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Multiple-scattering theory, as it is applicable to metallic systems, is generalized systematically com-

pared with the usual formulation. The generalization refers to the reference system, which conventional-

ly is free space, but which can be chosen to be much more general. For example, in describing a binary

alloy, a defect in a metal, or a finite impurity-cluster model for the latter system, the reference system

may be an average medium, the unperturbed metallic host system, or the finite host cluster, respectively.

Applications are indicated for the generalized Friedel sum rule, the local density of states, and the transi-

tion probability of a Bloch electron. A state in a system is shown to be built up of properly generalized

incoming and outgoing waves.

I. INTRODUCTION

Multiple-scattering theory was first applied in solids'
in order to describe the electronic band structure of per-
fectly crystalline material. It formed an intriguing alter-
native to the agumented-plane-wave method. In both
methods a muffin-tin approximation was used for the
electronic potential. Technically, the methods were
bound to give the same results. Conceptually, however,
the multiple-scattering approach was more appealing in
taking full advantage of the special property of a muffin-
tin potential of having a constant background potential,
the so-called muffin-tin zero. The scattered waves could
be followed exactly in a striking way, and consequently
the equation for the crystalline electron eigenstates was
exact. The muffin-tin zero for an infinite solid, being
effectively equivalent to free space, served as a reference
system.

It remained that way even in later, more advanced de-
velopments of the multiple-scattering approach, aimed at
the description of the electronic properties of defects in
metals and of random binary alloys. ' '" For example,
the former, dilute-alloy systems were described by the
Korringa-Kohn-Rostoker (KKR) Green's-function
method, ' but both system and unperturbed host were
described by the original multiple-scattering theory, with
free space as a reference system. Although an initial im-
pulse for using the host system as a reference system can
be found in the work of Hamazaki, ' this line of thought
is largely ignored. ' Ironically enough, in describing the
binary-alloy system, the formal condition for the average
potential in the KKR coherent-potential approximation
is necessarily derived formally using that average medi-
um as a type of reference system. But as soon as that for-
mal condition is set down, it is routinely rewritten' in
terms of the infinite matrices corresponding to the origi-
nal binary-alloy system and further elaborated upon in
that form.

In the present paper we will show that it is possible to
formulate a generalized multiple-scattering theory in that
the restriction to free space as a reference system is con-
sequently relaxed. Generalized incoming and outgoing

waves are defined, and various examples and applications
are given. The generalized theory illustrates nicely the
arbitrariness of the choice of reference system. The gen-
eralized equations to be derived reduce simply to the
equations for the original multiple-scattering theory by
taking the limit of free space as a reference system.

In Sec. II a formal treatment is given, with an em-
phasis on incoming and outgoing waves. In Sec. III for-
mal results are illustrated by elaborating them in the
mixed site —angular momentum representation. In Sec.
IV a generalized Lloyd formula' ' for the density of
states of a system, described with respect to a general
reference system, is discussed in relation to a theorem by
Krein' in formal scattering theory. In Sec. V a new ex-
pression is derived for the local density of states. Section
VI is devoted to transition probabilities. Conclusions and
prospects are formulated in Sec. VII.

II. INCOMING AND OUTGOING WAVES.
FORMAL TREATMENT

The electronic behavior in a metallic system is deter-
mined by a potential to be written as

V=+ V
J

in which the summation runs over all atomic and vacan-

cy positions in the system. Describing multiple-

scattering theory' it is natural and also permissible to
think of a muffin-tin representation of the potential. The
original restriction to spherically symmetric single-site

potentials can be relaxed, however. The final expressions
contain only t matrices and can be derived for nonspheri-
cal potentials equally well, leading merely to t matrices
which are nondiagonal in angular momentum. For ex-
ample, the interesting Frenkel pair defect in which two
metallic atoms occupy one lattice site in a dumbbell-like

way, could be treated straightforwardly' in terms of the
nondiagonal cluster t matrix of the two atoms. Further,
recently' ' it has become more and more clear that even
full cell potentials can be accounted for if their clearly
nondiagonal t matrices are used. Since latter derivations
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b, V=g V~
—g VJ"=—g b, V~ . (3)

The Green's function of the reference system

gr (E+ Hr) —1 (4)

contains the energy E explicitly. However, we will write
this energy as an argument for 6' only, if it is required
for the sake of clarity. The system t matrix described
with respect to the reference system, defined by

~vl p) =rip),
is given by

T=b V+EVG'T=hV+EVGEV .

