. (The values of a„and b„ob-
tained in this manner, which are close to experimental
values, are used throughout for consistency. ) This allows
us to then use perturbation theory to obtain V, and V„
from the tight-binding values of Vhh and Vih. Using this
procedure, Vhh, Vih, V„, and V, can be obtained for the
strained quantum well and unstrained barrier layers, and
sets of difFerential equations can be obtained via Eqs. (27)
and (28) for each region. These equations can then be
solved for the dispersions given boundary conditions,
which are obtained by integration across the interfaces. "
Note that for the case of flat-band heterostructures con-
sidered here, the sets of eigenvalues resulting from solu-
tion of the upper and lower 3 X 3 valence-band blocks are
identical.

In order to solve the sets of coupled differential equa-
tions describing the valence bands, we use a finite-element

analysis. In this approach, which has previously been ap-
plied by Nakamura et al. ' to the single-band problem,
the problem space is subdivided along the z axis into
finite elements of equal length. We follow Nakamura's
procedure in obtaining conduction-band eigenfunctions
and eigenvalues, and treat the valence bands as follows:
A basis set consisting of four third-order Hermitian line
elements is used to describe each valence-band state
within each finite element. Application of the standard
Galerkin procedure to Eq. (27) yields a 12 X 12 matrix for
each of the two 3 X 3 Hamiltonian matrix blocks within

each finite element. This yields discretized equations
for each finite element of the form [A],[g],
=E(k)[M],[g]„where [A], and [M], are matrices
specified by the Galerkin procedure and [P], is the
wave-vector contribution for the finite element under
consideration. Boundary conditions are applied by form-
ing transfer matrices [T] at each interface between
different materials, and transforming the right-hand-
side finite element as [A],=[T] [A],[T] and

[M],=[T] [M],[T]. A global matrix is then obtained
by adding the contributing finite-element matrices togeth-
er, resulting in a generalized eigenvalue problem of the
form [A][g(k)]=E(k)[M][f(k)]. Here [A] and [M]
are obtained from the addition of the individual finite-
element matrices [A], and [M], and [f(k)] is the eigen-
function corresponding to the eigenvalue E(k}. This glo-
bal equation is generated and solved for each in-plane k
value of interest, resulting in the full valence dispersion.

The eigensolver uses a k-step Arnoldi update algorithm'

and allows us to take advantage of the sparse and banded
structure of the [ A] and [M] matrices.

To obtain optical matrix elements, the wave functions
obtained from the finite-element solution are first normal-
ized for the qth valence state and the pth conduction state

by requcrmg

and

I@ I'= 11('"I'+l0'"I'+ I@"I'=1 (29)

where P is the qth valence-subband envelope function,
P", P'q, and gq are the heavy-hole, light-hole, and split-

off band envelope-function contributions to f, respec-

tively, and P is the pth conduction-band envelope func-

tion. The matrix element for optical transitions between
the pth conduction and qth valence eigenstates is given by

Mpq(k(()=y &eqlyp) &nle pl~, a), (30)

where k~~ is the in-plane k-vector magnitude, In ) is the

nth transformed Bloch function from Appendix A, e is
the polarization vector, p is the momentum operator, and

a is the conduction spin state (a = f or J, }. Final squared
matrix elements are obtained by squaring the above equa-
tion and averaging over the x-y plane, which eliminates
all the cross-coupling terms.

IL,K) = UL «(r)exp(iK r), (31)

where L is the superlattice subband index, UL «(r} has

the periodicity of the superlattice potential, and

K=Ki+K~~ is the superlattice wave vector with the
II

and l components parallel and normal to the layer plane,
respectively. Expanding Ui «(r) in a basis of zone-center
subband states

I
N', 0 ) as
I
max

UL «(r)= g cL ~.( K)IN', 0), (32)
N'=1

substituting into the time-independent Schrodinger equa-
tion, and multiplying from the left by & N, OI yields the su-
perlattice K p equation

p

max $2
g cl. ~(K) EN(0) —Ei(K)+ IKI' 8~,~

N'=1 2mp

where

+ K.PN N. =0 (33)
mp

PN N
=

& N, olplN', o) . (34)

