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Mott-Hubbard transition in infinite dimensions. II
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We discuss the Mott-Hubbard transition in light of the Hubbard model in infinite dimensions
with special emphasis on the finite-temperature aspects of the problem. We demonstrate that the
Mott transition at finite temperatures has a first-order character. We determine the region where
metallic and insulating solutions coexist using second-order perturbation theory and we draw the
phase diagram of the Hubbard model at half filling with a semicircular density of states. We discuss
the lessons learned from the present treatment of the Hubbard model and the connection to other
approximation schemes and to experiments on transition-metal oxides.

I. INTRODUCTION

The Mott transition, which is the metal-insulator tran-
sition induced by the electron-electron interactions in a
periodic system, has been investigated theoretically and
experimentally for many years. Experimentally it seems
to be realized in three-dimensional transition-metal ox-
ides such as VzOs and can be driven by varying the pres-
sure, the temperature, and the composition.

Froxn a theoretical point of view, several ideas have
been put forward. Hubbard first introduced the notion
of Hubbard bands, which are forxned by the states de-
scribing propagating empty and doubly occupied sites.
For large U these bands split, and as U is reduced there
is a critical value of U where the two bands merge again. 2

This is the Hubbard picture of the metal-insulating tran-
sition.

Brinkman and Rice, building on the work of
Gutzwiller, started from the metallic phase which they
described as a strongly renormalized Fermi liquid with a
characteristic Fermi energy scale gradually collapsing as
the transition is approached. The metal-insulator tran-
sition in this view is driven by the disappearance of the
Ferxni liquid quasiparticles. Slater pointed out that the
metal-insulator transition is always accoxnpanied by long-
range antiferromagnetic order, and viewed the doubling
of the unit cell, which xnakes the band structure of the
system that of a band insulator, as the driving force be-
hind the metal-insulator transition.

Building on earlier ideas, a mean-Geld theory of
strongly correlated electron systems has been developed.
It is based on a mapping of the models of strongly cor-
related electrons onto impurity models supplemented by
a self-consistent condition. ' This approach becomes
exact in the limit of infinite dimensions5 and can be in-
vestigated using a variety of techniques. In this paper,
we complete our study of the Mott transition in the Hub-
bard model in large dimension, expanding on our previ-
ous publications. In particular, we make comparisons
of our solutions to experimental observations, and find
good agreement considering the relative simplicity of the
model. Related work on this problem has been carried
out independently by other groups.

The paper is organized as follows: In Sec. II, we start
by brie6y reviewing the general &amework of Ref. 11
to present the set of self-consistent equations that de-
scribe the Hubbard model in infinite dimensions. We
concentrate on the semicircular density of states which
can be realized on a Bethe lattice, or other lattices hav-

ing various amounts of magnetic &ustration. The mean-
field equations are functional equations that determine
a Weiss field function Go and involve a self-energy func-
tional of an Anderson impurity model Z; ~[Go]. Two
realizations of the Hubbard model which share the same
density of states but have very diH'erent magnetic prop-
erties are introduced later to shed light on the issue of
magnetic ordering. We close the section with a discussion
of the methods used to analyze this problexn.

To study the mean-field equations we use a combina-
tion of exact methods such as quantum Monte Carlo

(QMC) and analytic arguments exploiting the well-
understood structure of the Anderson impurity model.
We also rely on an approximate method which was pro-
posed by Georges and Kotliar to extract low-temperature
jnformation. We stress that, while at high temperature
this method gives results in very good agreexnent with
the quantum Monte Carlo, in principle is only an approx-
imate scheme and we point out some of its limitations.
The results obtained with this method are useful because
they provide a concrete analytic realization of the func-
tional Z; ~[Go] defined in Sec. II, and illustrate in a
simple example the important role played by the self-
consistency condition.

In Sec. III we describe the thermodynamics and
present the finite-temperature phase diagram of the sys-
tem. We study the dependence of the phase diagram on
the degree of magnetic &ustration. In &ustrated lattices
the phase diagram features a region bounded by two val-
ues of the interaction U q and U,2, where a metallic and
an insulating phase coexist. The actual transition takes
place at an intermediate value U where the &ee ener-
gies of the two solutions cross. We dexnonstrate that,
at finite T, U I ( U ( U 2, and the metal-insulator
transition is of the first order, like a liquid-gas transi-
tion. While the region of stability of the two phases is
model dependent and will vary upon changing the Ren-
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sity of states or adding more general interactions to the
Hamiltonian, there are some general lessons that can be
drawn by studying the disappearance of the metallic and
the insulating solution. These are general scenarios for
describing a strongly correlated metal and a Mott insu-
lator.

In Sec. IV we discuss the destruction of the metal-
lic solution. It has many features in common with the
Brinkman-Rice scenario for the disappearance of the
metal and is realized near a critical value of the inter-
action U,2.

In Sec. V we analyze the disappearance of the insulat-
ing solution. We show that there is another critical point
U, q below which the insulating solution disappears. The
existence of this point is related to Hubbard's early ideas.