The system Green's function G=(E+ H) ' is r—elated
to 6"by the Lippmann-Schwinger equation

6=6'+6 "6VG =6 "+6 "TG'

The site notation in (3) presupposes a one-to-one
correspondence between the sites in the system and those
in the reference system. This still includes systems such
as binary alloys and dilute substitutional and interstitial
alloys. Even possible lattice distortion in the latter sys-
tems can be accounted for, but for the moment we will
omit this effect, restoring the situation in the final equa-
tions by a simple substitution. ' ' '

Multiple-scattering theory enters by the definition

av, le) =t~„le,'"')

of an incoming wave at site j, to be distinguished from
the incident wave lP ), using a single-site t matrix defined

by
I'S .

v hall Vj + Leal VJ 6 t g y

Here G ' denotes the Green's function (E+ Ho —VJ)—
of a single reference-system potential V". at site j. The
kinetic-energy operator, which all Hamiltonians in
multiple-scattering theory have in common, is denoted by
the free-electron Hamiltonian Ho. The operator t&v,
describing the scattering by a system potential in free
space with respect to a reference-system potential at the
same site, thus being an operator describing difFerence-
scattering for potentials in free space, will turn out to be
the building block of the generalized multiple-scattering
theory.

The meaning of definition (8) becomes clearer after

can be considered complications which can be taken care
of at a later stage, the present treatment will be restricted
to muffin-tin potentials.

The wave function of an electron in such a metallic sys-

tern is given by the Lippmann-Schwinger equation

le &
= ly &+ G "«le'&,

and is composed of an incident wave lP), being a regular
solution of the Schrodinger equation for the reference
system at the energy E, and a scattered wave being pro-
portional to the potential difference

rewriting it with the help of (9):

«, I+&=«,(1+G 't' )l%j"') . (10)

Apparently, the system state at site j can be written as a
sum of two terms:

l
qr )J l

linc ) +g J t1
l

y'"' )
—i@inc) + lyon&)J J

At site j, one can write

l~&, =ly&, +,G" y t,', le,'".
&

j'(&j)

+( gr g j)tJ lipinc) + i@out) (13}

where the left subscript at the Green's functions denotes
at which site one is looking. Comparing this multicenter
expansion of the system state with its one-center expan-
sion (11), the incoming wave appears to be composed as
follows:

lil/inc) ly) + gr y tj' lq/inc)

j'(+j)

+(JG" JG ')tJt, i—rl%'J"') . (14)

For free space as a reference system the third term can-

cels, because then G"=G '=G =(E+ Ho) ', whil—e
the second term describes the contribution from the in-
coming waves scattered at all other sites, a well-known
result reviewed nicely by Faulkner. The second term in
(14) in its general form has the same meaning, but the
scattered waves at all other sites j' are now propagated to
the site j by means of the Green's function of the refer-
ence system. The third term in (14) can be identified as a
backscattering term. Part of the outgoing wave is scat-
tered backwards by the reference system, to the extent
that its Green s function differs from the single-site
Green's function G ', contributing anew in this way to
the incoming wave.

Since backscattering will be a common feature in all
systems as soon as the reference system difFers from. free
space, it is attractive to define a reduced propagator

Gred Gr Grs
7 (15)

which accounts for it automatically. In this definition the
propagator G" works site diagonally only. As for its site
properties, one could write (15}more explicitly as

jGjjGjjG5jj (16}

In terms of this reduced propagator, expression (14) for

the second term being necessarily the outgoing wave at
site j. The site label j has to be added at the left-hand
side, because the potential factor 5V in (10) projects out
only that local part of l 4). The composition of the out-
going wave being clear from its definition, insight into the
composition of the incoming wave is obtained by recon-
sidering the system wave function (2) and writing it as

I+& = lg&+G"g ~v, I+& = ly&+G'g t' I+,'"'& . (I&)
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the incoming wave becomes T '=hV 6 '+EVjGAVj (22)

(17)