Further describing the superlattice zone-center subband

C. K.p model for superlattices

In this work, superlattice structures are treated using a
superlattice K p theory' ' modified to include strain
effects. Dispersions are obtained by solving a K p equa-
tion obtained using superlattice Bloch functions
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states in terms of zone-center bulk states in an envelope-
function expansion

max

IX,O) = g F, ~~ p&(r)Iv, O) (35)

max max

and assuming that the spatial variation of the functions
F ~~ 0& is much slower than that of the bulk cell-periodic
functions u„(r), the superlattice momentum matrix ele-

ments at K=0 become simply

Bb„c
H33 = V]h+ Aa, g—

H44= —6+ V„+Aa„c+

&2Bb,E
+

9&v

Bb, c,

+6
3

&2Bb,e
+

9&v

Bb, c.
+5

3

(43)

(44)

Px, ~ = g g (F„~xp& IF, , ~x,p& )p&, ~
v=1 v'=1

(36)

where p, . are well-known bulk zone-center matrix ele-
rnents

p„„=(u,(r)lplu„(r) & . (37)

We use this formalism to obtain strained-layer super-
lattice subbands and matrix elements as follows. We first
construct Hamiltonian matrices valid for K=0 in the ab-
sence of strain using the envelope-function approach.
Specifically, we generate matrices for the quantum-we11
and barrier materials at k~=0, ordering the bulk basis
functions as

I —,', +—,
' &„—'„+—,

' ), I —,', + —,
' ) I —,

' + —,
'

&,
——')„

I
—'„——', ), I

—'„——,'), and I —,', —
—,'). Using the

Luttinger-Kohn form for the k p interactions, and fol-
lowing Johnson et al. ' in neglecting terms coupling
IMJ I

=
—,
' states which account for interactions with bands

not in the basis set, a block-diagonal 8 X 8 matrix results
which consists of an upper left 4X4 matrix for +MJ
states and a similar lower right 4X4 matrix for —MJ
states. Next, we use the Pikus-Bir strain Hamiltonian
and the same ordering of the bulk basis functions to gen-
erate a strain matrix. While this matrix can be added
directly to the unstrained matrix to obtain a net Hamil-
tonian appropriate for the strained layer, such a pro-
cedure yields an 8X8 matrix which cannot be solved
analytically for the envelope functions I'

~z o~. We thus
include the strain matrix using a form of perturbation
theory cast as a unitary transformation, ' which yields a
block diagonal 8X8 Hamiltonian from which it is possi-
ble to obtain analytical forms for the envelope functions
at the superlattice zone center.

The upper-left +MJ block of this matrix is of the form

Here V„Vhh, V1h, and V„are the energies of the various
band edges in the absence of strain. These energies are
determined for the various layers from unstrained band
gaps and strain-dependent tight-binding valence-band
offsets' via the Pikus-Sir strain Hamiltonian in a
manner similar to that described in Sec. IIIA. With
these energies and appropriate boundary conditions, " the
superlattice zone-center envelope functions are obtained
in closed form from Eqs. (38)—(44) and their matrix ele-
ments are obtained from Eq. (36). (These functions are
tabulated in Appendix B.) The energies for these super-
lattice subband states at K=O are obtained using a
modified Kronig-Penney model. '

Superlattice subband dispersions and eigenfunctions
are finally obtained by substituting the zone-center ener-
gies and matrix elements into the superlattice K.p equa-
tion [Eq. (33)] and solving this equation numerically. In-
terband matrix elements between superlattice subband
states are then obtained as products of superlattice zone-
center matrix elements and overlap integrals between en-
velope functions for the subband states as in Refs. 14 and
15. We have used a thirty-six subband superlattice K p
expansion in our calculations [i.e., X',„=36in Eq. (33)],
and have confirmed that such an expansion is sufficiently
large for accurate calculation of the near-gap dispersion
relations in the types of superlattices studied here. For
the superlattice structures examined in this work (cf. Sec.
III B), reduction of the basis set to twenty-four subbands
changes calculated eigenenergies by only a meV or so
over the entire ranges of energies and wave vectors we
have studied. We thus conclude that, for the superlat-
tices of interest in this work, our K.p expansion is
sufficiently complete for accurate numerical calculations
of near-gap electronic structure.

