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Short-period InAs/In„Ga& „Sb superlattices may allow strong optical transitions in the long-

wavelength infrared () 10 pm) spectral region. Absorption calculations can be diScult, however, be-

cause of the strongly type-II interface and because of the large lattice mismatch. We present a compara-

tive study of band-structure calculations for strained-layer type-II InAs/In„Ga& „Sb superlattices

grown on GaSb. The energy of superlattice band gaps (Eg, ) and the cutoff wavelengths (A,,) are comput-

ed in the empirical tight-binding, effective-bond-orbital, and 8X8 k p models. In the empirical tight-

binding model (ETBM) the strain is included by scaling the matrix elements according to Harrison's

universal 1/d rule and by appropriately modifying the angular dependence. The bond-orbital model

(EBOM) and k p calculations include the strain via the deformation-potential theory. We find in all

cases that the superlattice band gap decreases rapidly with increasing x and that the proper inclusion of
strain is critical in the ETBM. Our results compare favorably with existing experiments. In addition, we

compare directly the results of the EBOM and k.p models. Contrary to expectations, the two models

give quite different results for InAs/InSb superlattices.

I. INTRODUCTION

A significant amount of effort has been devoted in re-
cent years to develop two-dimensional arrays of photo-
voltaic semiconductor detectors for infrared (ir) imaging
in the 10-12-pm wavelength region and beyond. '

Such detectors are usually fabricated from the II-VI mer-
cury cadmium telluride (MCT) Hg& „Cd„Te ternary al-

loy, ' as no bulk III-V materials have suSciently small
band gaps at 77 K for operation in this wavelength range.
There are, however, difBculties associated with fabricat-
ing high-performance MCT arrays, especially for wave-
lengths exceeding 10 pm. The primary problems are: (i}
compositional inaccuracies cause variations in the band
gap (or equivalently the cutoff wavelength A,, }, (ii) large
tunneling dark currents caused by the narrow band gap
( &0.1 eV) and the small effective mass result in low
specific detectivities, and (iii) high Auger recombination
rates further increase the dark current. In view of these
difficulties, a large number of III-V semiconductor ma-
terials have been proposed' as alternatives to the con-
ventional MCT alloys for long-wavelength infrared detec-
tion applications. These material systems are artificially
structured small-band-gap type-II superlattices (SL's)
that can be synthesized with advanced epitaxial growth
techniques such as molecular-beam epitaxy. If brought
to maturity, detectors based upon such SL's are expected
to achieved background-limited performance at higher
operating temperatures than the MCT-based systems,
and can be readily manufactured because of their compa-
tibility with advanced III-V device processing technolo-
gy. Consequently, numerous SL's (e.g., InAs„Sb& /

InAs Sb&," ' InAs/In„Ga& „Sb,' etc.) with
different band-edge lineups strain conditions, and growth
orientations have been grown and studied in recent years.

Among others, the type-II InAs/In„Ga, „Sb
strained-layer SL system proposed by Mailhiot and
Smith' is suggested to have electronic and optical proper-
ties superior to those of MCT alloys for cutoff wave-
lengths A,, exceeding 10 pm. The conceptual basis for
achieving far-infrared energy gaps in the InAs/
In„Ga, „Sb SL system has been discussed at length in
the literature. ' Briefly, a long-wavelength response is
predicted based on the misaligned, or type-II, band-edge
relationship between the two constituent materials at the
interface. The SL system InAs/GaSb falls into the
misaligned category because the lower-energy InAs
conduction-band edge lies below the valence-band edge of
GaSb. ' Because of this type-II energy-band lineup, the
SL can have a band gap smaller than that of either of the
constituent materials. Hence, by altering the InAs and
GaSb layer thicknesses, the SL band gap (Es, ) can be
tailored from 0 to 0.8 eV. Semimetallic behavior can be
demonstrated in InAs/GaSb but only for comparatively
thick layers. ' Since the electrons tend to be localized in
the InAs layers and the holes in the GaSb layers, the
electron-hole wave-function overlap and the resulting op-
tical transition matrix elements decrease substantially
with increasing SL period. Consequently, for a thick-
layer InAs/GaSb SL with band gap less than 0.1 eV,
which is required to detect long-wavelength ()10 p,m}
radiation, the optical absorption coefficient is too small to
be practical. It should be mentioned that for type-II SL
detection applications, small band gaps and large optical
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matrix elements tend to be mutually exclusive require-
ments. Inducing strain into the SL, by incorporating In
into the GaSb layers, increases the energy separation be-
tween the In Ga, „Sb heavy-hole valence band and the
InAs conduction band. This allows small band gaps to be
achieved with sufficiently short periods to provide accept-
able absorption coefficients. Following this proposal, a
large number of groups' have reported photolumines-
cence, photoconductivity, magnetotransport, and optical
transmission measurements to estimate the band gaps
(E, ) of InAs/In, Ga&, Sb SL's grown on GaSb sub-