For sites j'Aj the second term of (14) arises again, while
the j'=j term gives the third term of (14). In this way
scattering of the incoming waves at all sites contributes
to the incoming wave at a site j, if propagated properly

6 red

The merit of the one-center form (11) is becoming
clear. Outside the muon-tin sphere the incoming wave is
merely composed of regular solutions of the Schrodinger
equation of the reference system. The incident wave is
one, and G"" takes care of another one. The singular
solution for the reference system, still contributing to G",
is cancelled in 6" in favor of the outgoing wave, which
will be seen explicitly in Sec. III. That means that the
multicenter expressions (14) and (17) just connect regular
solutions of the reference system. Apparently the multi-
ple scattering, as it occurs in a system described with
respect to a reference system, is a matter of the incoming
waves. The outgoing wave in (11), being a singular solu-
tion for the reference system, simply serves as an extra
term in order to complete the local state of the system,
which is, of course, a regular solution of its Schrodinger
equation.

By now the outgoing wave is written in terms of the in-

coming wave by Eq. (11), while for the incoming wave a
multicenter expansion, in terms of the incident wave and
all incoming waves, is given by Eqs. (14) or (17). Looking
for scattered wave solutions, it is possible also to write
these waves in terms of the incident wave only. A first
form follows from Eq. (5) using the decomposition

T=g T, ,
J

and Eq. (3):

(18)

(19)

Combining the latter equation with Eq. (8), for the in-

coming wave in (14) and (17) one finds

describing all multiple-scattering events starting at site j
and finishing at site j, mediated by the system propagator
G.

It is clear from (22) and (21), with (6) and (18), that

(23)

Another operator, denoted by T', arises through a sum-
rnation over the other site label:

(24)

The latter operator, describing a11 multiple-scattering
events starting at site j', is equal to

T,'=AV + TG "AVj (25)

and has the property (18) as well. With these means the t
matrix T is usually written as the so-called multiple-
scattering series

T=gr, +g r, G'r + g r, G r, G"t, +
J&J J&J

J &J

in which

t~= av +tv 6't~
J J J J

=(1—hV G") 'b, V =[(b,V )
' —G "]

(26)

(27)

Note the difference from the earlier definition of t~zv.

For free space as a reference system these two operators
are identical. But for the general case the reader is invit-
ed to check that, while the operator t&~ allows for the
decomposition (11), including its illuminating interpreta-
tion, the operator t. does not. Regarding our subject it is

therefore more appropriate to write T in terms of trav.
Using (21) and (16), one finds

TJ =b Jj+~VJG" T+~VJG '

Using (9), this can be written in terms of the single-site
scattering matrix t~~v as

T, =tj (1+G" T), (29)
(20)

T =AV +AVjG"T, (21)

describing all multiple-scattering events finishing at site j.
In addition, an operator T-' can be defined as

The second term in the second member describes the
scattering of the incident wave by all centers, after which

,-6' takes care of propagation to the center j. Part of the
latter incoming wave amplitude is transformed in an out-
going wave, nainely the part of Tlg & which already end-
ed up at site j. The third term corrects for that spurious
contribution. The form of the third member is useful as a
next step in exposing the different properties of the in-
corning wave. To that end, a further discussion of the t
matrix T is required. In view of Eq. (6), the operator TJ
in (18) can be defined as

lql'"'& = lp& + G"' g (1+TG ')r'' (31)

as well, completely in terms of the incident wave, the t
matrix T with respect to the reference system and the lo-
cal scattering t matrix t ~v.

For the outgoing wave the operator Tjj occurring in

(22) to (24), is useful. This operator can be written as

which reveals that 6" rnediates between all multiple
scattering in the system due to all scattering centers and
the center j.

Similarly one finds

—
( 1+TGred)t j

J

With this, using (18) for T,', the incoming wave (20) ap-

pears to be given by
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T,=[fi,+tJ (6«d+6«dTG«d)]tj'av hv (32) III. THE MIXED SITE-ANGULAR MOMENTUM
REPRESENTATION

Tjj Lal Vj 5jj +6 Vj G Tj

Now using (15) and (24), one finds

T '=EVJ5 '+b, V G"dT'. +hV G 'T

(33)

(34)

Result (32) is obtained with the help of (9) and (30). Ex-
pression (32} shows that the scattering from a site j' to
another site j occurs right away, mediated through the
reduced propagator G", and via all scattering centers in
the system, including centers j and j' contained in the fu11

T, represented by the term G" TG" .
Comparing (31}and (32},it is clear that

(35)

This follows from (22) by first substituting (7), and then
applying (25). This gives The contents of the present section are relatively

straightforward, but it is written to illustrate the rather
abstract formal results of Sec. II.