H, 1 0 H 31 H41 D. Comparison of approaches

0
H+(k, ) =

H41

H„o 0

H33 0

0 H44

where

H» = V, = Aa, c,
H3, = —Q ', Pfik, , —

H„=—Q-,'Prk, ,

A' k Bb, c,

Hq~ —
Vh1, + Aa„c.+2' hh

(38)

(39)

(40)

(4l)

(42)

All of the calculations which follow in Sec. III use the
Anite-element model for iso1ated quantum wells and the
superlattice K p model for multilayer SLS's. While this
is appropriate for reasons of computational simplicity, it
is useful to compare the results from both models where
possible in order to ensure that qualitative features of the
calculated band structures are not artifacts of the models
themselves. Whi1e somewhat different results can be ex-

pected from the two very different approaches, owing to
differences in both the formalism and implementation,
band structures from the two models should be similar
when applied to identica1 structures. Such comparisons
can be made by comparing results for an isolated quan-
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GaAso ssPQ o7 i Alo.ssGao ssAs SQW
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FIG. 1. In-plane energy band
structures for isolated
GaAs0. 93Po.ov/Ala 35Gao. 65As
and Ino. 495Gao. sosAs/InP quan-
tum wells obtained using the
finite-element (solid) and super-
lattice K p {dashed) models de-
scribed in this work. Disper-
sions calculated from the two
very different techniques are
generally in excellent agreement
near the zone center, but deviate
somewhat at large finite kI~ ow-

ing to differences in assumptions
made regarding interband in-
teractions.

turn well obtained from the finite-element model to those
from the K p model for a thick-barrier superlattice with
similar quantum-well widths and quantum-well and bar-
rier compositions.

We have carried out such comparison studies, choosing
to examine structures in the GaAs, „P„/Al„Ga, „As
and In„Ga& „As/InP system where the light- and
heavy-hole valence-band energies are sitnilar at kt=0.
These are meaningful and rather stringent test cases since
interactions between the various valence bands are
strongest when the bands are in close proximity
energetically. Calculated in-plane energy-band
structures for isolated GaAsp93PpQ7/Alp 35Ga65As and
InQ 495Gap 5p5As/InP quantum wells with merged
valence-band edges at k~~

=0 are shown in Fig. l. Solid
curves represent results from the finite-element model,
whereas results from the superlattice K p calculations
are indicated by dashed curves. Numerical values for
material parameters used to obtain these results and all
other results in this work are tabulated in Appendix C.
Note that energies and band shapes calculated from the
two techniques are generally in excellent agreement near
the zone center. Deviations between results from the two
models become evident at large finite k~t, but the overall
qualitative shapes of the bands calculated using the two
very different approaches are remarkably similar for both
material systems. Differences in the band shapes may re-
sult primarily from differences in approximations made
regarding band coupling in the two models, whereas the
small discrepancies in the zone-center subband energies
result from different treatments of effective masses in the
two models. Literature values are used for all masses in
the finite-element approach, but are used only for the
heavy-hole masses in the superlattice K.p model with the
other masses interrelated through Kane matrix elements.
The two models wi11 now be applied to the study of a
variety of structures utilizing tensile-strain effects.

III. RESULTS AND DISCUSSION

A. Tensile-strained quantum wells

In this section, the finite-element model described
above is applied to the calculation of in-plane valence-
band dispersion relations and interband optical matrix
elements in isolated tensile-strained quantum wells.
GaAs, „P„/Alp 35Gap 65As and In„Ga, „As/InP struc-
tures with all strain confined to the quantum wells, which
could be grown directly on GaAs and InP substrates, re-
spectively, are examined. Before examining dispersions
for particular structures, however, we present calculated
composition and well-width dependences of the funda-
mental e-lh and e-hh interband optical transition energies
in Figs. 2 and 3.