Section VI is devoted to the study of the correlation
functions. In particular, we address the question of how

they behave as the transition takes place. We rely on a
combination of analytical arguments and QMC simula-

tions to discuss these points.
In Sec. VII, we make qualitative comparisons

to existing experimental data, in V203 and in
Laq Sr Ti03. The agreement leads us to believe that
the Hubbard model and its extended version are at least
qualitatively correct models for describing these systems.
We conclude with some theoretical questions raised by
our work.

II. THE SELF-CONSISTENT EQUATIONS

We brieQy review the self-consistent equations which

give the paramagnetic solution in large d, following the
scheme of Ref. 9. The central object in this approach is
a quantity Go which plays the role of the effective field

in magnetic systems. Go is defined in an effective local
action S obtained by integrating out all the degrees of
&eedom except for a single site 0,

This action is identical to that of an Anderson impurity
model with arbitrary hybridization. The self-consistent
equations for the Weiss field Go are written in terms of
an impurity self-energy Z, ~(Go) = (ctc)&~& i+Go and

the lattice density of states p(~) = g& b(ey —e),

HFF = t )— e;~c, c~ +. U) n, tn;g.
i,j=l,d

(4)

Summation over repeated spin indices is assumed.
Here ~;j are quenched, independently distributed,
Gaussian random variables with zero mean and a vari-
ance (e~ ) = &. This model has a semicircular density of
states with a bandwidth equal to 2t and therefore shares
the same local properties as the Bethe lattice, but of
course is not expected to display Neel order at any fi-

nite temperature. Finally we can vary the degree of &us-

tration by studying a two-sublattice version of the fully
frustrated model (TSFFM). The Hamiltonian is given by:

TSFFM ———t& e'jc. c
i,j &A or B

6;~c,. c~~+ U n;gnig.
iCA jCB iEAUB

This model interpolates between the fully &ustrated lat-
tice and the Bethe lattice in the antiferromagnetic phase
while still sharing a semicircular local density of states.

$2+$2
In this case D = "

2
'. Notice that while the Hamilto-

nians (4) and (5) contain randomness, the single-particle
properties are self-averaging. The single-particle Green's
functions are the same for any typical realization of the
random variables e;j.

As in our previous publications, we have studied the
semicircular density of states instead of the Gaussian
density of states which is realized in the large-dimension
limit of a hypercubic lattice, because the latter has long
tails which prevent the development of a true Hubbard

gap. For a study of the hypercubic lattice see Refs. 14
and 15.

When antiferromagnetism sets in, the Weiss field de-

pends on the sublattice and the spin. For a general bipar-
tite lattice in the Neel phase GA ——GB the equations
were derived in Ref. 11. For the Bethe lattice, the equa-
tions are simplified to:

G(i'„)being the local Green's function of the Hubbard
model. The spin index has been removed. This density
of states is realized in the Bethe lattice with coordina-
tion d, in the limit that d becomes infinite, and with
Hubbard's hopping parameter equal to ~. In this case

t = D/2. This lattice with nearest-neighbor hopping, if
not &ustrated, will strongly favor a Neel-ordered state at
low temperatures.

The semicircular density of states is also realized in the
fully frustrated model,

GOA = zoo —t GB~) (6)

The impurity self-energy evaluated at the self-consistent
Go gives the self-energy of the Hubbard model in infinite
dimensions.

We use a semicircular density of states, p(e)

D gl —(~')2. The set of self-consistent equations then
becomes:

Go =i~„—t G(iur ), G = —(ctc)g(~, )

GOB
——iu —t GA

where A denotes one sublattice and B the other. The
two impurity Green's functions GA and GB are evaluated
independently, given GOA and GOB and the single-site
action S defined at, the beginning of this section.

Finally, in the two-sublattice fully frustrated model,
which mimics an intermediate degree of &ustration, the
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mean-field equations in a phase where the A and B sub-
lattices magnetize in opposite directions are given by

Go~~ ——ice —t~ Gz~ —t2G J3

Goa~ ——iu —t zGgy~ —t2G~~.

(8)

(9)

~[Go](&) = —U'Go(r). (1O)

We can understand the success of this approximation for
the following reasons. (1) It is good for weak couplings
(U « t) by construction, since the expansion is around
U = 0. As shown by Yamada and Yosida (YY), it is
able to produce not only the Abrikosov-Suhl resonance,
but also the upper and lower incoherent bands as well.
YY showed that the fourth-order correction is two orders
of magnitude smaller than the second-order contribution
for the range of the interaction where the metal-insulator
transition occurs. (2) The atomic limit is exactly cap-
tured. When U is very large, and the system is deep in
the insulating side, Go in„,the nonmagnetic Hartree-
Fock solution of the Green's function becomes exact,

GL, (i(u) = 1/2 1/2

Go (i(u„)—U/2 Go (i(u„)+ U/2'

and therefore the self-energy reads,

In a previous work we have discussed the fact that
the exact treatment of the problem by a quantum Monte
Carlo solution of the impurity can be reproduced, re-
markably well, by the second-order perturbative calcula-
tion proposed in Ref. 21. The perturbative calculation
allows us to investigate the low-temperature behavior of
the system, including T = 0, which is unattainable by
the QMC approach. To second order in perturbation,

this region af coexistent solutions disappears and we are
left with a rapid crossover &om a metalliclike solution
to an insulating one. This is possible because at finite
temperature there is no qualitative distinction between a
metallic and an insulating shape.