The formal equations (2}, (11},(14), (31), and (36) for
the state

~
4 ) and the incoming and outgoing waves will

be elaborated using an angular momentum expansion.
To that end one needs a one-center expression for ~ql ) in
the r representation:

(r~%)—:%(r)=%(x+R )=g C/ L R}t (x)
L

(43)

and an angular momentum expansion of the Green's
function of the reference system in the r representa-
tion: '

G "(r,r') =6"(x+Rj,x'+R'}
=R"'J(x()H"i(x )5 t,

so that the outgoing wave in (11)becomes
+R "(x)Q"JJ'R"1'(x') . (44)

(36)

T= [(b V) ' —6 "] (37)

for the t-matrix operator, which is equivalent to Eq. (6),
one easily sees that

T~ —T '=G"—G't=2i ImG" (38)

The optical theorem in operator form follows after multi-

plying (38) from the right with T, and from the left with
T f.

Apparently, the incident wave, scattered by all centers,
ends up as an amplitude (35) at site j and is transformed

PS ~

to an outgoing wave by the local propagator G '. Of
course, Eq. (35) also follows directly from Eqs. (8), (19),
and (23). But the interpretation in terms of TJJ given by
(32) could be lacking.

For completeness, and with an eye to applying them
below, we finally review some results of formal scattering
theory, ' concerning the optical theorem and the S-
matrix operator. Using the form

R}t(x)=Rp(x)+ ht/Hp(x) . (45)

The latter form refiects the choice of spherical potentials
and the neglect of lattice distortion, since

and

btj=t/ tf 1— (46)

t/= ——sin5]exp(i 5) ), (47)
K

in which a =E' and Sj are phase shifts.
All x-dependent functions are a product of the form

RL, (x)=R~(x) I'L, (x) ~ (48)

YL(x) being a real spherical harmonic. The singular
solution is outside a muSn-tin sphere given by

HI(x) =H, (x) = i~hI+(ax ), — (49)

the additional factor —i ~ serving to guarantee an
energy-independent %ronskian:

At a site j the system wave function %(r) is written in
terms of the locally exact solutions Rlt (x) of the system's
Schrodinger equation, which are related to the corre-
sponding solutions for the reference system by

T Tt=T (G" G"—)T, —

or, equivalently,

ImT=T (ImG")T .

The unitary S-matrix operator is defined by

S= 1+2i(ImG ')T= 1+(6"—G" )T .

Using (38), this operator can also be written as

(39)

(40)

(41)

[RI(x),HI(x)] = 1

X
(50)

and in which hi+(z)=jr(z)+in&(z) is the standard com-
bination of spherical Bessel and Neumann functions in
scattering theory. For a dilute alloy 0" is the matrix for
the unperturbed host system, given by

K=B 1
(51)

1 —t "B

S=Z' T. (42) containing the structural matrix B, defined by

This latter equality will be used in Sec. IV in relating the
result of Krein' and Birman and Krein to a generalized
Lloyd formula for the system's density of states. '

I I' 1 )St
Bp~. = 4nai' '+'gi' —Cll .I-hl+-(RJJ') .