In Fig. 2, transition energies at 77 K are shown for the
GaAs, „P„/Alp 35Gap s5As system as a function of
quantum-well width for different compositions. Thin
solid curves represent fundamental e-hh transitions and
dashed curves represent e-lh transitions. The bold solid
curve represents combinations of well widths and compo-
sitions which result in merging of the uppermost light-
and heavy-hole valence-band edges, and thus delineates
the boundary between regimes yielding light-hole-up and
heavy-hole-up valence-subband configurations. Note that
the quantum wells are under tensile strain for aH compo-
sitions in this system, and that merging of the e-lh and e-
hh transition energies is achieved in suSciently narrow
quantum-well widths. Similar results are shown for the
In„Ga& „As/InP system in Fig. 3, with fundamental e-
hh and e-1h transition energies again denoted by thin
solid and dashed curves, respectively, and the merger
point denoted by the bold solid curve. The primary qual-
itative difference between these results and those of Fig. 2
is that quantum wells with both compressive (x &0.53)
and tensile (x (0.53} strain are represented here. Note
that merging of the e-1h and e-hh transition energies is
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the In Ga, „As quantum wells. The InP barriers are assumed
to be unstrained, whereas the quantum wells are under compres-
sive strain for x )0.53 and tensile strain for x (0.53.

again achieved in suSciently narrow quantum wells with
tensile strain but is impossible in the compressively
strained structures. While most of the quantum wells
represented in these figures are of thicknesses below criti-
cal values for dislocation formation, the thicker wells
with compositions greater than x 25lo in Fig. 2 and
x ~ 40% in Fig. 3 approach or just exceed these values.

Figures 2 and 3 illustrate band gaps and valence-
subband ordering over relatively wide ranges of
quantum-well widths and compositions. We focus now
on structures with well widths and compositions yielding
merged or nearly merged valence-subband edges, i.e.,
samples lying near the bold solid contours in Figs. 2 and
3. Relatively small differences in quantum-well composi-
tions or thicknesses can clearly change the ordering of
the uppermost light- and heavy-hole valence subbands in
this regime. Because of the strong interactions between
the various valence-band states, these small differences in
the physical structure are accompanied by significant
modifications in the band structure and optical properties
near the band edge in these structures. We now
demonstrate this through studies of "composition
tuning" and "well-width tuning" of the valence-
band configuration through the merger point in both
GaAs& „P„/Al„Ga& „As and In„Ga, ,As/InP
tensile-strained quantum-we11 structures and examine the
consequences for band structures and optical matrix ele-
ments.

Calculated energy-band structures and k~~-dependent
0

squared optical matrix elements for 65 A
GaAs, „P„/Alo 35Gao 65As quantum wells of three
different compositions are shown in Fig. 4. The wave
vector k~~ again lies in the plane of the layer, and matrix
elements are shown for interband transitions involving
the uppermost heavy- and light-hole subbands for light
polarized both within the plane of the layer (TE) and per-
pendicular to this plane (TM). Solid and dashed curves
represent heavy- and light-hole dispersions in the band-
structure diagrams, respectively. Similarly, e-hh and e-lh
optical transitions are represented by solid and dashed
lines, respectively, in the plots of the k~~-dependent ma-

trix elements, with TM matrix elements represented by
bold curves and TE elements represented by thin curves.
Subband energies are referenced to the uppermost edge of
the valence-band potential well, and the squared matrix
elements are in units of ~P~ = (( V, a~p~S, a) ) . (Here V
is any one of the functions X, 7, or Z defined in Sec. II A
and again a=1' or g. ) These conventions will be used
throughout the remainder of this paper.

