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Monodimensional effects on elastic and vibrational properties of lacunary networks
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Elastic and vibrational properties of lacunary square networks with first-neighbor central forces are
shown to reduce, in the framework of the harmonic approximation, to longitudinal modes determined by
a fragmentation in independent blocks, i.e., segments. Vibrational spectra are thoroughly analyzed with

evidence for a transition from continuous spectra to Dirac singularities via singular continuous spectra
which occur near the linear percolation threshold. Random lacunary networks, as well as fractal ones,
are studied.

I. INTRODUCTION

The study of the properties of materials such as poly-
mers, ' composites, and gels has required the extension
of the theory of elasticity to disordered and heterogene-
ous media; in most cases, the classical theory of elasticity
of continuous media cannot be generalized in a direct
way. Tools and concepts from statistical physics have
turned out to be much more fruitful: There is no doubt
that theories of percolation and critical phenomena have
enabled theorists to take a great step forward in this
domain. It has been shown, in the case of random net-
works, that the critical behavior of macroscopic elastic
moduli as a function of the concentration of occupied
sites can be described by a percolation transition ' for
different Hamiltonian models, such as the Born one. A
strong reason for percolation effect is that, if there is no
link, there is no elasticity. In the case of random square
networks with first- and second-neighbor string interac-
tions, it has been shown that elasticity at rather high
density can be described by mean-field theories while
near-zero elasticity is well described by percolation
effects. The elastic percolation thresholds, as well as the
power laws, depend on both the nature of microscopic in-
teractions and geometry. ' Moreover, it is now well es-
tablished that the electric and elastic properties of ran-
dom percolating networks do not belong to the same
universality class, ' except in the particular case of the
scalar Born Hamiltonian.

A few studies of elastic properties have been done in
the borderline case of nearest-neighbor harmonic interac-
tions, also called central forces, for triangular random lat-
tices and deterministic Sierpinski gaskets, " a very few
ones for square and cubic lattices. In the case of the reg-
ular Sierpinski gasket, a we11-known model for percola-
tion clusters, several authors' ' show that electronic
and vibrational spectra exhibit a singular continuous
character, i.e., sets of Lebesgue measure zero, with high
degeneracies. Furthermore, it is well known that, for cu-
bic lattices, the shear modulus is equal to zero and that
the bulk modulus goes to zero when an infinitesimal frac-
tion of bonds is missing. Dealing with a first-neighbor
central-force Hamiltonian on a square lattice, we show in
this paper that disconnected segments of nearest neigh-

bors are elastically independent at first order; so the
small-amplitude vibrations in the plane factor into modes
of disconnected linear segments. Thus the elastic and vi-

brational properties in such materials reduce to a seg-
mentation problem, leading to the notion of linear per-
colation. It enables us to reach our main purpose: a de-
tailed study of elasticity and vibrational spectra of finite
and macroscopic lacunary networks. A basic interest of
this work on random networks is the study of vibrational
spectra without any recursion formula and the search for
general conditions for the occurrence of singular continu-
ous spectra.

Practically, we deal with two kinds of networks.
(i) Bidimensional random square networks R (n, q): q

lacunas —each lacuna defined as an unoccupied site —are
distributed at random among n possible sites in a square
of side (n —1)a and of lattice parameter a. Most of the
results set out concerning random square networks are
generalized to any space dimension d )2, where q lacu-
nas are distributed among the n" possible sites of a hyper-
cube of side (n —1)a.

(ii) Bidimensional random Sierpinski carpets C(n,p)
are constructed according to an iterative process by
selecting at random p subsquares among the n possible
ones at each level of iteration. Figure 1 shows an exam-

ple of a finite-size random Sierpinski carpet C(4, 13) at
the level k =4 of iteration; there are p =13 occupied
sites, each one corresponding to an elementary black
square; the parameter a of the network is defined as the
side of an elementary square. Although deterministic
Sierpinski carpets —and gaskets —have been often used
as a basic model to represent fractal materials, ' ' the
statistical scale invariance of random Sierpinski carpets
makes them better candidates for the description of such
materials. Unfortunately, their random character makes
analytical calculations much more dificult.

The central-force Hamiltonian is written as

0=
—,
' k, g (i[(R;—R, )+(u; —u, )ii

—a)

k, is an elastic constant, and the summation runs over
every couple of particles connected by a first-neighbor in-

teraction; u,-=r,- —R,. is the displacement vector with
respect to the rest position R; of particle i.
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FIG. 1. Random Sierpinski carpet C(4, 13) at the iteration
level k =4.

Anyway, the random nature of structures we are deal-
ing with makes numerical simulations necessary for a
good study. The method used in order to derive the
ground state under external stretch is the static relaxa-
tion process (SRP). ' ' The interest in such a method in-
stead of molecular dynamics (MD) lies in the fact that the
SRP enables us to determine in a complete and transpar-
ent way the elastic response of any network to a given
external strain; moreover, the implementation of the SRP
is much less heavy than MD. The computations carried
out revealed that the elastic response of such networks to
stretch is mainly determined by monodimensional struc-
tures. It implies a very particular behavior of the elastic
bulk modulus. An analytical study of the monodimen-
sional topological properties of two classes of networks is
achieved: R (n, q) and C(n,p); it leads to a quantitative
description in very good agreement with numerical re-
sults.

