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We investigate theoretically the intrasubband collective plasmon modes and the optical transmission
in a specially constructed semiconductor superlattice consisting of n- and p-type doped semiconductors
separated by an undoped intrinsic (i) semiconductor. The thicknesses of the constituent layers are ran-

domly distributed in accordance with a designed probability, and all of them are assumed to be
sufficiently large so that the quantum-size effect can be ignored. The materials of the layers are charac-
terized by frequency-dependent dielectric functions. The discontinuity at the interfaces is dealt with by
using the transfer-matrix method. The calculation of dispersion relation and optical transmission shows
that in varying the degree of thickness randomness, the frequencies of the plasmon modes only exhibit
small shifts, but the transmission coefficients are changed. A particular random structure is found in

which some modes of electromagnetic waves with special frequencies are completely unscattered by the
randomness, whereas the other modes rapidly decay. This provides a possibility of building a high-

quality optical Slter.

I. INTRODUCTION

In the past decade, the physics of the artificial semicon-
ducting heterostructures and superlattices has attracted a
great deal of interest. ' The electronic, transport, and op-
tical properties of periodic semiconductor superlattices
have been systematically studied in both experimental
and theoretical works. The motivations are in their
possible applications as useful new devices. It has been
shown that such materials have band structures, different
from their parent ones, and possess unusual electronic
and optical properties. In recent years, the artificially
constructed aperiodic layered structures have also at-
tracted much attention in investigations. These include
the quasiperiodic systems and the systems with randomly
distributed layer thicknesses. For a given wave-vector
component parallel to the layers, the propagation of
waves along the perpendicular direction is just like the
motion in a one-dimensional (1D) aperiodic system. It is
found that the states in a 1D ~uasiperiodic system have
exotic Cantor-set-like features. At the same time, in a
10 disordered system, most of the states are localized, as
indicated by scaling theory, but for special disorder
types, there exist particular extended states. ' The
random-thickness layered structure provides another pos-
sibility of producing new devices. In recent experiments,
several interesting optical properties have been observed
in semiconductor superlattices with random layer
thicknesses. ' ' "

The knowledge of collective excitations is of fundamen-
tal importance to the understanding of the electronic and
optical properties in layered structures. In recent years,
the collective plasmon polaritons in periodic semicon-

ducting superlattices have been studied extensively. '

The magnetoplasmon polaritons in a binary superlattice
were studied by Wallis, Szenics, Quinn, and Giuliani. '

Farias, Auto, and Albuquerque considered the propaga-
tion of bulk and surface modes in this structure with car-
riers strictly confined to the interfaces. ' Johnson and
Camley have generalized the theory of magnetoplasmon
polaritons in semi-infinite superlattices to include propa-
gation in arbitrary directions with respect to a magnetic
field parallel to the interfaces, and to present results for
attenuated-total-reflection probes of these excitations. '

At the same time, the modulationally doped semiconduc-
tor superlattices, the n-i-p-i ones, were included in the
original proposal. ' Many works on the electronic and op-
tical properties of these materials have been pursued by
Dohler and Ploog. Recently, the intrasubband plasmon
modes in semi-infinite n-i-p-i superlattice were also stud-
ied by Kushwaha. '

There have been several theoretical works on the col-
lective excitations in random-layered structures. The
acoustic properties in such media were investigated by
Gilbert, ' and Levine and Willemsen. Johnson and
Camley have presented numerical examples demonstrat-
ing the e8'ect of varying the thickness of a single film on
the plasmon excitations in a finite binary superlattice. '

The aim of the present work is to investigate theoretically
the changes in the dispersion relations and the propaga-
tion of the plasmon polaritons due to introducing the
randomness of layer thicknesses in a n-i-p-i superlattice.
The layer thicknesses are random variables satisfying a
designed probability distribution, but all of them are as-
sumed to be large enough so that the quantum-size effect
can be neglected and the constituent layers can be de-
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scribed by macroscopic dielectric functions. By the use
of the transfer-matrix method, the dispersion relations
and optical transmission are calculated for finite samples
with different degrees of randomness. It is found that for
a specially designed random structure, several modes
with particular frequencies are completely unscattered by
the randomness, whereas the other modes rapidly decay.
This situation is similar to the existence of a small por-
tion of extended electronic states in special 1D disordered
systems, ' and makes it possible to build new kinds of
high-quality optical filters.

In Sec. II, we describe the structure of n-i-p-i superlat-
tices with randomly distributed layer thicknesses and the
transfer-matrix formalism used to obtain the dispersion
relations, and the propagation of plasmon modes in them.
In Sec. III, we present numerical results of dispersion re-
lations for several finite samples with different degrees of
randomness. In Sec. IV, the results of optical transmis-
sion are presented, and a special random structure for
realizing the high-quality filter is proposed. Finally, Sec.
V is devoted to summarizing and discussing the obtained
results.