The "nominal" quantum well (center) in Fig. 4 with
x =0.080 exhibits a merged valence-band configuration,
whereas the other two have been rendered heavy-hole-up
by 5 meV (left, x =0.065) and light-hole-up by 5 meV
(right, x =0.095 ) by composition tuning. Note the
significant changes in the shapes of the uppermost
valence bands near the zone center, including inversion of
the sign of the hole effective masses for both the heavy-
and light-hole subbands as they are tuned through the
merger point. ' Note also the drastic changes in the k~~-

dependent interband matrix elements which accompany
the relatively small changes in the valence-subband ener-
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FIG. 4. In-plane energy band structures and k

~~

-dependent optical matrix elements (TE and TM) for 65 A
GaAs& „P„/Alo 35Gao 65As quantum wells of various compositions near the band merger point. Dispersions are shown for structures
that are heavy-hole up by 5 meV, merged, and light-hole up by 5 meV, with heavy- and light-hole subbands denoted by solid and
dashed curves, respectively. TE and TM matrix elements for interband transitions involving the uppermost valence subbands are
denoted by thin and bold curves, respectively, with solid curves representing e-hh matrix elements and dashed curves e-lh elements.
Note that the band shapes and matrix elements fluctuate significantly with small changes in composition due to the strong coupling
between the valence bands near the merger point.

gies. Two features of the matrix elements are particularly
significant: First, all four interband matrix elements
differ significantly from their zone-center values over a
range of only 0.5 X 10 m ( —1% of m /a

~~

with
a~~=5. 653 A) in the merged case, suggesting that the
common approximation of k~~-independent matrix ele-
ments may be invalid for calculations of optical proper-
ties in these structures. Second, the electron-heavy-hole
TM matrix element becomes strongly suppressed at finite

k~~ in the light-hole-up case. This is explained by exam-
ination of the wave functions. The TM e-hh transitions
are allowed at finite k~~ because of significant mixing of a
light-hole component into the heavy-hole subband states.
This light-hole component is, however, nearly orthogonal
to the lowest conduction subband states in the light-
hole-up case. This suppression, combined with the ob-
served enhancement of the e-1h TM matrix elements in
the same samples, may contribute significantly to the
strong TM polarization of emission observed from
tensile-strained lasers with light-hole-up valence-band
configurations. ' These calculations are for a lattice tem-
perature of T =77 K.

In Fig. 5, a similar set of band structures with corre-
sponding TE and TM optical matrix elements is shown
which demonstrates well-width tuning through the
merger point in GaAsppsPp92/Alp35Gap65As quantum
wells. The nominal sample (center) is the same as that of
Fig. 4, but here subband configurations which are heavy-
hole up by 5 meV and light-hole up by 5 xneV are ob-

tained by changing the well widths to 55 and 80 A, re-
spectively, while keeping the composition constant. Note
that tuning through the merger point by changing the
well width produces variations in the band shapes and
matrix elements which are significant and very similar to
those obtained by composition tuning.

Analogous results of calculations showing composition
and well-width tuning of the valence subbands through
the merger point are shown for In„Ga& „As/InP
tensile-strained QW structures in Figs. 6 and 7, respec-
tively. The valence-subband structure and corresponding
optical matrix elements for a nominal Inc 49Gao 5&As/InP
structure with L, =105 A is shown in the center of each
figure. In Fig. 6, results are shown for structures in
which subband configurations heavy-hole up and light-
hole up by 5 meV have been obtained by varying the
quantum-well composition about its nominal value. In
Fig. 7, similar results are presented that demonstrate tun-
ing of the subband structures by well-width variation to
obtain 5 meV light-hole-up and heavy-hole-up valence-
subband configurations. Significant changes in band
shapes and matrix elements are again observed for both
cases, with composition and well-width tuning yielding
similar modifications. These results are similar to those
obtained for the GaAs& „P /Alp 35Gap 65As system.
(Apparent differences in the k~~ dependence of the matrix
elements at merging originate from choice of the upper-
most valence-band type at k~~+0.) A lattice temperature
of 300 K was assumed for these calculations.
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B. Strained-layer superlattices

In this section, results are presented for superlattice
K p calculations of valence-band structures and optical
matrix elements for GaAsi „P„lA1 Gai As and
In„Ga, ,As/InP strained-layer superlattices (SLS's) in-

volving tensile-strained component layers. We again
focus on structures with merged or nearly merged upper-
most light- and heavy-hole subbands, and specifically ex-
amine cases in which crossing of the uppermost valence
subbands is induced by variation of barrier width alone.
Band structures and squared optical matrix elements are
calculated for wave vectors along directions parallel
(K~~=k~~) and perpendicular (Ki) to the layer planes, as
both quantities are good quantum numbers in the period-
ic superlattice structures.

