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Landau levels in a band-inverted junction and quantum well
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The Landau levels pertaining to a symmetric band-inverted junction and quantum well are calculated
in the presence of a magnetic field parallel to the interface. It is shown that the effective band gap is
widened at the interfaces, the Landau eigenenergies vary nonmonotonically with distance of the orbit's
center from the structure interfaces and that these levels have a noninteger number of harmonic-
oscillator energy quanta. The Landau levels in the presence of a magnetic field perpendicular to the in-

terfaces are briefly discussed.

I. INTRODUCTION

There has recently been interest in exploring
magnetic-field efFects on III-V superlattices when the field
is oriented parallel to the interfaces. ' 9 Such a field is re-
ferred to hereafter as a parallel field. The motivation for
some of these superlattice experiments stems from the
premise that the corresponding Landau orbits are orient-
ed normal to the structure interfaces, and consequently,
depending on the orbit's center location and radius, elec-
trons are forced to tunnel through one or several inter-
faces of the structure. The associated cyclotron reso-
nance entails information about physical parameters of
this tunneling process, such as the barrier height,
effective inass, and epitaxial quality of the structure.
This magnetically driven electron motion also leads to
new high-field phenomena, such as saturation of the mag-
netoluminescence maxima energies' and cyclotron res-
onance, a decrease in magnetoresistance, and a two-
peak line shape of the cyclotron resonance. These phe-
nomena reflect the fact that at a high parallel field, the
lowest Landau orbits radii are comparable to the super-
lattice periodicity in the growth direction. As a result,
there is competition between superlattice band-structure
kinetics and the magnetic motion. This type of competi-
tion is absent in Landau levels associated with a magnetic
field normal to the interfaces (normal fields). The latter
entails orbits entirely contained to a single slab of the lay-
ered structure, and therefore pertain to a single band
structure.

This work explores parallel field Landau levels in struc-
tures unique to narrow-band semiconductors, specifically
the symmetric band-inverted junction and quantum well.
This choice of structures is motivated by our theme of ex-
posing basic qualitative features. To capture the essence
of band inversion, we consider the simplest structures: A
bulk band structure of two symmetric, strongly interact-
ing bands, which are band inverted across an interface
with no band offset. This bulk band structure and band
inversion are realized in the IV-VI semiconductors, '

and bear similarity to the situation in some II-VI and V-
V semiconductors, e.g., HgTe vs CdTe (Ref. 10) and Bi vs
Bi Sb, ,

' respectively. Band-inverted structures are

qualitatively difFerent from those studied before' in two
respects: (a) Band syinmetry. The Landau levels in the
III-V structures are determined by the barrier across the
superlattice interface. In contrast, in the symmetric-
band-inverted structures there is no barrier: The only
distinction across the interfaces is the band symmetry. (b)

Gap states. "' Unlike in III-V superlattices, band-
inverted structures support states with energy in the band
gap. They decay normal to the interface with a charac-
teristic decay length. These are the gap states. In the
presence of a parallel Geld, electrons tend to revolve nor-
mal to the interface in an orbit whose radius is in general
larger than the decay length. The competition between
the field stretching and the no-field confinement gives rise
to a negative-index Landau level.

The analysis of the chosen band-inverted structures ex-
poses the controlling parameters. A case in point is the
symmetric junction. We find in particular, that for Lan-
dau orbits centered on the interface, there is a substantial
net band-gap widening. This result may indicate possibil-
ities of tuning the band gap magnetically. Also, the
dispersion relation Eq. (3A) shows explicitly the two con-
trolling diinensionless parameters: The ratio of the
band-gap energy and the cyclotron energy, and the ratio
of the orbit's center distance from the interface and the
magnetic length. ' These parameters characterize the
physical regimes of the underlying phenomenon, i.e., the
interaction of a Landau orbit with an interface. A partic-
ularly interesting regime is when both parameters are
= O(1). This corresponds to the high-field regime men-
tioned above, when the band gap and cyclotron reso-
nance energy are comparable, as are the Landau orbit ra-
dius and the layered structure length scale.

To evaluate the Landau orbit interaction with two
band-inverted interfaces, we consider a quantum well. As
is shown below, the second interface reinforces features
observed for the junction, in particular the band gap
widening at the quantum we11 center.