II. STRUCTURE AND FORMALISM

The superlattice structure considered in this paper is
depicted in Fig. 1. Every unit includes four material lay-
ers: A, B, C, and D, which are, respectively, n doped, in-
trinsic, p doped, and intrinsic semiconductors. %e
denote the thickness of a layer by L;J, where
i ( =1,2, . . . , N) is the unit index (N is the total number
of the units), and J (=A, B,C,D) is the species index in a
unit. L,.J is a random variable; the system is thus a super-
lattice with randomly distributed layer thicknesses. In
this paper, we assume that the layer thicknesses of species
A, B, C, and D satisfy, respectively, four uniform proba-
bility distributions,

P(L;J)=
1/( Yq, —Y~2) for YJ, L;J Y~p

0 otherwise,

V X (V X E)—qoeE=O, (2)

where qo=m/c is the vacuum wave vector (co is the fre-

quency and c is light velocity) and s is the scalar dielec-
tric function for the medium. The plasma modes are as-
sumed to propagate in the y-z plane with wave-vector
components q and q„where z is the direction perpendic-
ular to the layers. Here, the dielectric function e(co) is
simplified by the symmetry requirements such that
c =c =c. =c. and c. =c. =c. =c. =c =c =0.xx yy zz xy yz yx zy xz zx

In this situation, Eq. (2) can be rewritten as

q e —
q

—q, 0 0

q02

qy qz

yqz Ey 0

qadi,
—

q

(3)

The dielectric function for the present medium is defined
as

Ct)p

e(co) =E( 1—
N

(4)

with J= A, B,C,D. A special thickness L,-J is then gen-
erated from a random-number generator according to
these distributions. The average layer thickness of
species J is ( YJ, + Y&2)/2, and the degree of randomness
is controlled by the value of JJ$ FJ2.

%e assume all the thicknesses are large enough so that
the quantum-size effect can be neglected. Thus,
the four material layers (J=A, B,C,D) can be de-
scribed by frequency-dependent dielectric functions cJ
(J= A, B,C,D), respectively. In the absence of the ap-
plied magnetic field, the general wave-field equation can
be written in terms of the macroscopic electric field E,

UNIT

FIG. 1. Geometry of n-i-p-i semiconductor superlattice with

randomly distributed layer thicknesses.

where cI is the background dielectric constant and co is

the plasma frequency of the medium concerned. From
the condition of existence of nontrivial solution of Eq. (3),
we have

—q,
' =—a'=qy' —qoe(co) .

The field solutions within layer Jof the ith unit can be ex-
pressed as

E (r, t)= [E",Jexp(a Jz)+E&'&exp( —azz) ]

Xexp[i(q y —cot)],

where J= A, B,C,D. Analogous field solutions can be
written for the magnetic field in the respective layers.
The standard electromagnetic connections at the inter-
faces between different layers are the continuity of the
tangential electric- and magnetic-field components E„,
E, B, and B„. In the absence of the external magnetic
field, only two conditions for these components are
su%.cient. As the procedure in Ref. 18 demonstrates, we
match the field components E and B at the interfaces.
%'e can further reduce the number of unknown ampli-
tudes by expressing B„ in terms of E . Then, we write
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the connection conditions at the four interfaces of the ith
unit as

1.0

M„(i)
~ A; ) =Ns(i) ~B; ) at z =d;+L;z,

Ms(i)~B; ) =Nc(i)~C;) at z=d, +L,&+. L;s,

(7) 0.8

~ ~

Mc(i)~C; ) =ND(i)~D; ) at z=d;+L;„+L;s+L;c, (9)

MD(i) ~D; ) =N„(i)
~ A;+, ) at z =d;+, , (10)

where d; is the z coordinate of the starting point of the
ith unit, ~J, ), where J=—A, B,C,D, are column vectors
defined as

(0
Ey

~Ji & E(i)
y2J

and M~(i) and N~(i) are 2 X2 matrices,

exp(azL;z } exp( azL;I}—

0.6-
M
M

O

a 02-
0

0
e ~

~0 ~ r r r r ~ r r r ~ ~ r ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ r r r

0.0 ).0 2.0 3.0 4.0
M~(i) =

nzexp(a JL,J ) —nzexp( ajL;I )— (12) D~~NSIONj[SSS VkVE VECTOR

N~(i) =

where

1 1

PlJ llJ
(13)

FIG. 2. Dispersion relation of plasma modes for sample with

Y1J= Y» =0.25 (J—= A, B,C), Y1D =0.45, Y2D =0.05, and
N=12. Layer thicknesses, frequency, and wave vector are di-
mensionless as defined in the text.

nz ez=/az, J= A, B,C,D, i =1,2, . . . , N . (14)

From Eqs. (7)—(10), we can see that ITr(T)l ~2 . (20)

where T; is a transfer matrix defined by

T =N„'(i)M n(i}ND '(i)MC(i}

XNc '(i)Ms(i}Ns '(i)M„(i) .