Energy band structures and squared optical matrix ele-
ments are shown in Fig. 8 for GaAsp 9pPp, pl
Alp 35Gap65As strained-layer suPerlattices with 90 A
quantum wells and different barrier widths. The superlat-
tices are assumed to be free-standing (or grown on graded
buffers), with their in-plane lattice constants determined
by balance of tensile strain in the GaAsQ 9QPQ ]Q wells and
comPressive strain in the Alp 35Gap 65As barriers. Varia-
tion of barrier width in such structures alters the distri-
bution of strain between the well and barrier layers, the
in-plane SLS lattice constant, and quantum-mechanical
coupling between adjacent quantum-we11 layers. Large
barrier widths favor a light-hole-up configuration
through increased tensile strain in the quantum wells, al-
though the increased quantum confinement in thick-
barrier structures tends to reduce the strain splitting
somewhat. The net effect in the structures of Fig. 8 is
heavy-hole-up configuration for the thin barrier struc-

tures and a light-hole-up configuration for thick barrier
structures. Specific cases are shown for which valence-
subband configurations are heavy-hole up by 4 meV

(LJ3 =49 A), merged (Ls =105 A), and light-hole up by 4
meV (LJ3 =187 A) at the zone center, with tuning of the
valence-band structure through the merger point again
achieved entirely through variation of the barrier width.
The matrix elements exhibit unusually sharp features at
wave vectors for which interactions between the upper-
most bands are strongest, but are otherwise qualitatively
similar to those obtained for single quantuin wells using
the finite-element model. At finite in-plane wave vectors,
tuning from a light-hole-up to a heavy-hole-up subband
configuration tends generally to enhance the e-hh matrix
elements and suppress the e-lh matrix elements for TE
polarizations. The TM matrix elements follow the oppo-
site trend.

In Fig. 9, valence band structures and matrix elements
are shown for Inp 5pGap 5pAs/InP strained-layer superlat-
tices with tensile-strained 130 A Inp 5pGap 5pAs quantum
wells and different InP barrier widths. (Wavelengths of
photons resulting from the fundamental interband transi-
tion in these structures are in the 1.55-pm range impor-
tant for optical communications. ) In contrast to the
SLS's of Fig. 8, these superlattices are assumed to be
coherently strained to the substrates. All of the strain is
thus confined to Inp 5pGap 5pAs quantum wells, with the
in-plane lattice constant fixed to that of the InP substrate,
so changes in quantum-mechanical coupling are entirely
responsible for changes in the subband structures result-
ing from variations in barrier widths. Cases are shown
for which valence-subband configurations are heavy-hole
up by -2 meV (L&=80 A), merged (Ls =31 A), and
light-hole up by -2 meV (Ls =21 A). Note the substan-
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tial changes in the optical matrix elements at finite k~~

which result from only a 4-meV net shift in the relative

positions of the uppermost light- and heavy-hole sub-

bands. Note also that increasing the barrier width pushes
the heavy-hole band above the light-hole band in these

types of structures, contrary to the SLS's of Fig. 8 in

which sharing of strain between the layers yielded the op-
posite trend. It should be noted that the total superlat-
tice thickness must be kept below some critical value in

structures of this type if dislocations are to be avoided,
since the superlattice as a whole is not lattice matched to
the substrate. This superlattice critical thickness can be
relatively large, however, for cases such as the one exam-

ined here in which the overall mismatch is small.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have described a systematic theoreti-
cal study of the effects of tensile strain on the band struc-
tures and optical matrix elements of semiconductor quan-
tum wells (QW's) and strained-layer superlattices (SLS's).
We first described finite-element and superlattice K p
models which we used in our work to study strained sin-
gle quantum wells and strained superlattices, respective-
ly, and compared results from these two models for thick
barrier superlattices in which the quantum wells are
decoupled. Band structures obtained from the two mod-
els were shown to be in generally excellent quantitative
agreement near the zone center and strong qualitative
agreement at larger wave vectors, despite formal
differences in the two models and selection of test cases in
which interband interactions should be particularly
strong.