The paper is organized as follows: In Sec. II the basic
equations and formalism are spelled out. Section III is
devoted to the symmetric band-inverted junction and
quantum well. Section IV is a discussion and summary.
For the sake of self-containment we derive the wave func-
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tions for a normal field in the Appendix. These states do
not appear in the literature. ' ' In analogy to similar

states in optics, this derivation highlights the evanescent
character of gap states. EG

X, E X, E

II. BASIC EQUATIONS
(+) (+)

2
+ V —ikcyk a
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The bulk band structure under consideration is
comprised of two symmetric, doubly degenerate, interact-
ing bands at the L point of a cubic lattice. Accounting
only for a single isotropic valley, the effective-mass ap-
proximation Hamiltonian 80 for the envelope function is
given by'

(b)

FIG. 1. The band structure and chosen coordinate system for
the symmetric junction and quantum well. Interfaces are
delineated by bold lines, and the z axis is normal to the inter-
faces. (a) Indicated are the band symmetries L6+) for a IV-VI
semiconductor band-inverted junction, the energy gap EG, the
magnetic field 8 chosen parallel to the x direction, and the A
and 8 domains. (b) The quantum-well configuration. The band
symmetries are abbreviated by (k), the well thickness is d, and
the domains are A, 8, and C. The magnetic field (not indicated)
is as in (a).

where EG is the band gap, V is a chosen energy reference
point, c is the speed of light, o =(~„,u, o, ) is the Pauli
matrices vector, and

+0(k~k)(y(k;E)) =E(y(k;E)), (2 4)

k= —iV', y=
' 1/2

2m *c
(2.2)

In (2.3), k=(k~pky7kz) is the momentum, and the spinor
(y(k;E)}satisfies

In (2.2), m ' is the effective mass, and the k operator per-
tains to momentum deviation from that of the L point.
The effective Hamiltonian (2.1} is identical to the Dirac
Hamiltonian, "provided that c *=yc is interpreted as the
effective speed of light, and the electron-hole band gap is

EG =2m*(c') . Unlike the Dirac Hamiltonian, however,
the band gap can be negative in an inverted semiconduc-
tor.

Note that the band coupling in (2.1) is strong: Typical
parameters for IV-VI semiconductors are' Acy =2 eV

A, EG =0.2 eV, the lattice constant is a =6 A and the
momentum deviation from the L point is of the order
k =em. /a, where e((1. These yield for the off-diagonal
element of (2.1) Acyk =e eV, which is of the order of the
diagonal element EG /2=0. 1 eV.

To establish notations, the choice of coordinates, and
an equation base line, first consider bulk solutions of (2.1).
It can be verified by inspection that the four eigenspinors
of (2.1), with eigenenergy E, have the form

(2.3)

where the eigenenergy E satisfies the dispersion relation

A, (E)v(E)
(A'cy )

EG
A(E) =E—V—,v(E) =E—V+

2
'

2

(2.5)

(q(r))I.. .=(+(r)) I,,„, (2.6)

where (V(r) ) is a four eigenspinor, Eq. (2.3), and e~O.
A static magnetic field is incorporated into (2.1) by the

standard substitution (in the cgs unit system)

k~k+ A(r), B=VX A(r) .
Ac

(2.7)

In particular, for a parallel field in the x direction [Fig.
1(a)], the electromagnetic vector potential A of (2.7) is
chosen as A(r)=(0, B„z,O). A four b—ase eigenspinors
of(2. 1) are

and the transversal momentum is k, =(k„,kp). Each of
the positive and negative eigenenergies (2.5) are doubly
spin degenerate (see the Appendix) and the spectrum is
symmetric around E= V.

For a layered structure the effective-mass approxima-
tion must be supplemented by boundary conditions. '

Since (2.1) is of first order, the boundary condition across
a planar interface at z =zz [Fig. 1(a)] is"' '

iXcy
P&g p -1(P)

l
i&2Dp(g}
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2

H

and the pertaining dispersion relation for the eigenenergy
Eis

gg+2p = ia
Acy

'2

A,(E)v(E), (2.9)

where p is determined by the boundary conditions (see
below}. The symbols in (2.8) and (2.9) denote the follow-
ing: y=sgn(B„) = El indicates the direction of the mag-
netic field, where y = 1 corresponds to a field pointing in
the positive x-axis direction; lH=+(Pic/~eB„~) is the
magnetic length' which is a measure of the lowest Lan-
dau orbit extension; g=x/lH, y&=lHk„are the dimen-
sionless x coordinate and momentum; and zo is the dis-
tance of the Landau orbit center from the interface.