The existence of localized eigenstates plays a crucial
role in the description of the vibrational properties of
disordered materials; in the case of fractals, these local-
ized modes have been called fractons' by Alexander and
Orbach. There has been a lot of work on these modes' '

since fractons have been experimentally observed in silica
aerogels. The study of the vibrational spectra of the net-
works we are dealing with reduces to that of longitudinal
eigenstates, molecular modes, of a set of monodimension-
al structures; as already noted in studies on monodimen-
sional disordered chains, these spectra show a very rich
fine structure: ' Gaps appear in the density of states
close to degenerate modes and could give a singular con-
tinuous' ' character to some spectra. That spectral
structure is completely determined by the length distribu-
tion of segments in the networks. Finally, a statistical for-
mulation of the segmentation problem enabled us to find
an analytical expression of the spectral distribution.

The organization of this paper is as follows: Section II
deals with a description of the SRP and an analysis of nu-
merical simulations. In Sec. III an analytical description
of the behavior of the bulk elastic modulus in terms of

percolating straight lines is set out and compared with
numerical results. Vibrational properties are discussed in
Sec. IV for R (n, q) and C(n, p)

II. GENERALITIES:
THE STATIC RELAXATION PROCESS

The SRP enables us to derive the equilibrium state of
elastic networks when assuming given boundary condi-
tions; the computing process occurs as follows.

(1) Boundary conditions are imposed by fixing the po-
sitions of given particles; for instance, in order to com-
pute the elastic bulk modulus, particles at two opposite
edges are moved along opposite directions, perpendicular
to the edges with the same displacement 5.

(2) The elastic forces F; exerted on each particle i are
calculated.

(3) Every particle i, excepted the fixed ones, is allowed
to relax with a displacement A,F; where A, is the relaxa-
tion parameter (A, )0).

The two last steps are then reiterated in order to let
each particle reach its equilibrium position, ' at each step
N, the elastic energy E(N) and the external forces exert-
ed on the edges, FL (N) and Fz (N), are calculated.

The choice of A, is crucial for the convergence: If A, is
too large, the process does not allow the system to reach
its equilibrium state. The energy decreases first until
every particle has relaxed at least once and increases then
at many relaxation steps to end with a chaotic oscillating
behavior; for convenient temperature conditions, ul-
traslow relaxation phenomena observed in gels present
a similar behavior and will be studied separately. Since
our purpose is to find the equilibrium state, the system
has to be finally stationary with respect to the SRP, so
that its energy and the external forces remain constant.
It turns out from numerical simulations that we have
then to choose A, & 1/2k, . This limit value for A, and the
nature of the relaxation process can be easily understood
according to the following argument: Let us consider a
particle placed between two springs linked to fixed points;
if we call 5x (N) its displacement from equilibrium at the
Nth relaxation step, 5x (N +P) can be written
5x (N +P) =(1—2A,k, ) 5x (N), a monotonous decrease
of 5x(N) with the number of relaxation steps requires
precisely A, & 1/2k, . The SRP can be seen as a borderline
case of MD with overdamping. ' Naturally, if A, is yet
too low, the convergence is too slow and the number of
steps we need to observe a stabilization of the energy is
huge.

Numerical simulations have been carried out on ran-
dom networks R(n =16,q) and random Sierpinski car-
pets C(n =4,p) at the second level of iteration (k =2);
typical curves showing the evolution of the elastic energy
E(N) with the number of relaxation steps are reported in
Fig. 2 with evidence for convergence with a distribution
of effective relaxation times. Although the convergence
is good, it turns out that even if the value of A, is opti-
mized and the number of steps large, the equilibrium
state seems to be still difBcult to reach exactly. Since "re-
laxation times" are not distributed uniformly in the net-
work because of its heterogeneity, there is a stretched re-
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laxation at large X. A more precise analysis of the SRP
leads to study a two-point elastic susceptibility defined
by the elastic response to the relative displacements of
two particles in the network; it comes from numerical re-
sults that the elastic response has a significant value only
if these two points are fully connected by a straight line
and their displacements parallel to that line.

That last point can be understood from a development
of H when analyzing the relative displacements (u; —u )

into longitudinal and transverse components. Introduc-
ing the relative parallel displacement (u; —

u~ )~~, which is
the projection of the vector (u; —uj ) onto the vector
(R; —RJ } at rest and of length a, the first nonconstant
term in the series development of the total Hamiltonian
H is quadratic in parallel displacements only;

H= —k, g(u; —u, }~~~

1

C(4, 14)
0.001

0 2k 4(k 660 800
number of relaxation steps

FIG. 2. Evolution of the elastic energy of the network
against the number of relaxation steps in the case of two ran-
dom Sierpinski carpets under stretching: a = 1, 5 =0.25,
k, =0.5, and A, =0.55.

transmitted parallel to the stretch direction. The elastic
energy is dominated by HII", and the elastic response at
low strain remains linear. The presence of unoccupied
sites in the network locally induces inhomogeneity and
elastic forces perpendicular to the stretch direction, lead-

ing to a transverse coupling expressed by H II~', that cou-

pling is nonlinear and weak, since H~II~' is one order of
magnitude lower than HII". Thus the main part of the
global elastic response of the network, i.e., bulk and shear
moduli, is determined by geometric objects, the edge-to-
edge percolating straight lines.