We then applied the finite-element model to isolated
strained quantum wells, beginning with calculations of
the well-width dependence of electron —light-hole (e-lh)
and electron —heavy-hole (e-hh) optical transition ener-
gies in GaAs, „P„/Ala 35Gao 65As and In„Ga, „As/InP
structures of various alloy compositions. Results of these
studies showed that the heavy-hole-up valence-subband
configuration characteristic of lattice-matched and
compressively strained quantum wells is available in
tensile-strained wells only below some composition
dependent well thickness, and that this characteristic
thickness decreases rapidly with increasing tensile strain.
Energy bands and wave-vector-dependent optical matrix
elements were then studied for both systems in regimes
where variation of quantum-well widths or compositions
induce merging and reversal of the uppermost light- and
heavy-hole bands. Our results show significant changes
in band structures and matrix elements with tuning of the
subband configuration through the merger point, includ-
ing reversal of the signs of effective masses for both types
of holes and drastic changes in optical matrix elements at
small finite values of in-plane wave vector. Similar re-
sults were obtained whether bands were tuned through
the merger point by variation of quantum-well width or
alloy composition for both GaAs& P„/Alo 35Gao 65As
and In„Ga& „As/Inp structures. One particularly not-
able result is that the TM optical matrix elements become
strongly enhanced for electron —light-hole transitions and
strongly suppressed for electron —heavy-hole transitions

The authors thank the National Science Foundation
for their support of this work through Grants Nos. ECS-
8910415 and ECS-8911995. We also thank Dr. D. Soren-
sen of Rice University for providing us with the eigen-
solver package.

APPENDIX A

The unitary transformation used in Sec. II 8 to trans-
form the 6X6 valence-band Hamiltonian matrix to a
block diagonal form is

e
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over a wide range of wave vectors in tensile-strained
quantum wells with light-hole-up valence-band
configurations. This is interesting in light of recent data
showing strong TM polarization of lasers utilizing quan-
tum wells with such band configurations, which presum-
ably operate primarily on electron —light-hole transitions.

Finally, we applied the superlattice K.p model to
structures in the same material systems in which merging
and reversal of the bands is induced by variation of bar-
rier width alone. Free-standing GaAs, „P„/
Al Ga, As superlattices with strain shared between the
well and barrier layers were first studied. Our results in-
dicate that increasing barrier widths results in tuning of
the subband configuration from heavy-hole-up to light-
hole-up band configurations in these structures. We then
studied In„Ga, „As/InP structures strained to lattice
matched to Inp substrates, in which all strain is confined
to the In„Ga& „As quantum wells. Tuning the subband
configuration from heavy-hole up to light-hole up re-
quires a decrease in the barrier width in this case, con-
trary to the free-standing GaAs, „P„/Al Ga, As in
which strain sharing resulted in the opposite trend.
Valence-band crossing is shown to be achievabLe solely
through barrier-width variations in both types of struc-
tures, and subband reversal was predicted to result in
large changes in band structures and matrix elements as
was found to be the case for single wells.
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where eb and 0, are related to the parameters b and c
iOb io

(Eqs. 13 and 14) as b = IbIe " and c = IcIe ' and to one
another as 0, =20b. The transformed valence Bloch
states are

I6&
— Is s&+ e

APPENDIX B

Strain-dependent envelope functions at K=0 for the superlattice subband states are obtained in closed form using the
superlattice K.p formalism described in Sec. II C. These functions are tabulated in this Appendix.