The functions Dp(+g) are known as the parabolic
cylinder functions. ' 0 They constitute two indepen-
dent, nonorthogonal solutions of the harmonic-oscillator
equation:

d2 g2

diaz

4, Pz + — Dp(g) =(p+-,')Dp(g), (2.10)

Dp(g)-e '& 'P for g~ ao,

D (g)-e-'~'"'P+C ror gp p p( gp+1

(2.11)

where the p index is in general complex. Since the
eigenenergy E is a real number it follows from (2.9) that p
in {2.8) must be real. Note that not all eigenspinors (2.8)
are mutually orthogonal, though all are independent solu-
tions.

The two solutions D (kg) obey different boundary
conditions at ~/~~DO: D (g) converges at gazoo and
diverges at g~ —00, except for p=0, 1,2, . . ., when it
converges at g~S ao

where C is an uninteresting constant. Similarly,
Dp( —g) converges for g~ —~ and diverges at gazoo
for p%0, 1,2, . . . .' When (p~ &&(g~ and p (0 it fol-
lows

Dp(kg) = K2 +Q p ($/2)g
p/2

1 —pr

{0}eTY —P —(I/2)g
P (2.12)

To demonstrate how boundary conditions determine p,
consider the bulk solutions (2.8) with boundary condi-
tions of decaying solutions at g~+ oo. From (2.11), and
the fact that 1/I'( —p)=0 for p=0, 1,2, . . ., it follows
that this boundary condition can be satisfied only for
p=n =0, 1,2, . . . . Hence the textbook one-dimensional
harmonic-oscillator solutions, where D„(g) is related to
the Hermite polynomial. ' In this case, four solutions
(2.8) reduce to two spin-degenerate solutions. The excep-
tion is when n=0 which is nondegenerate since only
(%(r))z (or its bar counterpart) is a valid solution (also see
the Appendix}. This exercise implies that whenever the g
domain is bounded, as in the examples below, the p index
is noninteger.

III. BAND-INVERTED JUNCTION
AND QUANTUM WELL

To study the interaction of a bulk Landau orbit elec-
tron with an interface, we examine two structures, viz. , a
junction and a quantum well. In keeping with the theme
of identifying qualitative features, it is assumed that
EG{z) and V{z) are constant for each domain; hence spi-
nors (2.8) are eigenfunctions in each domain. We also as-
sume for simplicity that y(z)=y, which is reasonably
satisfied for IV-VI semiconductors. '



10 396 D. AGASSI 49

Since the structures under consideration are transla-
tionally invariant in the x and y directions (Fig. 1), the
corresponding momenta k and k, and hence y& and zo
of (2.8), are conserved quantities. In contrast, the p index
in each domain is in general not a conserved quantity.

A. Band-inverted junction

The simplest configuration involving an interface is a
junction, e.g. , Fig. 1(a). The corresponding boundary
conditions are of decaying solutions on the A side at
g(z) —++ ~, and at g(z) —+ —~ on the 8 side. Accord-
ingly, (2.8) and (2.11) imply the following solutions on
each side of the junction:

(4 z (r) ) =R z (%&(r))+Tz (%z(r) ),
(4z(r)) =Rz(~P&(r))+Tz(~P2(r)),

(3.1)

2

Acy
y(+2p =0

w,'+'„(g,g)
—= w(p)

E 1

EG 4

=Dp )(g)Dp( g)+Dp )( —g)—Dp(g)

&z~
p I( —p)

(3.3)

The symmetric junction dispersion relation (3.2) is a
key result of this work. It exposes the two controlling pa-
rameters go=/(0)=(&2)zo/IH and Q. The first deter-
mines the degree of the Landau orbit intersection with
the interface, and the second is a measure of the strength
of the orbit-interface interaction when an intersection
takes place. Consider first the latter. Inserting the ex-
pressions for the cyclotron frequency of an electron gas, '

co, = ~eB}/(m ~c ), the magnetic length lH and y [Eq.
(2.2)], one obtains 0=2~EG~/(iiico, ). Thus in the Q&&1
regime, electrons are considerably more easily excited be-
tween Landau levels than across the band gap. Hence in

where the eigenenergy E and the R and T coefficients are
determined from matching the boundary conditions (2.6)
at zr =0. Straightforward manipulations yield the disper-
sion relation, which together with the bulk dispersion re-
lations (2.9) on sides A and 8 constitute three equations
for p~, pz, and E for given zo and g&. This dispersion re-
lation is too complex to offer insight, and therefore fur-
ther simplifying assumptions are introduced. In particu-
lar, to isolate effects of band inversion, we consider a
symmetric junction depicted in Fig. 1(a), where
~EG( A)