strates.
In this paper we present model calculations for the

band gaps Eg, and cutoff wavelengths (A,, ) of strained
InAs/In„Ga, Sb SL's grown on GaSb substrates. In
the presence of strain, the SL band-structure calculations
become more complicated than those for lattice-matched
systems. Previously, k p (Ref. 1) and simple tight-
binding calculations ' have been performed to study the
band-gap variations in InAs/In„Ga&, Sb SL's. By using
an empirical tight-binding method (ETBM}with an sp s"
basis, Shen, Ren, and Dow have recently studied the
effects of layer thicknesses on the SL band gap in
InAs/GaSb. Assuming a perfectly lattice-matched struc-
ture, the authors of Ref. 4 have predicted a semimetallic
behavior in (InAs)z /(GaSb)z SL's for N, &26. One of

a

the purposes of this work is to extend the ETBM formal-
ism (see Sec. II A) to strained-layer SL's. By properly in-

corporating the strain effects, without introducing addi-
tional parameters, we compute the effects of layer thick-
ness and In mole fraction x on the fundamental band gap
of InAs/In„Ga, „Sb SL's. Along with the modified
ETBM we also consider an eight-band k p and an
effective-bond-orbital model (EBOM) (cf. Secs. II 8 and
II C) to study the electronic band structure of
InAs/In„Ga, „Sb SL's. These latter models have the
advantage that they can easily incorporate effective-mass
information, while the ETBM is expected to have greater
validity for very thin layers. In all models, we find that
the presence of coherent strain between InAs and
In, Ga, ,Sb layers shifts the band edges and further
reduces the SL band gap. By increasing the indium com-
position x, narrower band gaps and cutoff wavelengths in
excess of 10 pm can be obtained for thinner SL's (see Sec.
III), leading to enhanced optical absorption and carrier
transport properties. In Sec. III, we compare these
theoretical results with existing magnetooptical and pho-
toconductivity data, and finally we conclude in Sec. IV.

II. THEORETICAL METHODS

Here we describe the band-structure calculations for
type-II strained-layer SL's via three different methods:
(a) a modified sp s' ETBM, (b) an eight-band k.p model,
and (c) an efFective-bond-orbital model, and discuss their
relative strengths and weaknesses. In all calculations, we
assume that the SL structure is grown an a GaSb sub-
strate to allow comparison of the calculated E, with ex-
isting experimental data. We assume a rigid substrate,
and sa the strain in each layer is given by the lattice
mismatch between GaSb and the unstrained constituent

material. The strain efFects are incorporated into the
tight-binding framework in a straightforward manner
without introducing any additional parameters (see the
Appendix), while the k p and EBOM models include
strain via the deformation-potential theory.

A. Empirical tight-binding method

The sp s * model to describe the [001] InAs/
In, Ga, „Sb superlattice is a modified version of the one
considered recently by Shen, Ren, and Dow. In the
sp s* tight-binding formalism, the excited s-like state s'
is added to the conventional sp basis in order to simulate
states at higher energy. This method was first proposed
by Vogl, Hjalmarson, and Dow' to consider only
nearest-neighbor interactions and has been extended by
Newman and Dow' to include some second-nearest-
neighbor interactions. The tight-binding parameters

have been corrected recently by Yamaguchi. ' We have
used the corrected parameters and have included the
second-nearest-neighbor matrix elements (E,„', E,;, E„',
and E„') to ensure better agreement between the calculat-
ed and reference energy values (L „and L &, ) of the bulk
materials at the L critical point in the Brillouin zone.
The superlattice structure considered here consists of N,
two-atom-thick layers of InAs [material A(c, a)] and Nb
two-atom-thick layers of In„Ga&, Sb [material B(c',a')]
repeated periodically, with Nz being the sum of
(N, +Nb). The terms c (c') and a (a') are regarded as
the cation and anion atoms of the A (B) material. We
denote this superlattice as (InAs)~ /(In, Ga, „Sb)z .