L II

Using (43) and (44) one readily finds, for (2},

(52)
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QC)LR((x)=P(x+Rj)+g HI'(x)fijj+QRP(x)gLif bt(C(t,
j'L L'

(53)

in which x is supposed to be larger than the muffin-tin ra-
dius at site j. In view of (45) the Hankel function term on
the right-hand side cancels such a term on the left-hand
side. Writing the incident wave P, being a property of
the reference system, in a way similar to (43), and using
the Wronskian property (50), one finds the following
equation for the expansion coefficients:

Cine
( 1 grgt }

—1Cr (59)

and substituting this into (58), comparison with the for-
mal form (36) leads to the expression

This fully explains the cancellation mentioned above.
Solving (57) for the vector C'"',

C( t.
—Ck'L +g gt'.g 5t( C( L

j 'L'
(54) (60)

qi,'"'( x ) =~ C'""R"'(x ) .L L
L

(55)

The incident wave has this form by definition, and it is
only the second term of G "(r,r') in expression (44} which
contributes to the second and third terms in (14). As for
the third term, this becomes clear immediately if one

TS .

realizes that G '(r, r') is given by

G '(r, r') =R "'j(r( }H"j(r) ), (56)

which coincides precisely with the first term of G "(r,r')
in (44). Substituting (55) into (14) in the r representation,
and using (44) and (56), one finds the following equation
for the expansion coefficients CL"'i,

Cine, j Cjr+ y grj gt(Cine, j'

j 'L'
(57)

Interestingly, this equation has exactly the same form as
(54), which, regarding the one-center expansion (11), the
one-center expression (43), and the relation (45), implies
an outgoing wave of the form

At this point it may be clarifying to distinguish scatter-
ing solutions of the Schrodinger equation and stationary
solutions. Equations (2), (53), and (54) apply to the gen-
eral case of scattering solutions, in which there is an in-
cident wave, and the special case of stationary states is in-
cluded. For example, applying (54) to a perfect metal and
choosing free space as the reference system, the well-
known KKR equation' follows for the stationary states
having no incident wave, i.e., C'=0. In a dilute alloy a
host incident wave is present, and equation (54} can be
solved for the scattering solutions, i.e., for the system
wave-function coefficients in terms of the host coefficients
Cf„ the host Green's-function matrix g", and the t-matrix
difference At.

More interesting are the incoming and outgoing wave
equations. The cancellation of the Hankel function terms
in (53) always occurs in derivations using the full
Lippmann-Schwinger equation (2), but it is just a wel-
come step in deriving (54). The meaning of that cancella-
tion becomes clear through the multiple-scattering repre-
sentation (11) of the system state. In view of (14), the fol-
lowing ansatz is prescribed:

for the system t matrix described with respect to the
reference system.

Although Eqs. (54) and (57) are identical, which could
have been anticipated, the reader will admit that the
description in terms of incoming and outgoing waves is
clarifying and most appealing, similar as it is to original
multiple-scattering theory' with free space as a refer-
ence system.

Another example of using a more general reference sys-
tem than free space is the proof of the relationship

g = g"+ g"ht g =g"+ g"Tg", (61)

starting from (7) and using (44) and a similar form for the
system Green's function. The main steps of that proof'
are already found in the early, but not much appreciated
work of Hamazaki, ' and will not be repeated. Neverthe-
less, it has remained common practice in the literature to
derive (61) using the representation

=B 1

1 —tB
(62)

of the system Green's function matrix described with
respect to free space as a reference system. If the right-
hand side of (62) is expanded with respect to g" given by
(51), (61) indeed follows. On the other hand, (61) written
in the form

(63)

(64)

illustrates nicely the invariance of the matrix expressions
with respect to the choice of the reference system, as ex-
pression (60) for the t matrix did already. For free space
as a reference system t"~0, ht~t and, according to
(51), g"~B. It is clear that the free space expressions for
g and T follow from (63) and (60), substituting these lim-
iting values.

An example' of a simplification using a more general
reference system than free space is found in the deriva-
tion of the determining equation for the averaged medi-
um t matrix t in the single-site coherent-potential ap-
proximation in binary alloys. Using (60) in the form

q';"'(x) =g C'""b,t(H"'(x) .
L

(58) as the self-consistency condition, in which c~ and
c~= 1 —c„are the concentration of the components 3
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and 8 in the alloy, one readily finds the well-known expli-
cit form' "
t„'—c„t„+csts +(t„—t„)T"(t„' t—s ') . (65}

The t matrix T" for the average medium, being the refer-
ence system in the present case, enters through the equal-
ity

(66)

Tr{G(E)—G "(E)J
= —— Tr lnS(E),1

2 dE
(73)

in which S(E) is the on-the-energy-shell S matrix, while
the notation of the present paper is adopted. Substituting
(73}into (68) with (67), one obtains

general theorems of Krein' and Birman and Krein. ~

According to Faulkner these theorems in formal
scattering theory amount to the equality