~

= ~EG(8)
~
=EG, and V„=Vz =0, and hence

(2.9) implies that p„=pz —=p. In the absence of band in-

version, i.e., EG(A)=EG(B), the junction reduces to a
bulk semiconductor which is of no interest. For the non-
trivial case of a band-inverted junction, when
EG(A)= EG(B), the—dispersion relation takes the sim-

ple form

QD, (go)D (go)D, (
—go)D ( —go)+2pW (p) =0,

(3.2)
where

this regime the junction's Landau levels deviate only
slightly from those of the bulk. Large deviations from
bulk levels are expected for Q= 0(1—10), when magnetic
and electronic transitions compete. This regime corre-
sponds to the strong-field regime. ' The second control-
ling parameter in (3.2) is go, i.e., the ratio of the orbit s
center distance from the interface, and the lowest Landau
orbit extension lH. Thus go»1 implies that the lowest
Landau orbits do not intersect the interface, hence the
corresponding levels resemble bulk Landau levels regard-
less of Q. Deviations from bulk Landau levels are expect-
ed for go-—O(1), and in particular for (O=0, when the or-
bits straddle between the two sides of the junction.

Before considering solutions of (3.2), two important
limits can be analyzed analytically. First consider orbits
centered at the interface, i.e., when zo=go=0, and take
y-=0. For p &0 solutions, both terms in (3.2) are non-

negative; hence to satisfy the dispersion relation both
must vanish individually. Noting from (2.12) that
Dp(0) =(&(n ))2p~ /I ((1—p)/2), ' both terms vanish

only for p =1,2, . . . , with the conspicuous absence of the

p =0 Landau level. This is tantamount to a band-gap
widening at the interface. The band-gap widening, re-
gardless of the parallel field strength and existence of a
barrier is unique to the band-inverted junction. It is in-

terpreted as reflecting the extra energy it takes for
a circulating electron to cross into a band-inverted
domain. To estimate the effect, assume typical narrow

gap semiconductor parameters EG =0.15 eV, and
A'cy =2.76 eV A (for m '/mo =0.1). For a field of
8 =10 T, the band-gap widening from Eq. (3.3) is

&EG =2~EG (Q( —,'+2/II) —
—,
' ) =0.036 eV, i.e., about

20% of the no-field band gap. For a smaller band gap
and effective mass, the relative band-gap widening in-
creases dramatically.

For p &0 solutions, the two terms in Eq. (3.2) contrib-
ute, resulting in a single solution at p = —Q/8, which, by
virtue of (3.3), corresponds to an eigenenergy E =0 at the

gap center. This is the gap state, "' ' which is an exam-
ple of a negative-index Landau level. Its physical content
becomes clear by considering the no-field (or normal field)
configuration in the Appendix: As (A10) shows, the gap
state is an evanescent state, of the type encountered in
optics. It decays normal to the interface and has no
nodes. '

It is instructive to examine the decay length for zo =0,
when ~p~=Q/8&&~(~. In this case, Eq. (2.12) yields
D (g) =exp( —z /A, s ), where the decay length in the pres-
ence of the field is A,z '=[&(—I+0/4)]/lH. Compar-
ing this to the no-field decay length [Eq. (A13)]
ko '=EGI(2ficy)=&(0)/(2lH), we see explicitly the
parallel field-stretching effect, mentioned in Sec. I, in that

The above estimate indicates that for
A~O(10) this effect is appreciable. The numerical re-
sults below corroborate the stretching effect for the other
zo values. Note that the parallel field effect on gap states
is opposite to its confinement effect on conduction and
valence no-field states.

The other analytic limit of (3.2) is that of Landau or-
bits centered far from the interface, i.e., when ~go~ ~~.
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These orbits do not intersect the interface, and hence are
expected to resemble bulk Landau levels. Indeed, em-

ploying the asymptotic expansion g. 1 1), it follows that

lim D (g)D ( —g)= +Czar~&e
Ci 2

P'( —p)
(3.4)

Consequently, for ~g~ &)1 the first term in (3.4} dom-
inates, and only p values near nonzero integers are solu-
tions for (3.2}.

Having analyzed (3.2) in two limits, it is instructive to
solve it numerically for p(zo). We consider a case
when EG =0. 1 eV, and B=6 T, which yields

IH =257/(V(B [T]) ) A = 105 A, and Q = 14.56. As dis-
cussed above, this 0 value is sufBciently small to expose
competition between electronic and magnetic transitions,
and IH is not too large to render numerical calculations
excessive. The results are given in Fig. 2. Since all Lan-
dau energies emanate from the same Hamiltonian, the en-
suing eigenenergies do not cross, barring incidents of ac-
cidental degeneracy.