That conclusion clearly emerges from the whole set of
numerical simulations we carried out, as in the following
example: The displacement field of a random network
R (16,21) under a stretch parallel to the x direction after
4000 relaxation steps is shown in Fig. 3; the components
of the external elastic forces FL and F~ in the final state
and the elastic energy calculated from the last step of the
relaxation process are summarized in Table I. When the
SRP is stopped, the relative variation of elastic energy
from one step to the following one is less than 10 . The
difference between the forces FL„and Fz„and the
nonzero residual value of the transverse components FLy
and Fz„express the existence of transverse coupling.
Anyway, the relative difference between FL„and F~„is

about, ~, and the transverse forces remain about 1000
times smaller than the longitudinal ones; thus, to first or-
der, the shear modulus is equal to zero. Moreover, the
relative difference between the common value of Fl„and
F ac lcaul tead from the assumption that the global elas-

tic response is entirely due to the three percolating lines

A, B,C noted in Fig. 3 and the numerical values of Table
I is about 3%. Here 98% of the elastic energy of the net-

2 a

+—k, g1

a
(2)

(u; —
u&)i is the transverse relative displacement. Three

terms appear in the development of H:

H =H'"+H"'+H"' .
II lll

HII", quadratic in parallel displacements, gives the linear
part of the elastic response, H II~' expresses a coupling be-
tween transverse and longitudinal displacements, and
H~ ' is quartic in transverse displacements only. Consid-
ering two first neighbors occupying sites i and j, they
define a line (ij), and within HI" the parallel displace-

~J II
are o»y coupled to the displacements u ~ II

where the site k belongs to the hne (ij ) and is connected
with i or j by a full segment. In other words, in the har-
monic approximation, i.e., H II", sites belonging to discon-
nected segments are not coupled.

The break of symmetry in the Hamiltonian between
(u; —u

)~~
and (u; —u. )i is found again during the relaxa-

tion process: Since the structure is submitted to a
stretch, the main part of the information must be

8 r

C IL A 0 A

FIG. 3. Displacement field of a random network 8 (16,21)
under a stretch 5=0.25 with a =1, k, =0.5, and A, =0.45. Ar-
rows represent local displacements of the particles between the
network at rest and its distorted state; A, B,C are percolating
lines.
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TABLE I. Elastic energy and components of the elastic
forces in the final state of a random network R (16,21) calculat-
ed from the SRP after 4000 iteration steps. 5=0.25, a =1;
k, =0.5, and A, =0.45.

F Fg„ Fly Fey

0.051 763 —0.051 713 5.82 X 10 —6.5 X 10 0.012 658

III. CRITICAL BEHAVIOR
OF BULK MODULUS

A. Random networks R (n, q)

The mean number of percolating straight lines is
analytically calculated by means of the generating func-
tion method in the case of random spring networks
R (n, q) where q « n ~. Let us call P„(k)the probability
that (n —k) lines are percolating in a two-dimensional
square network; i.e., k lines are cut. A recurrent relation

I I I I I I I I I I I03~ W
I I I I I I I I

LX:

0.2:

0.1:

0,
0

I I I I ! I I I I ! I

0.2

R(16,6)-

R(16,11)—

R(16,36):

I I I ! I I I I

0.3 $ 0.4

FIG. 4. Behavior of the component FI of the external force
vs displacement 5 for three given networks; each point corre-
sponds to the value of Fl„calculated from the SRP. F&„is not
plotted, since relative differences between FL„andF&„areal-
ways less than 2%.

work is localized along these lines. Otherwise, a fine ob-
servation of Fig. 3 shows that nonlinear efFects expressed
by H~~j' induce locally important transverse displace-
ments, although the global elastic response remains deter-
mined by H ~(".

The behavior of the external forces FL and F„in the
equilibrium state toward the displacement 5 has been nu-
merically studied in random networks R (n, q) with
n =16: Typical results collected in Fig. 4 prove that an
elastic bulk modulus is defined without ambiguity for any
given network, provided that it is dense enough.

On the other hand, a mean bulk modulus is defined for
a given porosity, i.e., a given concentration of lacunas, by
means of statistical treatment: The mean bulk modulus is
directly proportional to the mean number of percolating
straight lines. A very particular critical behavior of the
mean bulk modulus as a function of density or fractal di-
mension is expected, since the elastic response at low
strain is determined by a set of monodimensional
structures —the percolating lines —for any dimension of
the embedding space of the elastic network.

between the P„(k}can be found when considering the
transition from R(n, q) to R(n, q+1) as a Markovian
process. The existence of k cut lines after the introduc-
tion of an additional lacuna in R(n, q) occurs in two
difFerent ways: Either there are k cut lines in the network
R (n, q} and the (q+1)th lacuna is put in an already cut
line or there are (k —1} cut lines in R(n, q) and the
(q + 1)th lacuna is put in a percolating line. It gives then
the probability P„»(k),provided that q « n 2:

P„+,(k) =—P„(k)+ P„»(k—1), (4)

with the normalization rule

This method gives also all the moments of the distribu-
tion of percolating lines and thus the fluctuations in this
distribution.