In the standard sp s* formalism, we first construct the
following Bloch sums defined by the linear combination
of atomic orbitals:

yb(r, k) = gexp[ik (r +bR, )]p (rb—R, —rb) . (1}
1

N

Here o, is a quantum number that runs over the basis or-
bitals s, p„, p, p„and s' on the two types of sites b (ei-

ther c or a representing the cation and anion, respective-
ly) in the zinc-blende structure; N denotes the number of
wave vectors k in the first Brillouin zone with the origin
of the jth unit cell at R; and rb represents the positions
of the neighboring atoms. The SL electronic wave func-
tion can be expanded as a linear combination of the
Bloch sums:

%„~(r)=gA "blab(r, k) .
ab

(2)

Since the atomic orbitals are assumed to be orthogonal,
the Schrodinger equation in this basis can be written as

g [H, ~ E„(k)5 p5,J ]=0 .—
Pi

Here the terms H,"~ represent the interaction integrals
between the a orbital of the atom i and the P orbital of
the atom j. The solution of these simultaneous equations
is obtained by diagonalizing the 10(N, +Nb)X10(N,
+Nb ) Hamiltonian matrix (see the Appendix for details).
In the semiempirical tight-binding framework, the H;
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TABLE I. Strain-free tight-binding parameters for the bulk
materials (in eV) in the notations of Vogl, Hjalmarson, and Dow
(Ref. 16). Four second-nearest neighbor parameters (E,„', E,„',
E„~, and E„„')are added here to fit the reference band structure
at the L critical point.

Parameters InAs GaSb InSb GaAs

E„'

Epp

E,,
E:.
E'gg

Vo

Vo
0

V,Op

V, lp

V~
s Op

V»,s lp
Eoa

sx
EOc

EOc

—8.36
—1.54

1.04
3.85
8.56

9.53
—4.16

2.00
3.97
2.62
4.50
3.76

4.59
—0.011
—0.011

0.003
0.003

—6.09
—2.67

1.61
3.67
8.74

9.32
—5.43

1.86
4.38
5.27
4.53
6.36

5.77

0.06
0.06

—0.15
—0.15

—5.80
—1.25

1.90
4.14
9.03

9.82
—3.61

2.25
4.62
5.54
4.81
6.25

6.71

0.231
0.231

—0.14
—0.14

—8.36
—2.67

1.04
3.67
8.56

9.32
—6.43

1.95
5.08
4.25
5.13
4.75

5.19
—0.32
—0.32
—0.21
—0.21

are generally treated as free parameters and their values
are determined by fitting to experimental data such as the
band gap and the effective masses. Here, we have ob-
tained strain-free nearest-neighbor tight-binding parame-
ters (see Table I) by fitting almost exactly to the existing
nonlocal-pseudopotential band energies of the bulk ma-
terials (InAs, InSb, GaAs, and GaSb) at high symmetry
points ( I and X). In order to reproduce the reference
band structure at the L critical point, we have also added
the second-nearest-neighbor interaction integrals in the
tight-binding Hamiltonian. In our study we have con-
sidered four sets of parameters (i.e., those of InAs,
In„Ga, „Sb, InSb, and In„Ga, „As) to describe ap-
propriately the actual bonding of the atoms in the SL. At
the interface, for instance, if the cation is In„Ga, „and
the anion is As(Sb), then the matrix elements of the ma-
terial In„Ga, „As(Sb) are obtained in the virtual-crystal
approximation by averaging the matrix elements of
InAs(Sb) and GaAs(Sb). The second-nearest-neighbor in-
teractions U„(U„)between two cations c and c' (two
anions a and a') lying in A and B compound semicon-
ductors can be determined, in principle, by fitting the cal-
culated band to the reference band of the superlattice.
However, for the sake of simplicity we use only the aver-

age values of the two bulk parameters.
The strain effects are modeled by scaling the "strain-