To discuss Fig. 2 consider first zo= —300 A, which is
characterized by ~zo ~

)&lH. Since in this case the lowest
orbits do not intersect the interface, we expect to recover
the lowest bulk Landau levels. Indeed, the p =0 level is
slightly negative and nondegenerate, the p =1 levels con-
stitute a slightly split doublet, the p =2 doublet splitting
is larger yet, and the next-higher Landau level cannot be
identified unambiguously. The doublet splitting
represents the lifting of the bulk Landau-level degeneracy
by the orbit interaction with the interface. To corro-
borate this interpretation, note that the estimated orbit
radius is' r =1.414(p+0. 5)lH. For the p =0 and 1 lev-

0
els, the radii are 74 and 222 A, respectively, considerably
smaller than zo', hence the small shift and splitting. The

p =2 Landau orbit, on the other hand, has an estimated
radius of r~ =371 A) zo, resulting in an interface inter-
section and a large doublet splitting.

As zo decreases, interface-orbit interaction sets in. We
discuss separately the p &0 and p (0 levels. The latter
gap state is monotonically decreasing toward the value

p = —Q/8= —1.82 at the interface. The sharp drop at a
distance ~zoo =200 A (Fig. 2) signals the onset of orbit-
interface interaction for the gap state. The fact that this
interaction starts at zo considerably larger than the no-
field decay length (k, )

' = (2ficy ) /EG ——55 A (A13)
reflects the stretching effec of the parallel field, discussed
in Sec. I. The p 0 Landau levels vary with zo quite
differently. Note first that the splitting of the doubly de-
generate levels increases with decreasing zo, with one lev-
el moving down in energy and the other slightly up. This
trend cannot continue with decreasing zo since different
levels repel each other. As a result the Landau energies
vary with zo nonmonotonically, going up and down,
thereby giving rise to minima and maxima at different
distances from the interface. This pattern implies mag-
netically induced carrier redistribution with regard to
distance from the interface. This phenomenon is likely to
be reflected in observables such as magnetoresistance.

A3
I

50 Z (A)

-2—

FIG. 2. The calculated lowest p(zo) curves for a symmetric
band inverted junction, Eq. (3.2). The parameters are 0= 14.56,
and IH-—105 A, corresponding to EG=0. 1 eV, m /ma=0. 1,
and 8=6 T. The plots, symmetric about z0=0, are displayed
primarily for the range zo 0 A. The corresponding eigenener-
gy is given by (3.3).

The accidental degeneracies at z0=0 of the p=1,2, . . .
levels are unique to the symmetric junction.

For a nonsymmetric junction, a similar level structure
is expected, though one which is more complex. A case
in point is the symmetrically aligned junction where
V„=Vs =O' . Subtracting the dispersion relations (2.9)
on both sides of the junction gives

pa pw
=

'2
la

[EG(A)—EG(B)] .
2Acy

(3.5)

B. An inverted quantum well

The motivation for considering a quantum well is to
find out how effects encountered for a junction, such as
the effectiv band-gap widening at the interface, are
modified when the Landau orbit interacts with two inter-
faces. Results for the quantum well, combined with those
for the junction, yield insight into the more complex ease
of a superlattice.

In the vein of focusing on key qualitative features, we
consider a symmetric inverted quantum well, Fig. 1(b},
wh«e EG( A) = EG(B)=EG(C) =EG—, and V„=V~
= V&=0, and therefore the p inde' is conserved. Tedi-
ous algebra yields the dispersion relation

Relation (3.5) implies Landau levels where the p index
has opposite signs on both sides of the junction, in addi-
tion to levels for which the p indices have the same sign
on both sides of the junction. The latter are already
present in the symmetric junction. The former arise
when the Landau-level energy at the interface is smaller
than the band ofFset. These Landau levels are interpreted
as skipping states, ' ' with a cycloidlike trajectory on one
side of the junction, and a Gaussian decay on the other
ssde.
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go ) p —i,p —1(go, d)Dp( —
gg)Dp )( —g~)D (go)D )(g )

+ pQII (p)[ 2D~( —gg)D~, (
—g~)D (go)D, (go)

~o p(0o) p —i(0o)+D~( gy)D~ t( —gq)D (gz)D, (gz)]+(2p~ 2( ))2=0 (3.6)

where the anti-Wronskian [compare with (3.3)] is defined
as

~~ ~
'( go, gg ) =Dp (go)Dp (

—
g~ )

—D ( go)D—( g~ ) .