As the layer thicknesses are randomly distributed,
there is no longer a periodic symmetry for the system. If
a finite system, with N units, is attached to a single layer
of species A at its last unit, then we can regard this layer
as its (N+1)th A-material layer, and the amplitudes at
the two ends are related as

(17)

Since T is a function of frequency and wave vector, from
Eq. (20) we can calculate the dispersion relation of plas-
ma modes.

III. NUMERICAL RESULTS
OF DISPERSION RELATIONS

In this section we present the calculated dispersion re-
lations for samples with different degrees of randomness.

1.0

0.8

where

T=T~T~ )
. T) .

CF

0.6 i~ ~

In order to obtain the dispersion relations of bulk modes
for such a finite system, we look for frequencies where
corresponding solutions

~ A; ) do not grow exponentially.
This allows an imposed Bloch's ansatz to its ends such
a$22

~ A~+, ) =exp(ig)
~ A, ), (19)

where Q is the phase di8'erence of the two ends. If the to-
tal number of layers is large enough, such imposed
periodic boundary conditions have only a little influence
on the results, as have been indicated in the calculations
for the quasiperiodic systems. From Eqs. (17) and (19),
we obtain the condition for existence of nontrivial field
solutions as

:Al I

04-0
~~gg ~~

M ~ s yA

R M I
I S 2~

QCi

0.2-

000 ~ ~ ~ ~ ~ r l ~ ~ r ~ r r r i l r r ~ ~ r ~ ~ r ~ r r r r

0.0 1.0 2.0 3.0 4.0

~ Ail
~0

DRf&NSIONLESS %AVE VECTOR

FIG. 3. Dispersion relation of plasmon modes for sample
with YlJ=0.3, Y»=0.2 (J= A, B,C,D), and N=12.
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FIG. 4. Dispersion relation of plasma modes for sample with

Y&J =0.45 Y2J =0.05 (J= A, B,C,D), and N= 12.

FIG. 6. Field strength of electromagnetic wave at frequency
(=0.9 and wave vector (= 1 as a function of depth for the sam-

ple used in Fig. 3.

The mechanisms of the interplay between the fields and
the materials are sketchily described by the macroscopic
parameters co and e& in Eq. (4). The parameter values
used here are similar to those used in Refs. 18. The
dielectric constants for layers A, B,C,D are
E, (=a&„=e&~=sic=elD)=13.13, at the same time its
value in vacuum is 1.0. The hole density in layer A and
the electron density in layer B are the same, the effective
mass of the hole is twice that of the effective mass of the
electron, so that ro c=ro z/&2. The value of plasmon

frequency in the intrinsic layers is zero: co~z=co&D=0.
The results are plotted in terms of the dimensionless fre-

quency g = ro/ro z, the dimensionless wave vector
g=cq /cozen, and the dimensionless layer thicknesses

5(g =
copy L;g /C.

In Figs. 2—4, we plot the calculated dispersion rela-
tions of the bulk modes of the plasmons for finite samples
with different degrees of randomness in layer thicknesses.
The result in Fig. 2 is for a sample with regular
thicknesses of layer species A, B, and C, and thicknesses
of intrinsic layers D randomly distributed between 0.05
and 0.45 (in dimensionless units). The results in Figs. 3

and 4 are for samples with thicknesses of all the layer
species randomly distributed between 0.2 and 0.3, and be-

Cih

6.0 2.5 5.6 I.5 10.0 12.5
DaaaNSgpgt~S Dgr.rm

0.0 2.5 5.0 7.5 10.0 12.5
DIMIWSrONI =S Dm~

FIG. 5. Field strength of electromagnetic wave at frequency
/=0. 9 and wave vector g= 1 as a function of depth for the sam-

ple used in Fig. 2.