A sharper analysis of the mean number of percolating
lines is achieved when calculating first the probability
P (n, q) for a given line to be completely occupied:

P(n, q) = (n —n)! (n —q)!
(n )! (n —n —q)!

Assuming that P(n, q) has the same value for every line,
the mean number ( M &

„

is

(M &„»=nP(n, q) =n
(n }! (n —n —q)!

(7)

An expansion of Eq. (7) using Stirling's formula, pro-
vided that n « n —

q and n ))1, leads to the expression

ln
(M&„, n+ —+

n g 2 2n

It can be noted that the two approaches leading to Eqs.
(5) and (7) are equivalent up to second order in the limit
of large n, since they both lead to

1+ '
n 2n

In order to check more precisely the validity of these
approaches, a numerical study of the evolution of
(M &„withq has been done: For two given sizes (n =16
and 64) and for diff'erent values of q, the average (M & „»
and its standard deviation are calculated from 300
di8'erent bidimensional networks; each network is con-
structed by using a trial process with a random number

g P„(k)=1.
k=1

This recurrent relation works only if q «n, since lines
are assumed to be independently filled: The probability
for a new lacuna to be put in an already cut line is taken
as independent of the number of already present lacunas.
The mean number ( M &„ofpercolating lines is then
derived from the generating function
G (x) =gl", ,P„(k)x":

'q
n —1(M&„,=n
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d, (n)=1- ln(n)
n

(10)

In the macroscopic limit, when n tends to infinity the
critical density tends to 1, as already noted above in the

(M)„
100 l I I I I I I I I I I I I I I

generator. Figure 5 shows that exponential dependence
of (M )„~upon q is well confirmed by numerical results
provided that (M )„~is not too low; anyway, since fiuc-
tuations of order 1/&300 are expected, because of the
averaging process, small values of (M )„arenot mean-
ingful. Moreover, theoretical predictions calculated from
Eq. (8) lead to (M ),6 =15.5 exp( —0.0647q) and
(M)~ ~

=63.5 exp( —0.0157q); it can be noted that the
fit of (M )„(working on 15 points) shown in Fig. 5 is in

good agreement with these predictions.
The criterion for the critical elastic threshold is

(M)„~=1 and enables us to define for each size (n) a
linear percolation threshold, i.e., a critical number q, (n)
of lacunas; the relative difFerence between the theoretical
values calculated from Eq. (8) and the numerical values of
the elastic threshold q, ( n) are, respectively, about 4% for
n =64 and 6% for n =16. Moreover, this difference lies
within the accuracy of the averaging. process; even if n is
not very large, the linear percolation threshold q, (n) is
given by q, (n) = n ln(n), so that the critical density d, (n)
is written as

n
n+ +n —n 2n —n

2nd 2(nd)
(12)

So far that n is large enough, linear percolation can be
more simply described by

(M )„.d =n 'exp
nd —1

(13)

The distribution of percolating monodimensional struc-
tures leads to the existence of an elastic threshold de-
pending on the size of the network q, (n) = n ' ln(n ')
and to an exponential dependence of the bulk modulus
upon the number of lacunas. In the macroscopic limit,
the critical density tends to 1, as n tends to infinity for
any space dimensionality d & 1:

case of cubic lattices.
The second analysis, leading to Eq. (7), is generalized

to higher space dimensions d &2: The mean number
(M )„.d of edge-to-edge percolating straight lines in a
d-dimensional hypercubic random network with n,

" sites
and q lacuna is written as

( ) d, (n"—n)! (n" q—)!

(n )! (n n——q)!

A Stirling's expansion of (M )„q.~ leads to

(M)„,,
111

n

10=-

R(n =16,q) d, (n)=1- ln(n" ')
n

(14)

0.1 =-

0.01 =

0.001
0

qc
I I 1

(
I I I

(
I I I

[
I I I

(
I I I ! I I I

60 80 100 12020 40

,q)

(M) = 60.82exp( —0.015q)
1QQ

(M)

B. Random Sierpinski carpets C(n, p)

Two-dimensional random Sierpinski carpets contain
random lacunary networks as basic elements in their
hierarchical structure. A random Sierpinski carpet
C (n,p) where n =3,p =7 at the step k =2 of iteration is
shown in Fig. 6, where hatched squares of side a
represent occupied sites. The mean number of percolat-
ing columns made up with squares of side na (bold
framed ones) is (M )„where q = n p; otherwise, the p-
squares of side (n —1)a are all independent, each square

10=

qc.

14 20)0 3k 400

(2) YiYiYi YgYgYiYgYg
YiYiYi Yi Yi

Yi
YiYi Yi

( ) YiYiYi YgYi

FIG. 5. Mean number of percolating lines vs number of lacu-
nas q in the case of random networks R (16,q) and R (64,q); the
fit shown below works only for meaningful values of q.

band of width
nQ

FIG. 6. Random Sierpinski carpet C(3,7) at the iteration
level k =2.
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TABLE II. Mean number of percolating lines in the case of random Sierpinski carpets C(4,p), at
different iteration levels k. Values calculated from numerical simulations are reported in the three left
columns, theoretical ones in the three right columns; values less than 10 are not really observable be-
cause of fluctuations.