(3.7)

The symbols in (3.6) signify the following: Q and
W(p ) are defined in (3.3) and gz

—g(z =d )

=((&2)/lH )(zo —d). Note that the thickness enters only
via the variable g~, which involves the distance of the
second interface from the Landau orbit center zo. The
dispersion relation (3.6) is solved for p, and the ensuing
eigenenergy is obtained from the dispersion relation (3.3).

Before discussing numerical solutions of (3.6), we
check two analytic limits where physical arguments im-
ply the expected result. The first is the limit of an
infinitely thick quantum well, namely d —+ ~ and finite
zo. In this limit we expect to recover the symmetric junc-
tion dispersion relation (3.2}, since d ~~ implies that
Landau orbits can intersect only the z =0 interface. In-
serting the asymptotic expression (2.11) for the
dependent terms in (3.6} yields that the leading terms are
the second term in the square brackets, and the last term
in (3.6). Their sum is exactly the left-hand side of (3.2),
multiplied by a factor, diverging as gz~ce; hence the
dispersion relation (3.2) is recovered.

A second analytic check of (3.6) pertains to the gap
states. Their no-field dispersion relation is known' and
should be obtainable from (3.6) in the weak-field limit. In
the 8~0 limit, it follows from (3.3) that
b, =(&2)d/lH —+0, Q~ oo, and p~ =O(Q) and is nega-
tive. Consequently the asymptotic approximation (2.12}
applies. Inserting it in all terms of (3.6) yields

inverted interfaces. Another feature is that the acciden-
tal level degeneracy at zo =0 encountered for the junction
(Fig. 2) is broken in the presence of the second interface.
Outside the quantum well, the Landau levels behave
much like those of the junction (Fig. 2), except that local
minima positions are shifted and accentuated. This cor-
roborates the comment above that a parallel field induces
considerable carrier redistribution.

To elaborate on the thickness dependence, in Fig. 4 we
calculate the Landau levels for two zo values and a vari-
able thickness. Consider first Fig. 4(a}, depicting the case
of orbits whose centers are located at the left interface of
the quantum well. When d ))lH, e.g., at d =300 A, the
levels pattern is that of a junction: A gap state, the miss-
ing p =0 state, and higher doubly degenerate levels. As d
decreases, at about d =2lH (d =200 A) the lowest orbit
begins to intersect the second interface, resulting in two

gap states. As d keeps decreasing, at the extreme of
d « lH, electrons in Landau orbits spend most of their
time in the same band-structure environment, and hence
bulk Landau levels emerge. This trend is manifested in
the upturn of the gap states at small d. In Fig. 4(b) the
lowest Landau levels at the well's center are calculated.
The interesting feature is the band-widening maximum at

0 0
d = 150 A, where l~ =105 A. This value represents a sit-
uation where the lowest p )0 orbit is spread between the
inside and outside of the quantum well.

IV. DISCUSSION

As has been shown above, two important manifesta-
tions of band inversion are the band-gap widening at the
interface, or equivalently, the absence of the p =0 Lan-
dau level, and the gap states in the band gap. The band-

4p(1+coth[b, v' —p ])+Q=0 . (3.8)

This is the correct dispersion relation' with the substitu-
tions 2p~lHk, from (2.9), and k, =iK, for —a decaying
gap state. Note that the d ~ co limit of (3.8) yields the
value p= —Q/8, which transcribes to a decay length
~k, ~ =2Rcy/EG This is the .correct result since, in the
regime where d exceeds the gap states decay length, the
two interfaces do not interact and hence the one-interface
(junction) result is expected.

Figures 3 and 4 depict the calculated p(zo) curves from
(3.6) for a quantum well with the same parameters as the
junction in Fig. 2. In Fig. 3, zo is varied, while the we11

thickness is fixed at d =18.Consider first the Landau lev-
els inside the well. Note the two gaps states and an
enhancement of the band-gap widening in comparison to
that in Fig. 2, in particular at the well center. This
enhancement is interpreted as resulting from the extra
energy it takes for an electron to traverse two band-

zo (A)

-2—

FIG. 3. The calculated lowest p(zo) curves for a symmetric
quantum well, Eq. (3.6). The parameters are as in Fig. 2, and

0
the thickness is d=100 A=1~. The plots, symmetric about
zo =d/2, are displayed for the range zo ~ d.
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Zo, =d/2

25 50
=d (A)

00 50 100
' =d (A)

00

FIG. 4. Same as Fig. 3, except that zo is
fixed at the values z0=0 and d/2 and the well

thickness is varied.