IV. GENERALIZED LLOYD FORMULA
AND KREIN'S THEOREM

b,n(E) =—Im Tr lnS(E) .1

dE
(74)

The electronic density of states of a system at energy E
is given by

We claim that the link between (74), based on Faulkner' s
interpretation of Krein's work, is provided by the opera-
tor expression derived by the present authors

n(E)= ——Im TrG(E) .2
(67) 2 dhn(E) =—Im Tr inT,

dE
(75)

The difference in density of states with respect to a refer-
ence system in which T is still the operator given by (6) or (37), to be

combined with equality (42). Since

hn (E)=n (E) n "(E)— (68)
Im Tr lnT = —Im Tr lnT, (76)

2
b,n(E) =—Im Tr lnT', (69)

has been brought in a very useful form by Lloyd, but for
free space as a reference system. The correct form ' as
it is used nowadays is

Eq. (75) is equivalent to

4n (E)=—Im Tr lnS,1

dE (77)

in which T is a matrix in the mixed-site angular momen-
tum representation of the form (60)

T"=t
1

1 —Bt (70}

T"=t 1

1 Q'At— (71)

This matrix differs slightly from the matrix (60), in that it
contains the difference-scattering t matrix t&, given by

i h, Q(t jt, (
= ——sin(65/)e

K
(72)

which also occurs if scattering of Bloch electrons is de-
scribed in dilute alloys, as will be seen in Sec. VI. It is
clear, that for free space as reference system, tz =ht =t.

The derivation of the generalized Lloyd formula (69)
containing (71) was revealing and rigorous, ' but also
quite lengthy. The question was raised of a link with the

The usefulness of (69) is given by the explicit presence of
the energy derivative, implying an explicit expression for
the integrated density of states. The latter expression can
be used to derive a generalized Friedel sum rule, measur-
ing the local charge neutrality in electronic structure cal-
culations.

The superscript 0 was added in (70) to indicate the
reference system. The superscript s, standing for scatter-
ing, is required in general in order to cover other refer-
ence systems as well. For example, for a dilute alloy de-
scribed with respect to the unperturbed host system as a
reference system, it was shown' ' that the t matrix to be
substituted in (69}has the form

in which S is still an operator. Reasoning now the other
way around, the matrix expression (74) reduces to the
generalized Lloyd formula (69). This would mean that
the Lloyd formula in its general form (69) holds for all
reference systems. The matrix T' has to be calculated
from the operator T, generally given by Eq. (6}. This will
be done for a dilute alloy in Sec. VI.

V. LOCAL DENSITY OF STATES

n J(E)= ——Im f d r G(r, r, E)2
7T cellj (78)

is defined as the local density of states. For practical pur-
poses the integration in (78) is restricted to a cell, e.g., a
Wigner-Seitz cell, around a site j. In deriving the gen-
eralized Lloyd formula (69) with (71), the present authors
evaluated the integral over all space by summing (78)
over all cells. ' A form for G similar to the form (44) for
6' is used. The integral over a cell can be converted to a
surface integral over the cell boundary, and the Green's-
function matrix 9 can be expanded according to (61). In
this way an expression for the local density of states
n~(E) can be derived using ingredients of the latter work,
equations in it being referred to in the present section by
I. The reader is referred there' for details. Our expres-
sion follows after substituting Eqs. (I42) and (I43) into the
contribution of cell j into Eq. (I40) for the system density
of states, which comprises the contributions of al/ cells,

In carrying out the trace operation in the r representa-
tion, thereby generating an integral over all space, part of
such an integral
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n~(E}=n"'l(E) ——Imtr a".(O'T0")D+P"(T.0")JJ+P"(0"T)J'+ y" +2 „, „„„-„„.„d(bt 1)

dE
TJJ+(b, 1)

-1dbt' db5'
dE dE

(79)

a~L, L
= IVJ. R}I,R) (80)

and

pqL =
IV~ Rj,Hj. (81)