free" tight-binding matrix elements (see Table I) accord-
ing to Harrison's universal scaling I/d rule, ' where d is
the atomic spacing. The effects of bond-angle changes
are also treated properly by assuming that the s and p or-
bitals transform as the appropriate spherical harmonics
and that only the two-center interactions are important.
This method is quite simple, but is sufficient to investi-
gate the qualitative effects of heterointerface bond relaxa-
tion on the electronic structure. Moreover, the advan-

tage of this scheme is that it avoids the introduction of
new parameters and/or experimental data to model the
strain effects and can be easily applied to other strained
systems. Although a similar approach has been incor-
porated recently by Wu, Fujita, and Fujita, we have
clarified some discrepancies in their distance scaling fac-
tors and have algebraically simplified the angular factors;
we present the results in the Appendix. Once the
strained matrix elements are obtained, the intramaterial
and intermaterial blocks in the SL Hamiltonian can be
formed from them (see the Appendix).

As for the valence-band discontinuity of the
InAs/In„Ga& „Sb interface, a conclusive value of b,E„
has not been established experimentally. In keeping with
current practice, though, we assume that the unstrained
valence-band edge in the In, Ga& Sb layer is always 0.51
eV above the unstrained valence-band edge in the InAs
layer for all x.' Since the valence-band offset merely fixes
the origin in the tight-binding framework, its value is
added to the diagonal elements of the Hamiltonian ma-
trix. This operation simply shifts the bulk band structure
of the material up or down as a whole and has no effect
on its curvature.

B. Eight-band k p model

For the k p model, we work with the 8 X 8 Hamiltoni-
an as presented by Kane. ' The eight basis states consist
of the s and p„,p, p„states coupled appropriately to the
electron spins to give total angular momentum states.
We include k-dependent strain effects by following the
prescription of Bahder, whereby the Hamiltonian is ex-
panded to first order in the strain tensor as suggested by
Pikus and Bir. This represents an improvement over the
standard Pollak and Cardona treatment, in which the
strain serves only to introduce k-independent constant
terms into the Hamiltonian. We take Bahder's deforma-
tion potentials, a' and b' to be zero for all materials. For
the details and notation of the Hamiltonian itself, we
refer the reader to Refs. 22. We calculate the Luttinger
parameters and the momentum matrix element for each
layer from the bulk band gap and the electron, light-hole
heavy-hole, and split-off masses for that layer. The pa-
rameter values are presented in Table II. A simple linear
average is employed for the ternary compound.

We solve for the superlattice band structure in the
effective-mass approximation. Here the bulk 8X8 k p
matrix is converted into a set of eight coupled differential
equations by replacing k, with —id /dz. These
differential equations are then discretized into finite-

difference form and the resulting matrix is diagonalized
to obtain the superlattice energies and wave functions.
The only concern is to symmetrize properly any products
of spatially dependent material parameters with k, before

converting the equations to differential form. This ap-
proach ensures that the probability current is conserved
across the heterointerface and that the resulting set of
differential equations is Hermitian. For a more detailed
description of the symmetrization process, and a rough
justification, see Ref. 26.
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TABLE II. Material parameters used in the EBOM and k.p
models. The EBOM matrix elements are determined from

Table II, Ref. 27, which should read that E„=E„„—Xz& /8 and

that E„=—(mo/m, )Ro+16E,'„[2/Eg+1/(Eg+6i]/3. Note

also that the k.p model uses rn, o to set the conduction-valence

band coupling, while the EBOM uses X» =4 eV.

Quantity

Yl

yz

r3
~sO
5 (eV)

E, (eV)

ao (A
c» (10" dyne/cm')

cl2 (10" dyne/cm )

a (eV)
b (eV)

InAs

0.023
19.74
8.65
9.34
0.08
0.381
0.426
6.0584
8.33
4.53

—5.8
—1.7

GaSb

0.042
11.89
4.92
5.19
0.13
0.77
0.81
6.0959
8.85
4.04

—8.28
—1.8

InSb

0.0133
34.8
15.9
16.29
0.08
0.81
0.237
6.4794
6.67
3.65

—7.9
—1.8

C. Eft'ective-bond-orbital model

The EBOM put forth by Chang is essentially a
nearest-neighbor fcc tight-binding model. The primary
advantage of this scheme is that the basis set used in the
formalism is exactly the same as that used in the 8 X 8

k p model. Hence, the k p parameters (see Table II) can
be directly incorporated into the calculations. We treat
the strain with the Pollak and Cardona deformation-
potential theory by introducing the appropriate con-
stant terms into the diagonal elements of our bulk tight-
binding matrices. We solve for the superlattice band
structure by applying the slab method to the fcc tight-
binding Hamiltonian: for a more detailed description of
this method we refer the reader to Refs. 28. The inter-
face parameters are computed by simple averaging, and
we have taken the bulk Hamiltonian directly from Ref.
27, subject to the corrections presented in Table II.