-2-I

(a)

-2-

gap widening effect is substantial: For typical parameters
of narrow-band semiconductors' (EG =0.15 eV and
m*/ma=0. 1), a field of 10 T induces a relative band-gap
widening of the magnitude b EG/~EG ~

=4/0=0. 2 and is
linear in the applied field [see Eq. (3.3)]. This amount of
band-gap widening is comparable to that observed in di-
luted magnetic semiconductors (DMS) such as

Hg& „Mn Te. The underlying mechanisms, however,
are quite different: In a band-inverted structure the
band-gap widening is an interface phenomenon, due to a
specific symmetry variation of the band structure,
whereas in DMS band-gap widening is a bulk
phenomenon resulting from a magnetic exchange interac-
tion between magnetic impurities and conduction car-
riers. We expect that one manifestation of this difference
is the temperature dependence of the band-gap widening.
In inverted structures, the band gap is expected to in-
crease with temperature, provided 0 is kept fixed, follow-
ing the increase of EG. ' In DMS, the temperature effect
is to reduce and saturate the band-gap widening.

Another consequence of band inversion is the forma-
tion of Landau-level energy minima at a distance from an
interface. A case in point is the lowest p & 0 Landau level
in Fig. 2. Note that in the absence of band inversion such
minima are considerably shallower. ' ' There, the p=0
Landau level at large zo maintains its p value at zp —0,
and hence for intermediate zo, the zo variation is expect-
ed to be shallow.

The Landau levels for a parallel field studied here differ
in several important respects from those associated with
a field normal to the interfaces, which are derived in the
Appendix. The basic difference stems from the different
types of motion in both cases: For a normal field, elec-
trons do not traverse through an interface, whereas for a
parallel field they traverse several band-structure environ-
ments in the course of a revolution. One manifestation of
this difference is that for a normal field the Landau
eigenenergies are constants, whereas for a parallel field
they depend on the orbit distance from interfaces in the
structure. Another manifestation pertains to the gap
states. For a normal field the gap states obey the disper-
sion relation [Eqs. (All) and (A13)] Es,~=khcy~k, ~,

where k, =(k„,k ), and decay exponentially away from
the interface with a decay length ~k, ~ '=2ficy/EG. For
a parallel field, gap states do not obey a linear dispersion
relation, e.g., Fig. 2, and the wave function decays as a
Gaussian with a decay length larger (stretched) than the
no-field value.

The validity of the underlying effective-mass approxi-

mation (EMA) may be questionable for strong fields, i.e.,
when lH «d, when the granularity of the structure is
probed. ' While it is difficult to assess the degree of the
EMA failure, note that our analysis and examples, e.g.,
Fig. 3, pertain to modest excursions out of the regimes of
validity.

The present system bears some similarity to recent ex-
periments on magnetotunneling of electrons through the
interface of He4 and air, in the presence of a parallel
field. In particular, the observed strong-field depen-
dence of the tunneling probability may have an analog in
the structures considered here. For the example of a
quantum well (Fig. 3), the Landau-level zo variation
forms a magnetically controlled barrier. As the field
varies so does the barrier height, and hence also the
Fermi-level position with respect to the barrier height.
As a result, the exponential dependence of the tunneling
probability on the barrier-Fermi-level energy distance
implies a strong dependence of the former on the paralle1
field.

In summary, the Landau levels for a symmetric junc-
tion and quantum well have been calculated. This type of
Landau level has a noninteger number of energy quanta.
The analytic formulation of these systems exposes the
controlling physical parameters: The ratio of the gap en-
ergy and cyclotron frequency, and the ratio of the mag-
netic length and the other length scales in the system.
Band inversion gives rise to unique features, such as
band-gap widening at the interface, pronounced minima
in the Landau-level energies as a function of the distance
from interfaces, and negative index Landau levels associ-
ated with gap states.
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APPENDIX

In this appendix we derive the eigenfunctions for an
abrupt junction in the presence or absence of a magnetic
field perpendicular to the interface. The principal pur-
pose of the present derivation is to demonstrate the
evanescent character of the gap states, "' and thereby
clarify their physical content. The derivation comple-
ments existing discussions of the gap states by explicitly
constructing the band states.