FKJ. 7. Field strength of electromagnetic wave at frequency
/=0. 9 and wave vector /= 1 as a function of depth for the sam-

ple used in Fig. 4.
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tween 0.05 and 0.45, respectively. The systems have the
same average values of layer thicknesses, but different de-
grees of randomness. Meanwhile, the total number of
layers are also the same. Because the periodic boundary
condition at the two surfaces of the system is used, the
obtained bulk bands represent the band structure of an
infinite system whose period is just the total thickness of
the finite sample. Thus, the total number of minibands is
almost the same for these examples, but they are gathered
together to form several separated groups. It can be seen
from the figures that in varying the degree of random-
ness, the frequencies of the minibands are only slightly
changed. This is consistent with the result reported by
Johnson and Camley, in which the plasmon dispersion re-
lation is insensitive to thickness variation of a single layer
for a finite structure. ' In the present case, however,
some gaps between the miniband groups are certainly
small, so the slight shift in frequencies of the minibands
due to variation of randomness may cause an evident
change in the structure of the gapa. Generally speaking,
when the randomness increases, the gaps between the
miniband groups become wider, and some isolated modes
appear. To further illustrate the effect of randomness, we
plot in Figs. 5-7 the field strength of a mode of elec-
tromagnetic wave at the frequency (=0.9 as a function
of the depth for the three samples. It can be seen that the
effect of randomness on the distribution of wave ampli-
tudes is not very evident in such finite systems; the locali-
zation peaks appear only when the degree of randomness
is very large (the third sample).

1.00-

0.80 "

0.60-

0.40-

0.20-

0.00
0.5

~ ~ I ~ ~ I 0 ~ ~ ~ I ~ ~ I 0 ~ I ~

0.6 0.7 0.8 0.9 1.0
D~NSIOlP~W FIHQUENCY

um. Since the continuity conditions for these interfaces
are described by the transfer matrix T, we have the rela-
tion

0
1=T (22)

FIG. 8. Transmission of electromagnetic waves through a
finite sample with Y» = Y» =0.25 (J= A, B,C,D), and N =12.

IV. OPTICAL TRANSMISSIONS

In this section we present some numerical and analyti-
cal results of the transmissions of electromagnetic waves
through such a random structure. We consider the finite
sample mentioned above imbedded in an infinite uniform
medium of species A (n-doped semiconductor). This
medium is divided by the sample into two semi-infinite
parts, denoted as part 1 and part 2. The wave vector of
the incident waves is still assumed to be in the y-z plane.
Thus, the field component in these two parts can be writ-
ten as

E (r, t) = [exp(iq, z)+r exp( iq, z)]ex—p[i(q„y cot)]—
for z~d, ,

(2l)
E (r, t)=t exp(iq, z)exp[i(q~y cot)] for—z ~d~+&,

where d, and dN+, are the two ends of the sample,
q =—(O,q~,q, ) is the wave vector, q, is given by Eq. (5), and
r and t are the amplitudes of reflective and transmissive
waves, respectively. The amplitude of the incident wave
is assumed to be unitary. Similarly to the above, the rela-
tions between these amplitudes can be obtained by using
the continuity conditions at the interfaces. As the uni-
form medium is of the same species as layers A, there is
no interface between the sample and the first part of the
medium. We only need to consider 4N interfaces, includ-
ing (4N —l) interfaces within the sample and an inter-
face between the sample and the second part of the medi-

From Eq. (22) and the fact that T is a unimodular 2X2
matrix, we obtain the transmission coefficient through
this sample as

(23)

O

1.00 I'

0.80-
C

0.60-

QAO-

0.20-

il i, L.
Qg00 ~ ~ ~ 0, I I ~ I I I I 0 ~ 0 ~ I I I ~

0.5 0.6 0.7 0.8 0.9 1.0

S~~mrON --S mmqmsSCV

FIG. 9. Transmission of electromagnetic waves through a
finite sample with Y»= Y»=0.25 (J=A B C) Y&D=0.45,
Y2,~ =0.05, and N= 12.
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a
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M
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0.5 0.6 0.7 0.8 0.9 1.0

D~~OPP=:9 PMQULNCY D&~NSIO&~&S FRIQUENCY

FIG. 10. Transmission of electromagnetic waves through a
finite sample with Y»=0.45, Y»=0.05 (J= A, B,C,D), and
N=12.