k =2 (num. ) k =3 (num. ) k =4 (num. ) k =2 (theor. ) k =3 (theor. ) k =4 (theor. )

p =15
p =14
p =13
p =12

3.90
0.93
0.22
0.024

0.256
0
0
0

3.797
0.805
0.149
0.0238

0.152
0.0002

1.9X 10-'
8.5X10

6. 1X10-'
2. 1X10
8.2X 10
1.1X10-"

including (M)„percolating lines so that the mean
number (4 )„.k of percolating lines can be written

(C )„.. .=(M &„,&Q&„,,

where (4 )„sis the mean number of percolating lines in-

side a band of width na. The calculation of (4 )„sin-

volves conditional probabilities linked to joins between
squares of size na. Since the percolation of one line from
edge (1) to edge (3) in Fig. 6 implies one coincidence
among the n possible ones at the level of edge (2), the
mean number of lines percolating from (1) to (3) is

'=&M&
(M&„

n, q n, q

(Q&„,=&M&„,
(M&„,

it comes down to, finally,

a complete percolation implies (n —1) such favorable
joins, so that

are gathered in Table II and compared with theoretical
ones calculated from Eq. (17}.

The mean number of percolating lines, (4)„.z, de-

creases very strongly with the number k of iteration
steps; theoretical formula (17) gives a lower bound of the
mean number of percolating lines, except for very low
values of (4)„~.k, where fiuctuations are too large to
consider (4)„.k as meaningful. The reason for the
difference between numerical and theoretical values can
be understood when remarking that formula (17) is based
on the assumption that mean values coincide with the
most probable ones, what is an approximation for low n.
Anyway, Fig. 7 shows that the exponential dependence of
(4 )„~.k upon p, predicted by formula (17), is well

obeyed by numerical results for k =2. On the other
hand, in the macroscopic limit of large k, the bulk
modulus of a bidimensional Sierpinski carpet is equal to
zero.

IV. VIBRATIONAL PROPERTIES:
THE SEGMENTATION PROBLEM

n 2 (n + 1)/(n —1)

n —n2
'

Cn2—p
n

where C„is the binomial coefBcient,

CP=
n

(15)

At first order, vibrational properties of random spring
networks R (n, q) and random fractals C(n,p) are deter-
mined by longitudinal modes of monodimensional struc-
tures: independent segments. The transition between ex-
tended and localized modes can be defined by a percola-
tion criterion: Phonons are associated with the edge-to-
edge percolating straight lines, while molecular modes
are localized along lines shorter than (n —l)a. Monodi-

This reasoning can be carried out further when study-
ing the transition from step k to step k + 1; there comes a
recurrent relation between mean numbers (4)„~.k and
(4 )„~.„+,of percolating lines:

'n —1

('~~4, )~;k = 2
10» i i i i i i I » i i I i « i I

n k —1
(16)

Finally, this recurrent relation (16) leads to

&C &„.,=n'
Cn —p2

n —n

Cn —p
2

n

. (n +1)/(n —1)

(17)

0.1=

11 15 13 14 15 16

Numerical simulations have been done in the case of
random Sierpinski carpets C(n,p), with n =4; the mean
values (4)„.k have been calculated over 300 difFerent
C(n,p}. Numerical results at difFerent steps of iteration k

FIG. 7. Mean number of percolating lines as a function of p
in the case of random Sierpinski carpets at the iteration level

two with its St.
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mensional vibrational states have been observed by Bour-
bonnais, Maynard, and Benet' in the case of determinis-
tic Sierpinski carpets by means of MD and called "chan-
neling modes. "

The eigenvalues of the wave vector K, in the case of a
monodimensional continuous linear chain with j sites, are
given by E =re/(j —1)a, with r varying from 1 to
(j —2}. Computing the vibrational mode spectrum of a
random network or a Sierpinski carpet reduces to a
geometrical problem, counting up the number of seg-
ments with a given length.

A

Yi

C

Yi

n columns

FIG. 8. Segmentation of a random network.

A. Segmentation of random networks R (n, q)

( (j))""=2ncq, '.
n —j —1

Cq
n

(18)

(ii} The segment is limited by two unoccupied sites B
I

The segmentation problem, i.e., the distribution in lines
of length (j —1}a, is analytically solved in the case of
two-dimensional random networks R (n, q) Sin. ce q lacu-
nas are distributed among n sites, the size of the sample
space is C 2. Two different cases must be considered
when counting up the segments of length (j —1}a,paral-
lel to a given direction (b, ), with j & n as shown in Fig. 8.

(i) One tip is an edge of the network; a lacuna occurs
at the (j+1)th site in the line ( A) and the other (q —1)
lacunas are distributed among the (n —j—1) remaining
sites; the number of configurations containing that seg-
ment is C~~ ', there are n columns and two edges, so

n —j—1'
that the mean number of segments with length (j —1)a
and a tip at an edge is written as

Finally, the mean number of segments of length (j —1)a
1S

(m(j))„
2nC~& ' +n (n. —j—1)C~&

n —j —1 n J 2

Cq
n

(20)

This expression of ( m (j) )„~works for j running from 1

to (n —1) included, since the second term vanishes when

j=n —1; ( m (j) )„canalso be written

and C, which implies j ((n —1); there is a lacuna in B,
another one in C, and the (q —2) remaining ones are dis-
tributed among n —j —2 sites, so that there are C 2n J 2

configurations containing that segment; since there are
(n —j—1} different possible positions in that column
(BC}and n columns, the mean number of segments with
a length (j —1)a and an unoccupied site at each tip is
written as

n (n —j—1)C~&
( m (j) )bulk

Cq
n

nC~2 '
, [2+(q —

. 1)(n —j—1)/(n j—1)—]
Cq

n

(21)