III. RKSUI.TS AND DISCUSSION

An important boundary condition that has been con-
sidered in all three model calculations is the band lineup
at the interface, as the calculated results are very sensi-
tive to the band alignment. Before strain, it is assumed
that the twofold-degenerate valence-band edge in the
In„Ga, Sb layer is 0.51 eV above the twofold-
degenerate valence-band edge in the InAs layer, regard-
less of x. The uniaxial component of the strain then
splits the twofold degeneracy in each layer. The orginal
point of reference or "origin" of the valence-band edge in
InAs remains fixed relative to that in the In Ga, Sb
layer. In the absence of strain-induced light-hole —split-
off coupling, these reference points would be in the mid-
dle of the split valence-band edge. Because of the strain-
induced coupling, though, the midpoints of the split
valence bands will lie slightly above their origins. All
three models include strain-induced light-hole —split-o6'
coupling. Accordingly, the center of the split valence-
band edge in InAs will not be at 0.51 eV below the center
of the split valence-band edge in In Ga, Sb. This sepa-

ration will vary with x, but is expected to be within a few
percent of 0.51 eV. In all three models, all of the hydro-
static energy shift is assigned to the conduction-band
edge. This alignment scheme is similar to that employed
in Ref. 1. It is also assumed that the superlattice is
grown along the (001) direction on a GaSb substrate.
This means that the InAs layers are under an in-plane
tensile strain, while the In Ga, Sb layers are under an
in-plane compressive strain. Adding indium composition
x to the second layer raises the heavy-hole band edge in
the In„Ga, „Sb layer further above the conduction-band
edge in InAs, causing the effective band gap to decrease.

Calculations of the SL energy gaps were performed us-

ing the above theoretical models for N, layers of InAs al-

ternating with Nb layers of In, Ga& „Sb. The results for
superlattice band gapa Eg, and cutoff wavelength A,, are
displayed in Figs. 1(a)—1(c) for the special case of
N, =Nb, and for the alloy composition x in the range
0 x ~0.4. In Table III, we have compared the calculat-
ed values of E, with the existing experimental data for
the three specific SL structures. In each model, the cal-
culated variations of energy gaps show identical trends
and are in general agreement, though sample 890 shows
the opposite trends from our calculation. This may result
from uncertainties in the layer thicknesses and/or com-
positions. A perusual of Figs. 1(a)—1(c) reveals two im-

portant facts about the significance of type-II SL's for
long-wavelength ir detection applications. These facts
are: (i) for fixed layer thickness, the value of A,, increases
significantly with increasing In composition x in the
In„Ga, „Sb layers, and (ii) the layer thickness required
to obtain a given cutoff wavelength decreases with in-

creasing In composition. It is also worth pointing out
that, for short-period SL's, the results of tight-binding
calculations for Eg, are surprisingly similar to the results
of the eight-band k p and the EBOM studies.

Concerning the EBOM results, we find that the SL
gaps are extremely sensitive to the parameters used. We
choose parameters that reproduce the electron, heavy-
hole, and light-hole curvatures at the zone center (see
Table II). We take the elastic constants and deformation
potentials from Mailhiot and Smith. The most impor-
tant parameter in the model, though, is the E,„matrix
element (see Ref. 24 for the EBOM Hamiltonian and as-
sociated notation). As Chang has pointed out, if one
uses the Lawaetz matrix element one can obtain un-

physical bands for large
~
k ~. In addition, the

conduction-valence band gap at the X point rises to an
extremely large value. As a result, when the bulk materi-
als are layered to form a superlattice, the bonding in-

teraction between orbitals on adjacent layers is quite
depressed in energy, and the conduction-band states
occur below the conduction band of either constituent
material. Similarly, valence-band energies appear above
the valence bands of either InAs or In Ga& Sb. When
the Chang constraint is used; however, the X band gap is
much reduced and so the SL energies become reasonable.
This choice of contraint also accounts for part of the
variation between the EBOM and the k p results. In the
k-p model, the momentum matrix element is determined
by the split-oft'mass, which we take from experiment. In
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TABLE III. Comparison of E~, (meV) from various methods for three InAs/In„Ga& Sb SL's (sam-

ples are labeled in the notation of Ref. 6).