For a magnetic field B=(0,0,8, ) (Fig. 1) and elec-



10 400 D. AGASSI 49

, c, (U)g„ t(g)+c2( V)Q„(g)

c,(U)11„,(g)+c,( V)tl „(()
1+q) 1 1 —y'"

2 1+m

g= (xo+x ) /lH, xo = qk~lH

(Al)

tromagnetic vector potential A(r)=(O, xB„O) in (2.7),
the bulk four eigenfunctions are

breaks the translational invariance in the z direction.
The ~ degeneracy and the n quantum number, on the oth-
er hand, are conserved by the boundary conditions (2.6).
Consequently, the conduction- and valence-band states
can be readily constructed as combinations of reflected
and transmitted waves, sharing the same ~g&~. With
~R „B 1, and transmission coefficients satisfying
T~ ~ = 1+R„~,we choose for the band states

where p=sgn(B, ) =+1 is the orientation of the magnetic
field (q = 1 corresponds to a field pointing along the posi-
tive z axis}, y&=IHk, [Re(y&}~0] and g=z/1H are the
dimensionless z momentum and coordinates, and —xo is
the center of the Landau orbit. The harmonic-oscillator
functions p„(g) satisfy the canonical equation2o

('PB)=e ' [TBe t (P)],

(O'A )=e ' [TAe ~ (a),

(VB }=e ' [RBe ~ (P)+e ~ (P)],

(A7)

d2
+(2 g„(g)=(2n+1)lit„(g), n =0, 1,2, . . . ,

d 2

(A2)

and the corresponding bulk dispersion relation is

y(+2n = lH

Acy
A(E)v(E), n =0, 1,2, 3, . . . . (A3)

The non-negative integer n values in (A3) are dictated by
the boundary condition of decaying solutions at g~+ ~
(see Fig. 1).

The spinor coefficients in (Al) satisfy the matrix equa-
tion

C)

—
A, (E)I ificyk„o —cz

(c)( )=(c)(r,k„(A)}, (c)(,)=(c)(r,k„(A)),

k„(A)= (0, &2n, yy((A)),
1

=lH

k„(A)= (0,&2n, —py(( A)),1

H

(A8)

The R and T coefficients are determined by matching
the boundary condition (2.6) across the interface. This
gives, e.g., for the A-side the equations

R qa2+Rqa)+a0=0,

az=q„[k„(A}k„(A}]+qB[k„(B)k„(B)]

where the basis spinors in (A7}, e.g. , (a), (a), correspond
to A-side spinors of the form (A 1), with c eigenspinors of
the form (A4) and

i Acyk„o v(E)I—C3

C4

=0 —2qAqB[k„(A) k„(B)],
a, =2[qA[k„(A) k„(A)]+qB[k„(B)k„(B)]

k„=( 0, &2n, q)y(),

which has the following symmetry. "

0

(A4)

ao=q„[k„(A}k„(A)]+qB[k„(B)k„(B)]
—2q„qB[k„(A) k„(B)],

(A9)

[B„f']=0, f'=
0 —o, (A5) Acy A RcyB

TB —1+R„, qA —,qB—
and Ho is the matrix in (A4). Consequently, the (c)
eigenspinors are eigenvectors of (A4) and the T operator
in (A5). This leads to the form

C)

C2

In this scheme, where conduction- and valence-band
states are combinations of interface-reflected and
interface-transmitted waves, evanescent waves are solu-
tions without an incoming-wave source term, i.e., from
(A7)

C3
= (c)(r,k„)= R~ =R~=O . (A10)

C4
(k„.o ) Condition (A10) implies that a0=0 [Eq. (A9)], which

yields the dispersion relation
r=+1, n =1,2, 3, . . . . (A6)

Note that (A6) implies that the n&0 eigenspinors are
doubly ~ degenerate, in addition to their +y& degeneracy
[see (A3)], while the n =0 eigenspinor is not r degenerate.

The effect of an interface at z=zr on the bulk states
(A6) is to lift the +y& degeneracy, since an interface

(~AVB ~BVA
2fic i(k, )„ i

=
(~AYB LIBYA)( AyB ByA

(A11)

where A. „~ and v~ z are the A side and 8-side constants
defined in (2.5). This dispersion relation is precisely the
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dispersion relation for the gap states, "' generalized for
an arbitrary junction.

The above discussion is readily transcribed to the limit
of no magnetic field. The bulk solutions in this case are
of the form

Ci

where the c eigenspinors in (A12) are given by (A6), and
(A7) —(A 1 1) remain valid with the substitution

(k„),=(0,&2n )/PH~k, =(k„,k ). In particular, the

gap states dispersion relation (All) can be expressed in
the equivalent form'

C3

C4

(A12)
(A13)
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