A similar analysis leads to the mean number of percolating segments, as already studied in Sec. III, with the same result
as Eq. (7):

(m(n))„,=(M)„,=
nCq2

n —n

n

(22)

It has been ensured that ( m (j) )„satisfy the normalization rule

j=n —1

n& M)„+g j(m(j))„,=n' —
q . (23)

The expression (21) of ( m (j) )
„

is more easily compared to numerical results when using Stirling's formula. The
calculation leads to

J

1 — e ' @ "' 2+(q —1}
n n 2

(24)

I

(m(j) )„havebeen carried out in the same way as the
study of (M )„:For a given size (n) and a given concen-
tration (q /n ), the mean values ( m (j) )„(with
0 &j & n) and their standard deviations have been calcu-
lated from a statistics over 300 random networks; more
precisely, we considered 15 different values of q, between

where

Numerical computations of the distributions

2n —
q q q (2n —q)

2n (n q) 2n —(n —q) n (n q)—
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6 and 150 in the case n =16, and 20 different values of q,
between 10 and 1500 in the case n =64. The main results
are sumtnarized in Fig. 9; error bars (h,m(j))„» have
been calculated in the framework of the normal approxi-
mation:

(Am (j))„
'(j)&„,—[& m (j)&„,]'

300
(25)

Since a,p, y are small and j is varying only from 1 to n,
theoretical points have been calculated from a simplified
form of the analytical expression of ( m (j)&„»:

&m(j)&„,

(m(j))
35

30=

25=

20:
15:
10:
5:
0

I I I I I I I I I

R(16,106)

I I I I I
i

I I I I I I I I I
]

I I I

10
I

15

J

2+(q —1)
n —j —1

n —j —1
(26)

The use of formula (26) instead of (24) is justified from
an analysis of the fluctuations of (m(j}&„»:The agree-
ment between numerical results and the analytical law
can be precisely studied here, since statistical fluctuations
[(bm (j))„/(m (j)&„]„,of (m (j)&„canbe com-

pared with the difFerence between numerical and analyti-
cal results. Table III shows the average (hm /m &„„of
[(hm(j))„»/(m(j)&„»]„„calculatedover the (n —1)
numerical values of j and the average relative differences

& b,m /m &(of between numerical and theoretical values.
The difference between numerical and theoretical

values lies within the range of statistical fluctuations.
The length distribution is rather flat for small values of q,
and so Auctuations are almost not dependent on j,
whereas they are important at large j when q is larger.

The segmentation problem is generalized to any space
dimensionality d larger than 2; the mean number

(m(j)&„».z of monodimensional segments of length

(j —1)a (j &n) in a d-dimensional hypercubic random
network with n" sites and q lacuna is written as

(m(j) &„...
2n" 'C q ', +n '(n —j—1)C»

n —j—1 7l J 2

(m(j))
I I I I I I

8
I I I I I I I I I I I I I I I

4—

I I I I I I I I I
I

I I I I0 I I I I I
i

I 1 I I

10
I I I I I

15

segmentation is finally given by

J

(m(j)& = q
1

q e i 8i' ri'— —
n"

FIG. 9. Distribution in lengths in random networks R (16,q).
Points resulting from numerical computations are represented

by dots; solid curves show theoretical fits calculated from Eq.

(26).

cqd
n

(j &n), (27)
X 2+(q —1}n"—j —1

(28)

where the first term is associated with the segments adja-
cent to the edges and the second term with bulk seg-
ments; ( m (j}&„.z is expanded using Stirling's formula
in the same way as in the two-dimensional case, so that

where

2n (n"—q) 2n (n"—q) n "(n" q)—
TABLE III. Averages ( hm /m )„„ofthe relative fluctuations of (m (j})„»calculated from numer-

ical simulations, compared with the mean relative difFerences (b,m /m )@sbetween theoretical and nu-
merical values, for difFerent random networks R (n, q).

R (16,6) R (16,21) R (16,36) R (16,43) R (16,76) R (64,20) R (64, 130) R (64,600)

(km 0.053 0.021 0.033 0.046 0.073 0.074 0.041 0.2

0.066
m

0.043 0.043 0.047 0.085 0.077 0.043 0.2
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B. Segmentation of random Sierpinski carpets C ( n, p )

The hierarchical structure of Sierpinski carpets makes
their segmentation problem rather different from that for
random networks R(n, q). The main features of the
length distribution in C(n, p) appear in the transition
from a step k of iteration to the following one. Let us call
(y(j) ) n z.» the mean number of segments of length

(j —1)a, parallel to a given direction (5) in a random
Sierpinski carpet C(n, p) at the step k; this number splits
into an edge component (tp( j))'„.», including every seg-
ment with a tip at an edge, and a "bulk" one ((p(j))„z.».
Since there are p subsquares of size (n"—1)a in a Sierpin-
ski carpet at the step (k+1) of iteration, (q&(j))„.»+,
are deduced from (p(j})„.» when analyzing coin-

I

cidences between segments belonging to different adja-
cent subsquares along their common edge; the only con-
nections between subsquares we consider in the following
refer to the direction (6).