The trace operation refers to the angular momentum la-
bels only, and P is the transposed with P with respect to
these labels. The a", P", and y" matrices come from the
integral over a Wigner-Seitz ceil. They are Wronskian-
like integrals over the cell boundary of the solutions RP
and HL' of the Schrodinger equation for the reference
system [see Eqs. (45) and (49)], and their derivatives with
respect to the energy. So

T

pared with (83},and the right-hand side of which will be
justified readily. For both integrals one needs the matrix
A in the equality

d x't (x, x')RL (x') =6V(x)g RL(x) At L (85)
cell L'

connecting a reference-system solution to a linear com-
bination of system solutions. In view of (26) the operator
t holds for a system which deviates from the reference
system only at one site, by a potential difference 5V. The
matrix A is nondiagonal, because the environment of the
perturbed site is not spherically symmetric. This matrix
is obtained by elaborating the Lippmann-Schwinger
equation (2) for the present one-site case. Using a matrix
notation for the angular momentum labels, one writes

while in y two singular solutions are combined. The sur-
face integral 8' is defined as

d
PL, QL

=fdS, PL (r)VQ~, (r)

R'(x) A'=R "'(x)

+f d x'G "(x,x')b, V(x')R J(x') A J
cellj

=R "J(x)+fH" ~(x)+R "&(x)g"&~]~tA& . (86)

d—
QL (r)V PL (r)

(82)

All ingredients of expression (79) are known. The matrix
9" given by (51) is calculated routinely, the matrix T
given by (60} follows simply from it, and the surface in-

tegrals a", P", and y" have to be calculated once in an
iteration procedure, being a property of the reference sys-
tem. Further, all terms but the a" term have a natural
cutoff in the angular momentum due to the usua1 cutoff
in b, t and b,5. Therefore, only the a" term requires spe-
cial attention in the numerical evaluation of (79).

VI. TRANSITION PROBABILITY

A Bloch state can be represented by a form (43) by
adding a label r. In calculating a transition probability,
one needs the matrix element

( r,jL I
tj~ I r,jL '

&

—:fd'x d'x'R "J(x)*t, (x, x')R "'(x'), (83)

in which t , defined by (27), is. the building block of the
system t-matrix operator T given by (26). In further
evaluating T one needs, in view of expression (44) for G',
the integral

fd x d x'RL'J(x)t~(x, x')RP(x')=At/Aft, (84)

in which a complex conjugate symbol is missing com-

The third member is obtained after substituting (44) for
6, and evaluating the remaining integral, using a stan-
dard technique. That technique amounts to the replace-
ment of 6V by E H" due to t—he Schrodinger equation,
after which the kinetic-energy part can be converted into
an easily evaluable integral over a spherical surface
around b, V. By that it is precisely the integral in (84) that
has been evaluated, so that its right-hand side also is
justified by now. In view of (45), it follows from (86)
that'4

A '= (1 0"~'At')— (87)

Now everything is ready for evaluating the full t-matrix
operator T. One finds, using (26) and (44),

(rjL)T(rj'L'}=(jL(t A j~'L'}
1 —9'„dAt A

(89)

the latter matrix being precisely matrix (71). The matrix
9" in the denominator in the second member of (89},car-
rying the nondiagonality subscript, occurs only for
different sites, due to the inequality signs in the series
(26). The matrix A takes care of the diagonal elements,
because, in view of (87),

The integral (83), being a true Bloch scattering integral,
appears to be proportional to the difFerence-scattering t
matrix tt„given by (72). One finds

(r jL~t~ r jL'}=tj,Aj ~, .
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l

1 —9'„„htA
=(1 —9'b, t) ' . (90)

A ' 0—"„ddt

For completeness we remark that the integrals (83) and
(84) also could have been evaluated using the relation

t6 t~ +t AG redtj bv j bv & (91)

which easily follows from definitions (9), (15), and (27).
Since

(92)

and the integral similar to (84) is equal to b, t/5 LL, results
(84) and (88) with (87) follow immediately using (15), (44),
and (56) for G" .