For a SLS with quantum-well and barrier-layer thicknesses L„and Ls, respectively, the functions (even and odd)
used to construct the superlattice K=0 states are as follows:

MJ =+—,
'

Even

L„/2 —~z ~Lz /2

Fv,
l l, o) =N cosEAZ

F, l50) =NyAC, AsinkAZ

L„/2 ~ z ~ L „/2+ Ls
cosk&L„/2

N cosks(z —d /2)
cosksLs 2

sink&L„/2
Ny „.— C,s sinks (z —d /2 )

sinks Ls /2

F, l7O) NQAC7AsinkAz
sink&L„ l2

Ny „. — C7s sinks (z —d l2)
sinks Ls /2

M =+—,
'J

Even

MJ =+—,
'

Odd

F, l3, 0) =N sinkAz

NF, I, o)
= sinkAZ

YA

F, l5 o) =NCsAcoskAZ

sinkgL g l2
Ny „.k

— C7ssinks(z d/2)—
sinksLs l2

—N Sink g L g /2
sinks (z —d /2 )

"a a/

cosk „L„/2
N Csscosks(z —d l2)

cosks L~ /2

MJ =+—,
'

Odd

F l7 o) =NC7A cosk A z

F l3 o) =N coskAZ

sckogLg /2
N C7s cosks (z —d l2 )

cosks Ls l2

cosk„L„/2
N cosks(z —dl2)

cosksLs l2

where y „=[&3EI(k =0)mo/Pfik„j, mo is the free electron mass, d is the superlattice period (d =L„+Ls), N is the

appropriate normalization constant, and k„and ks are the bulk (z-d directed} wave vectors in the A and B layers, re-

spectively.
The constants C~~ and C7~ are

&2 E~(K =0)+E + Aa, E —Aa, E—

&2Bb,e
+

3 9v'2

5+Bb,E/3
—Vs(z)

CSB

Bb„c
3EI (K =0)+3E +2A+3Aa, e —3Aa, E+

3

+2Bb'+'
3 9v'2

Bb, c.6+
—2'(z}
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C7a

Bb„c
+2 EL (k =0)+E + Aa, e —Aa, e+ +

Bb, c.
3EL (K =0)+3E +26, +3Aa, e 3—Aa„e+

Bb„c.2&2 '+'
3 9v'2

6+Bb,c/3

&28b„E"+'
3 9v'2

5+Bb„c./3

—Vt (z)

—2 V&(z) —V& (z)

where Vs(z) and V, (z) are step functions which vanish in the A layers and are equal to the band offsets for split-off and
light-hole bands, respectively, in the B layers, and E is the bandgap of the A material. Finally, it follows that

Csq C5q y y 0, C7Q C7g y v Q

APPENDIX C

Material parameters used in the calculations of this work are

m~

hh( 100)
m hh(111)
mu

a

C12

GaAs, „P
1.514+ 1.17x +0.19x

(77 K)
0.17—0. 103(1—x)
0.79—0.45( 1 —x )

0.67x +0.813(1—x)
0.14—0.048(1—x)
5.4505x +5.653 25(1—x)
0.08x +0.34(1—x)
1.414x + 1.19(1—x)

AlyGa1 „As

1.5076+ 1.247y
(77 K)

0.15y +0.067(1—y)
0.4785y +0.4082( 1 —y )

0.87y +0.813(1—y)
0.2079y +0.087 34(1—y)
5.66y +5.653 25(1—y)
0.28y +0.34(1—y)
1.25y + 1.19(1—y)

0.6398x +0.538(1—x) 0.53y +0.538(1—y)

In„6a1 As

0.324+0.7(1—x)+0.4(1—x)
(300 K)

0.0219x +0.067(1—x)
0.2631x +0.408 16(1—x)
0.4545x +0.813(1—x)
0.027x +0.0873( 1 —x )

6.0583x +5.653 25(1—x)
0.38x +0.34(1—x)
0.83x + l.22(1 —x)

0.45x +0.57(1—x)

InP

1.344
(300 K)
0.079
0.520 83
0.6329
0.122 54
5.8679
0.11

1.02

0.58

Units

eV

mQ

mQ

mQ

m0
A
eV

X 10"
cm

X10"
cm

m hh( 100)

Luttinger parameters are related to the effective masses as

1 1 1 1 1 1+ V22 m1h mhh( 1QQ)
' 4 m1h

1 1
V3 712 '

mhh(111)
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