Different cases must be distinguished according to the
segment length.

(i) If 1 &j & n ", a segment of this length belongs to one
among three categories: Either this segment occurs in
the bulk of a subsquare, it occurs at an edge of a
subsquare without connection with another one, or it re-
sults from a coincidence between two segments of lengths

j, and j —
j& located in occupied adjacent subsquares.

Calling ( c )
„

the mean number of connections between

subsquares of size n, the recurrent relation is written as
a sum of three terms corresponding, respectively, to the
three cases described above:

(c)„,
(y(j))„~.»+i=p&q(j))'„,»+[n(n —1)—(c &„,j(tp(j))'„,.»+ "„'g &y(i)&'„~»(q(j )i&'„,—», .

i=0
(29)

where (c )„=g';:ni(i —1)(m (i) )
„

is expressed in terms of the length distribution in the random subnetwork R (n, q}
made up with subsquares of size n" (p = n —q).

(ii) Ifj= n ", four difFerent origins must be considered for such a long segment: It can be already present in an isolat-
ed subsquare, in a subsquare connected with another one, in a subsquare connected with two others, or result from a
coincidence. Calling ( c 1 )„~=g'; =2 ( m (i) )„& the mean number of subsquares connected once and
(c2)„=+I:z(i—2)(m (i) )n z

the mean number of subsquares connected twice, the recurrent relation can be written

(c) n"—i
+ „'y (q(i))'„.„(q(J—i})'„,,+(c2)„,4n'

&q(0}&„
„

'
np; »,

2n
(30)

(iii} If n "+1 &j &2n, the segment has three possible origins: Either it results from a single coincidence between a
segment of length n belonging to a subsquare placed at a tip of a subsegment and a segment of length j —n, it results
from a coincidence between two segments of lengths j, and jz, or it is built in three parts. The recurrent relation is

written as

(q(j —n") )'„,, »(y(j))„.»+, =(cl)„,(y(n"))„~».„'' + „'g (y(i))'„~.»((p(j —'))'„~.»
n 4n"

(q(n") )„~,»+(c2)„, „,' ' g (tp(i))'„,, »(q(j —n"—i))'„,.» .
4(n ");=o

(31)

Curves showing the behavior of (y(j})„~.», obtained
from numerical computations, according to the same pro-
cedure as (m (j))„arereported in Fig. 10. It can be
noted that (q&(j))„.» exhibits an oscillatory behavior
with a periodicity n =4 superposed on a mean exponen-
tial; oscillations occurring at very low values of
(y(j))„~.» are not ineaningful because of fluctuations;
the decrease of (p(j})„~.» when j goes from an to
cxn +1, with u integer and 0&a &n, can be understood
when considering the differences between the recurrent
relations (30) and (31). On the one hand, the first term in
relation (30) gives no more contribution in relation (31);
on the other hand, the lengthening of j by one unit in-
volves an additional coincidence. Oscillations become

smoother when p decreases because ( c )„,( c 1 )„~,and

( c2 )„~tend to zero. High values ofj are strongly disad-

vantaged when k increases, while involving products of a
great number of conditional probabilities.

C. Vibrational spectra

Vibrational spectra associated with longitudinal modes
of monodimensional structures are deduced from length
distributions.

In the case of random networks R(n, q), the mean
number (N(K))„~ of modes with a wave vector
K =ra/(j —1)a localized a.long segments shorter than
(n —1)a can be written
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j=n —1

(&(E))„,= y gj (m(j))„,,
J=3

(32}

where g x =1 if the segment with a length (j —1)a con-
tributes to a mode of wave vector E and g. z =0 other-
wise.

The set of wave vector eigenvalues is classified in a
more useful way: It is always possible to write
E(n„n2)=(m/a)(n, /n2), where (n, /n2) is an irreduc-

g(E(n„n2))=gg, x . (33)

The set of values taken by g(E(n„n~))depends on the
size of the network; when dealing with localized modes, j
runs only from 3 to (n —1) included. Thus g(E(n„n2))
is written as

ible fraction with n& &n2 and n2 runs from 1 to (n —2)
included; gj x(n„n2} is then different from zero if there
is an integer r so that r =(j—1)(n, /n2), with (r &j—1).
The number of difFerent lengths which contribute to the
same mode E(n&, nz) defines the degeneracy

g(E(n„n2))of the mode E(n&, n2):

100

10—

I I I I I I I I

tl 2
g(E(n&, nz))=E (34)

0.1=

0.01
0 15 205 10

C(4, 13)
I I I

i
I I I I

L

I I I I
L

I I I I

where E(x) is the integer part of x; nz runs from 2 to
(n —2) included. Several authors, dealing with excitation
spectra in deterministic Sierpinski gaskets, ' ' noted

40—
R(64,50)

QQQ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
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FICx. 10. Distribution in lengths in random Sierpinski carpets

at different iteration levels. Points resulting from numerical
computations are represented by dots and linked by solid
curves. Straight lines drawn in the cases k =3 and 4 are calcu-
lated from exponential fits.