Sample
no.

x value InAs/In„Ga& Sb
thickness (A)

Eg, Expt.
(Ref. 6)

Eg, Calc.
ETBM k.p EBOM

566
890
899

0.29
0.26
0.24

38/24
41/25
37/25

98+10
104+5
139+5

97+10
111+10
152+20

103
93

112

124
118
136

137
128
150

06 '~ T

InAs/In Ga, Sb

Gsb b

0.4

C4

0.2

(.) 40

30

20

10

0
2 6 8

S

10 12 14
0

16

N =N (monolayers)
a b

0.4

bQ

0.2

20

10

0
2 4 6 8 10 12 14

0
16

N = N (monolayers)

0.6
x = 0 InAs/In Ga, Sb

(.) 4'
I

0.6 ~
'
~ y y ~ ~ 30

(b),

the EBOM calculation, though, this matrix element is re-

lated to E,„.Thus, even though both the EBOM and k p
calculations incorporate the same electron, heavy-hole,

and light-hole masses, they have different momentum ma-

trix elements, and hence different amounts of mixing be-

tween the conduction and valence bands away from k=0.
This difference in the nonparabolicity causes some of the

variation in the calculated results.
To examine this variation between the EBOM and k p

models in more detail, we ran both programs without

strain and with identical material parameters; we also

performed a strain-free ETBM calculation for complete-

ness (see Fig. 2). This time, however, we used the same

interband matrix element in both the EBOM and k p cal-

culations (we took the EBOM value), thus forcing each to
give exactly the same small-~k~ bulk dispersion for the

heavy-hole, light-hole, split-off, and conduction bands.
We expected, therefore, that both would give the same

energy gaps for any superlattice, especially for longer

periods. Indeed, for the InAs/GaSb superlattice, the k p
and EBOM calculations yielded very similar results and

became almost identical for longer periods. For the

InAs/InSb superlattice, however, the EBOM energies

were much lower than the k p energies at all thicknesses

and the curves approached each other quite slowly as the

period increased. Hence, it appears that this narrow-

band-gap system magnifies the physical differences be-

tween the EBOM and k p models. We also note in pass-

ing that the ETBM returned the lowest energies of all at
long periods, consistent with the heavier effective masses

embedded in this model. We conclude that, because of
the extremely small bulk band gaps and the large band

offsets, none of the models can reliably calculate the
bandgap of InAs/InSb superlattices. It may be possible

0.4

bQ

0.2

30

20

10

0.6

04-

InAs/In Ga, Sb

unstrained

x = 1(kp)
x = 1 (EBOM)
x = 1 (ETBM)
x = 0 (k.p)
x = 0 (EBOM)
x = 0 (ETBM)

0 ~ ~

2 4 6

x —0
k 0

8 10 12 14 16

0.2--

~AP~ ~~

N = N (mono1ayers)

FIG. 1. Calculated results of superlattice band gap Eg, (solid
line) and cutoff wavelength A., (dotted line) as a function of layer
thickness (N, =Nb) and composition x in a strained-layer
InAs/In„Ga& „Sb (001) SL grown on a GaSb substrate. (a)
ETBM, (b) EBOM, and (c) eight-band k.p results.

0
4 6 8 10 12 14

N = N (monolayers)

16

FIG. 2. Comparative study of superlattice band gap E~, as a
function of layer thickness (N, =Nb) and composition x in an

unstrained InAs/In„Gal Sb (001) SL.
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though, to improve the models to allow accurate calcula-
tion. For example, more second-nearest neighbors could
be added to the ETBM, or more bands to the k p mod-
el. In principle, one could also add second-nearest neigh-
bors to the EBOM to improve the accuracy. To maintain
the spirit of the model, these parameters should be
chosen to preserve the band-edge effective masses.