At this point we wish to clarify the seemingly confus-
ing occurrence of both the difference-scattering t matrix
tz and the difference of t matrices ht. First, for muSn-
tin potentials these matrices are related simply by a phase
factor, as

2i5" j
b, t/=e ' t~~, (93)

Ck'L Rt" (x)(Rp (x')Ck'L. )' (94)

in which an expansion like (43) or (55) is used. Note that
the scalar r denotes the reference system, and that the en-

ergy dependence of the regular solutions is omitted.
However, after carrying out the sum over all states,
which effectively leads to a contour integral, only on-the-
energy-shell states remain. The result must be equivalent
to expression (44). Regarding (94), it would have been
much more natural (see also Ref. 14) to express the
second term of (44) in terms of a regular solution and its
complex conjugate, coupled by a matrix 9"'» Interes. t-
ingly, this overlined matrix is related to 9"by

which easily follows from (46) with (47) and (72). Fur-
ther, evaluating the Green's-function operator (4) in the r
representation, and using Bloch states

~
r, k ) as a com-

plete set of intermediate states, one obtains

(r~G "~r') =G"(x+R,x'+R, )

1=g &rI», k) &r, k~r')
k k

to 9'»t Jt, . We conclude that it is due only to the conven-
tional choice (44) for the form of the Greens's function in
the r representation, that both matrices tt, and b, t are re-
quired. Also the matrix T given by (60}and occurring in

(61), after substituting (95) into (61), would obtain an ad-
ditional phase factor, thereby attaining the form (97) for
T". Apparently, it is again due to history that two
slightly different system t matrices T and T", given by
(60) and (71), respectively, occur in the theory.

One might begin to wonder where the choice of (44}
stems from. The answer is that an expression for the
Green's function for a more complex system than free
space has never been derived using the approach of (94).
All derivations "' follow the multiple-scattering path
and end up at the form (44). Interestingly, this form has
another nice feature, because it shows clearly the
Green's-function symmetry with respect to the inter-
change of its arguments r and r'. A form according to
(94), containing the matrix 0', would hide this symmetry
property. The matrix 9" is a typical symmetrical
multiple-scattering matrix, being invariant for the simul-
taneous interchange of the site and angular momentum
labels, while 9"is not.

Finally we wish to comment on a usual short cut' fol-
lowed in finding a (generalized) Lloyd formula (69) start-
ing from the operator form (75). Denoting an on-the-
energy-shell eigenstate of the reference system by ~r, k ),
and using (89) and an expansion like (43), one finds

(r, k~T~», k) =CktT"Ck (98)

Evaluating the trace operation in (75) with respect to
states at the energy E, this equation would reduce to the
generalized Lloyd formula (69), because the matrix

g CkCk (99)
k

being Hermitian, does not contribute due to the Im Tr ln
operation. However, it is not clear that the restriction to
on-the-energy-shell states is allowed. To justify that step,
Krein's theorem is required. On the other hand, in
describing the scattering of Bloch electrons on the Fermi
surface in a dilute alloy, probed experimentally by
measuring Dingle temperatures, expression (98) covers all
possibilities. It reduces nicely to an old form, applying to
one defect in an otherwise perfect metal, derived by one
of the present authors.

2 s'j0"'JJ =0"» eLL' LJ ' 7

which is an immediate consequence of the equality

(95)

VII. CONCLUSIONS AND PROSPECTS

R/( )=xe 'R((x)' . (96)

(97}

since the term 0'»Et' in A 1 given by (87) becomes equal

But now, regarding (88), the elaboration (89) more natu-
rally becomes'

(r,jL I Tl» j 'L') = (jL Itt, A „ jI'L')1

1 —

9"„dt's

A

Multiple-scattering theory, as was formulated in the
early days of Korringa, ' Kohn, and Rostoker, and as ap-
plied ever since, ' has been generalized as far as the
reference system is concerned. Originally, and ever since,
the reference system has been free space. We have shown
that properly generalized incoming and outgoing waves
can be defined if more general or more appropriate refer-
ence systems are used. The consequent generalization
presented, traces of which' ' could be found already in
the literature, applies to expressions for the generalized
Friedel sum, the local density of states, and transition
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probabilities. Apart from clarifying certain features of
the old description and simplifying old deriva-
tions, ' ' ' ' the generalized multiple-scattering frame-
work may prove useful in studying more and more com-

plex systems. Moreover, viewed from a design stance the
framework presented may even prove useful in studying
complex artificial neural networks, for which many phys-
ical approaches ' already have been tried.
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