FIG. 11. Vibrational spectra of random networks R(64,q)
above the linear percolation threshold q, (64)=266; (N(It) )„~
is plotted as a function of K in (n

& /n2 ) units.
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such an effect of mode degeneracy, which is here under-
stood as a geometrical effect.

Spectra have been computed from numerical simula-
tions according to the same process as described in Sec.
IVA; typical results are reported in Figs. 11 and 12,
where the mean values (N(K))„are plotted versus

(n, /n 2 ); modes associated with percolating lines are not
taken into account. Since the degeneracy g(K(n„nz)) is
not dependent on n „spectra are symmetric with respect
to the mode (n, /nz }=—,'. As long as the number of lacu-
nas is low, the length distribution remains rather fiat and
all modes are present in the spectrum, with an intensity
proportional to their degeneracy. Peaks corresponding
to modes K ( l, nz ) line up along a straight line of slope s;
peaks corresponding to modes K(2, n 2} line up along
another straight line with a slope s/2, and so on.

The distribution ( m (j) )„exhibits an exponential
outline a11 the more marked than when q is increased, so
that long segments become quite scarce; the intensities of
modes associated with long segments decrease when q is
increased, all the more quickly than when their degenera-

cy is low, until they disappear. So gaps appear at the feet
of highly degenerate modes as seen in Figs. 11 and 12.

The behavior at low q is well discriminated from the
one at large q when plotting the integrated density of
states (IDOS) in K: Figure 13 shows such graphs, where
the total mean number of states, (NJ(K) )„,with a wave
vector lower than K is plotted in units ( n, /n z ); the
profile of (NI(K))„q is well known as a devil's stair-
case. The width of gaps located at (n, in2) =

—,
' is larger

than at ( n
&
/n 2 ) = —,

' and more generally decreases with

n2 F.urthermore, both gap widths and intensities of de-

generate modes increase when q is increased.
When the total measure of gaps tends towards 1, the

spectrum becomes by definition singular continuous;
this appears in the macroscopic limit when long segments
become unimportant, i.e., near the linear percolation
threshold. For larger lacuna concentrations, only finite
segments occur, and there is a discrete Dirac spectrum of
singularities.

In the case of random Sierpinski carpets, the mean
number (v(K))„.„ofmodes with a wave vector K is

150 2000—

R(64,300)
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50—
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FIG. 12. Vibrational spectra of random networks R(64, q)
below the linear percolation threshold q, (64) =266; (N(K) )„,
is plotted as a function of K in (n

& /n& ) units.

FIG. 13. Integrated density of states (IDOS) in K for two
random networks R {64,q); (N, (K))„is plotted vs K in

(n, /nz) units.
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written as

j=n —1
~ k

( (&))„=Q g (p(j))„
J =3

Spectra calculated from numerical computations are
shown in Fig. 14. They reflect the oscillatory behavior of
(y(j) )„~.l, Since segments with lengths 4ra, with r in-

teger, are disadvantaged, the intensities of modes such as
(n, In 2)= 1/4r are weakened in comparison with that for
random networks R (n, q) I.t is clearer when p is large,
since oscillations become larger, as already noted before;
that effect is seen from comparison between Figs. 14(a)
and 14(b). The IDOS plotted in Fig. 15 shows gapa ap-
pearing in the spectrum close to degenerate modes;
their widths decrease as expected when p increases. Since
segmentation on random Sierpinski carpets emphasizes
short lengths when k increases, their spectrum is always
discrete in the infinite limit.

In a concluding remark, it must be noted that the elas-
tic decoupling in independent segments neglects anhar-
monic contributions from central forces, so that the ap-

proximation is strictly valid only at low strains and at low
vibrational intensities. In the case of large strains or
large vibrational intensities, transverse coupling occurs,
and there is not a perfect pinning of vibrational modes at
elbows and angles. From that point of view, the pioneer-
ing work of Bourbonnais, Maynard, and Benoit on MD
in deterministic Sierpinski carpets proved the existence of
channeling modes, ' i.e., that propagation is restricted to
full segments; it is a proof of the efficiency of the harmon-
ic approximation by means of MD computations. Of
course, the introduction of anharmonic coupling involves
the contribution of elbows in the segmentation process.
Similar remarks also apply to composite materials where
sites of the network are filled with particles A and lacu-
nas replaced by another kind of material particles 8. In
such composites, previous calculations remain valid in
the weak-coupling limit between particles A and 8, and
basic effects are due to separate matrices A and 8 only.
Finally, the geometrical part of percolation in the appear-
ance of singular continuous spectra is general and easy to
understand. For finite n, below the percolation thresh-
old, there are only finite clusters and thus a finite set of
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FIG. 14. Vibrational spectra of random Sierpinski carpets
C(4,p) at the iteration level k =3; (v(X))„.~ is plotted as a
function of K in (n & /n2) units.

FIG. 15. Integrated density of states (IDOS) in K for two
random Sierpinski carpets C(4,p) at the iteration level k =3; K
is in (n&/n2) units.
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Dirac peaks in the excitation spectrum except near the
percolation threshold. Above the percolation threshold,
the distribution of finite clusters decreases exponentially
and the excitation spectrum becomes dominated by bulk

excitations, i.e., phonons. Since the percolation argu-
ments developed in Ref. 5 are valid for bond percolation
and are quite general, singular continuous spectra can
occur only at the vicinity of percolation thresholds.
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