FIG. 12. Transmission of electromagnetic waves through a
finite sample with Y»=0.45, Y»=0.05 (J= A, B,C, D), and
N =4.

where Tz2 is an element of matrix T.
In Figs. 8—13 we plotted numerical result of the

transmissions for several samples with different degrees of
randomness and different numbers of total layers. The
result shown in Fig. 8 is the transmission for a finite regu-
lar sample. As in usual periodic systems, it exhibits a
band feature, the structures in the bands come from the
finiteness of the system. The results in Figs. 9—11 are for
samples where the randomness in layer thicknesses is in-
troduced. It can be seen that the transmission band" of
the periodic sample is broken by the randomness. When

the degree of the randomness increases, the effect is en-
larged. Figure 11 shows that the peaks are narrower for
samples with smaller average layer thicknesses. There
are still some modes that are nearly unscattered by a
large degree of randomness. This situation coincides
with the conclusion for the existence of extended states in
1D disordered systems. ' In the following, we will dis-
cuss it in detail in an analytic way. Figures 12 and 13
show the results for random samples with smaller num-
bers of total layers. It can be seen that curves become
smooth when the size of the system is reduced. The re-

a
I

I

M

1.00—

O.SO-

0.60-

OAO-

O&0-

, la0000 I I T 0 0 0 0 '~ l F W % ~ I ~ I W ~ T I I 0 f I I

0.5 0.6 0.7 0.8 0.9 1.0
Df~RWSIO¹~~8 FREQUENCY

0.10-

0.60-

M

OAO

0.20 "

le l.
Oo00 r w I ~ ~ e r e ~ i e ~ e e w I ~ r s e r w w

0.5 0.6 0.7 0.8 0.9 $.0

QllRRhPgogl~m gR~~~~
FIG. 11. Transmission of electromagnetic waves through a

finite sample with Y»=0. 14, Y»=0.05 (J= A, B,C,D), and
N= 12.

FIG. 13. Transmission of electromagnetic waves through a
finite sample with Y»=0.45, Y»=0.05 (J= A, B,C,D), and
N=8.
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T'"=NnMcNcM&N~M„N„Mn (24)

where M~ and N~ (J=—A, B,C,D) are given by Eqs. (12)
and (13) with definite layer thicknesses Lz, respectively.
The transfer matrix for a unit of m repeated periods is

T(m) [T(1)]m (25)

Because T"' is a unimodular 2X2 matrix, from a
theorem illustrated in Ref. 23, we have

T'™=u, (x)T"' —u (x)I, (26)

where I is a 2X2 unit matrix, x =Tr[T"']/2, and u (x)
is the mth Chebyshev polynomial of the second kind.
When

~
x

~

& 1, it can be expressed as

sin[m cos '(x)]
sin[cos '(x) ]

"m —i=

If M such units are randomly inserted into a uniform in-
trinsic semiconductor, the transfer matrix through this
random structure can be written as

(28)

where T, (i =1,2, . . . , M —1) is the intrinsic layer be-
tween the ith and the (i +1}th units, which has random
layer thickness. If m & 2 and there are some frequencies
(denoted by ro„F02, . . . , ro„) satisfying

suits plotted here are for the case where the uniform
medium outside the sample is of species A. Similar re-
sults can be obtained if the medium is of other species.

Now we investigate analytically the transmission of
electromagnetic waves through a special random struc-
ture, which is formed by randomly inserting a number of
identical units into a uniform infinite medium of a
species, namely, the intrinsic semiconductor. All the in-

terfaces are parallel. One of the units consists of m re-
peated periods, and every period has four layers of D, A,
8, and C, to form an i-n-i-p series; Then, the transfer
matrix from layer D of a period to the i semiconductor
adjacent to its other end is

(30)

This means that the transmissions for these frequencies
are just the transmission of the modes through a uniform
intrinsic semiconductor. They are unity if the modes are
within the bulk band of this uniform material. On the
other hand, the frequencies satisfying condition (29) can
always be found within the bulk bands of periodic n -i -p-i
superlattice. ' Thus, we can argue that for such a ran-

dom structure there exist some plasmon modes that are
completely unscattered. As the other modes are usually
scattered by the randomness, we may use such a structure
to produce high-quality optical filters.

V. SUMMARY

In this paper we have investigated the characteristics
of the collective plasmon excitations of n-i-p-i semicon-
ductor superlattices with randomly distributed layer
thicknesses. The calculation of dispersion relation and
optical transmission in finite samples shows that in vary-

ing the degree of thickness randomness, the frequencies
of the plasmon modes exhibit a small shift, but the
transmission coefficients are largely changed. Although
the localization of the waves becomes visual only when
the degree of randomness is very large, the numerical re-
sults of the optical transmissions show the strong scatter-
ing of the randomness for most of the modes of the elec-
tromagnetic waves. This means that the Auctuations in
layer thicknesses in a finite system have only a small
efi'ect on the distribution of the wave amplitudes, but may
cause large incoherence in the phases at the interface
scattering. However, in special random structures, there
is still a small portion of the modes which is nearly un-

scattered by the randomness. An interesting situation is
analytically described in which the unscattered modes
can be definitely found. This may be interesting for fur-
ther investigations or possible applications.
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