We now remark upon the somewhat surprising success
of the sp s * model in describing very short-period
InAs/In, Ga& „Sb SL's, for small values of x. Since we
have made no effort to fit the masses in this tight-binding
model, one might expect the computed SL energies to be
greatly at variance with experiment. However, since the
SL period is quite short, the zone-folding effects become
just as important as the effective masses. Thus, since we
have fit the I, X, and L band gaps accurately in the sp s*
model, we obtain reasonable results even though the
masses are inaccurate. In particular, the conduction-
band mass is too large, and so the ETBM gives band gaps
consistently lower than the k p and EBOM models.
Since the sp s* model does take into account the
difference between the anion and cation states, though, it
is difficult to say which model currently gives more accu-
rate results. No doubt the optimal model would employ
a tight-binding basis that is fitted to both band gaps and
the carrier masses.

IV. SUMMARY AND CONCLUSIONS

In summary, type-II InAs/In„Ga, „Sb strained-layer
superlattices have been explored for an application as
long-wavelength infrared detectors using three different
theoretical approaches. The effective band gap (Es, ) and
cutoff wavelength (A,, ) of the material system have been
calculated from the modified empirical tight-binding
theory, effective-bond-orbital model, and 8 X 8 k p
scheme. For the pure binary, InAs/GaSb, all three mod-
el calculations yield very similar results. Differences be-
gin to appear as the band gap of the second layer is re-
duced via the addition of In. The biggest discrepancies
occur for the binary InAs/InSb.

All three model calculations show the same trends and
demonstrate that, at least from the standpoint of avail-
able band gaps, a wide range of wavelengths could be

detected. By appropriate choice of the In composition
and layer thicknesses, cutoff wavelengths in the 12—30-
pm range are achievable. Design constraints, such as
wave-function overlap and dark currents may rule out
the use of this system at the longer wavelengths. The cal-
culations indicate that choosing a high In content to ob-
tain a narrow band gap is not necessarily a practical ap-
proach to achieve long-wavelength detection, for the re-
sults then become very sensitive to the layer thicknesses.
Small deviations in the layer thicknesses from the nomi-
nal values will produce a band gap that differs substan-
tially from the intended band gap. Longer wavelengths
can be achieved by resorting to thicker layers with a
small In composition. This approach, however, will re-
sult in a smaller detectivity because of the reduced spatial
matrix element. It is thus seen that there are a number of
conflicting device design constraints. The foregoing cal-
culations are to be regarded as a basis for future work to
calculate the absorption coefficient and the dark current
of this material system.
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APPENDIX
Here we present the details of SL band-structure calcu-

lations using a modified ETBM. The SL consists of two
different zinc-blende type crystals labeled as (c,a) and
(c',a') with a (001) interface. The terms c (c') and a (a')
are regarded as the cation and the anion atoms of the A

(8) material. Denoting the wave function corresponding
to the atoms in the mth sublayer of material A as
iPb(m) ) (with b =a or c) and that corresponding to the
nth sublayer of material B as ipb (n) ) (with b'=a' or c')
we can write the SL Hamiltonian in the tight-binding
(sp s') basis as

1 2 3 2'N, 2 Nb

HSL

yA
I

H,
U„
yA

II

H,

C.C.

U„
yA

H,
U„.
ya

H,
U„
yB

H, .
U, ,

H,

hU,*, hV*II
hU,*,

U, ,

H, .

(A 1)
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1"=
& P, (n) IH ly. (n+1) &,

10 351

H, (,)
=

& P, (,)(m) IHsr. 14,(,)(m) &,

H, (, )
=

& (t', (, )(n) lHsL lP, .(, )(n) &,
V" = &/, (rn)lH „l(I),(m) &,

V)~) =&P,(m)IHs&l(t). (m+1) &,

( ) =&& ( )(m)lHsz. ld ( )(m+1) &

U. .(, , )=&/. (, )(n)IHsLIP. (, )(n+1) &,

I((), ( )&,

and

l t)
=

& (t), (Ni ) l Hsq l(I), (NL + 1)&,

l'Dn= &P, (N. )IHsLI((). (N. +1)&,

U, .=&(t).(N. )lH, ly. .(N. +1)&,
U„=&P, (N, )IHst l(t), (N, +1)&,

iNL k,asq
h =exp

2

Each term in Eq. (Al) is a 5 X 5 matrix and has the following form

H, (as)—

Ea(a')
$$

C. C.

Ea(a') p Ea(a')
pp & 0 xy

Ea(a')
P

f Ea(a )

Ea(a')
PP

Ea(a')
s»s»

Hc(c )—

Ec(c')
$$

C.C.

Ea(c ) f Ea(a )

Ec(c')
PP

f Ec(c )
0 sx

Ec(c')
PP

Ec(c')
s»s»

gOV g1VO g2VOy g3VO

g1V 1 gOV g3Vy g2V —g1V»,
X

VI g2V ly g3Vy

g3V1 g2V g1V

g1V,

go V

—g2V»,
—g3V»,

0 g 1 V»0 g2 V»0 g3 V»0

g4 V.s
—gs V.1

gs Vo g4V

g7 V„

—gsV»,

X
VII g6 V

Oy

g7V, O,

g6 Vsly

g7 V„y

g4V

gs Vy,

—g6V

—
g v V.1.

g6 V„,

gs Vyz

g4 V„
—g7V»,

gsV»

g6V

g7V»

f Ea(a')

a(a')
Uaa(a'a') = fzEsx

0

f Ea(a') f Ea(a')

0 0

f2Ex),' f)Exy
0 0

0 0

f Ea(a ) 0

0 0

0 0
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U„(c'c')=

0

f E c(c)

0

0

0

0

f E
0

0

f Et')
0

0 0

f,E„"' 0

0 0

0

f ERY, Q

f Esv, Q

f Eava f EavQ

0 0

0 0

f ERvQ 0

Eav, Q

0

Eav, Q f E av, Q

2 xy 1 xy

0 0 0 0

0

f ERv, c

U„= f?E;„"'—

0

0

f Eav&c

f ERv, c
2 xy

0

f Esv, c

f Esv, c
1 xy

0

0 0

Eav, c 0

0 0

0

The explicit forms for g; (i =0, 1, . . . , 7) and

f, (j=0,1,2) are given in Table IV. The strained inter-
atomic matrix elements are derived from the unstrained
parameters (cf. Table I) using the following relationships:

V„=PV.. .

V„„=&3Pcos(8„)V..
V„=&3Pcos(8 )V, &~,

V„,=&3Pcos(8, ) V„~,

V,o„=v'3P cos( 8„)V,o~,

V,o =&3Pcos(8~) V,o~,

V,o, =&3Pcos(8, ) V,e~,

TABLE IV. Explicit forms for the terms g; (i =0, 1, . . . , 7)
and f, (j=0, 1,2) used in Eqs. (Al) and (A2) for calculating the
band structure of (001) superlattices. Here a& is the room-
temperature lattice constant of the material A (B).

V a, =&3Pcos( 8 ) Vo,
,

V R) =')/3Pcos(8, )VO, ,

V, «o
=&3Pcos( 8„)V,

V Ro =&3Pcos(8 )Ve,

V, «e
=&3P cos( 8, ) Vo,

V„„=PV„„+P[2cos (8, ) —sin2(8„) ]Vo

V~=PV„„+P[2cos (8 }—sin (8 )]Vo

V„=PV„,+P[2cos (8, )
—sin (8, )]V„

V„=3Pcos(8„)cos(8 ) V„

V„=3Pcos(8 )cos(8, ) V„

V,„=3Pcos(8,)cos(8 ) V„~,
Ea &EOa

sx sx

E' =aE '
sx sx

where

go

gi
gz
R3

g4

gs

g7
fo
fi
f2

~4/aL

[expi(k r))+expi(k Q2)]/4
[expi(k. Q ) ) —expi(k r, )]/4

go
[exp i(k Q;)+exp—i(k. ~,)]/4— .
[exp —i(k.Q4) —exp —i( .kQ)]3/4

gs
g4

[cosk.i Q ) Q, ) cosk (Q-, Q,—) ]/4— . —
[expik (Q, Q., )+expi.k (Q—., — )]Q/a4.
[expi k {~, —Q, l +expi k (Q z Qq) ]/4. —

( —1, 1, 1, )/4
(1,—1,1)/4
(1,1 —1)/4

( —1 —1 —1)/4

Ea EOa
xy xy

Ec EOc
xy xy

where
P=[1+—', (e„„+e +e„}+) (E„„+s +c.„)]

(1+E „)
and

(1+a~~)
cos(8 )=

'1/ (1+e„)+(1+s ) +(1+a„)2
H«e c,„„(=a~~ ) and e„are the in-plane and vertical

strain components, respectively, and y =x,y, z.
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