As mentioned in the introduction, at low temperatures
there are, two critical values U, i (the smallest U that al-
lows an insulating solution) and U,2 (the largest U per-
mitting a metallic solution) between which the mean-field
equations have two solutions. To determine the phase di-
agram we proceed in three steps: (a) We first determine
the region where the two paramagnetic solutions coexist.
(b) We then compare their free energy, crossing of which
determines the phase boundary. (c) We finally study the
magnetically ordered phase and calculate the Neel tem-
perature to check whether the metal-insulator transition
found in step (b) is preeinpted by a magnetic ordering
transition.

We use the second-order perturbation theory scheme
throughout most of this work because the low temper-
ature prevents the extensive use of QMC. We checked
however that the existence of two solutions is a genuine
feature of the large-d Hubbard model and not an artifact
of the second-order approximation by performing a few
quantum Monte Carlo runs. In Fig. 1 we show a metal-
lic and an insulating Green's function obtained for the
same value of the parameters U=2.8 and T=l/64, as is
obtained from both QMC and the perturbative calcula-
tion. Throughout the paper the bandwidth D is taken
to be unity. To select an insulating or a metallic solution
we choose Go obeying Gs(iu) = —, or Go(0) P 0 respec-
tively as the initial guess in the substitution procedure
for solving the mean-field equations.

The energy is computed &om the Green's function by

(12)

which is identical to the self-energy that results &om in-
serting Go in Eq. (10) and Fourier transforming. Thus,
the second-order approximation is at least an interpola-
tion scheme which becomes exact for both the U m 0
and U ~ oo limits.

0,50

2OPT

III. PHASE DIAGRAM AND
THERMODYNAMICS

-0.50

As discussed in previous publications, the system of
Eqs. (1), (2), and (3) has two types of solutions, metallic
when G(0) =,& and insulating when G(0) = 0. This
distinction is precise at zero temperature. At 6nite but
small temperatures, a sharp distinction between a metal-
lic and an insulating solution can still be made, since we
6nd a region where two solutions are allowed. One can
be continuously connected to the T = 0 metallic solution,
and displays a peaklike feature at the Fermi energy. The
other solution can be connected to the T = 0 insulating
solution, and the Green's function extrapolates to zero at
zero frequency. As the temperature is further increased

-1.00

l

-4.00
I

-2.00 0.00 2.00 4.00

Matsubara Frequency

FIG. 2. Comparison of the insulating and metallic Green's
function obtained using the quantum Monte Carlo algorithm
and the perturbative calculation. The value of the interaction
U = 2.8 and the inverse temperature P = 64.
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The entropy is given by
0.80

T
S(T) = ", dT'+ S(0),

p T (14) 0.70

where C„is evaluated numerically by differentiating the
energy. S(0) is zero for the metallic side and ln(2) for
the insulating side, reQecting the double degeneracy of
the paramagnetic insulating phase.

The physical critical line where the first-order phase
transition takes place is determined by equating the free
energies of the two states,

0.50

0,30

0.20

FM Fl = EM EI (SM SI)T. (15) C2
0.10

To gain insights into the nature of the two coexistent
solutions we plot the zero-temperature spectral function
of the metallic and the insulating state in Fig. 2. The
metallic state of the system can be well described by a
narrow central quasiparticle peak characterized by an ef-
fective Fermi energy 6 = zD where z is the quasiparticle
weight, z = (1 —

& ) ~, plus two high-energy incoherent

features at + 2 corresponding to the upper and lower
Hubbard bands. The quasiparticle weight z as a func-
tion of U is shown in Fig. 3. The insulator state con-
sists of incoherent features only. Notice however that the
shapes of the incoherent features of the metallic and the
insulating phase are very diKerent.

Figure 4 shows the calculated internal energy as a
function of the temperature for two values of the in-

teraction U. For the smaller value of U the tempera-

0.00

1.00 4.000.00

FIG. 3. Quasiparticle weight z as a function of interac-

tion U, obtained with the T = 0 self-consistent perturbative
calculation.

ture dependence of the internal energy of the metal dis-

plays a characteristic Fermi liquid T2 behavior in the
low-temperature region. The characteristic energy scale
in this regime is set by the renormalized Fermi energy.
At higher temperatures we see a thermal activation of
the incoherent features. In the case of the insulator we

observe only this last effect at an energy scale U —2D.
In Fig. 5 we plot the specific heat C„asa function

0.0
1.80

i.6og U=2-0.1

-0.21.20

8

-03—
C

F4

U=40.80
~0

~O
~+

~0
~ ~

~0~O
~rl'

~ W
~r'~0

~0
~O

\~ 0
~ 0

~0
~t

~ ~
~5

~0
~ 0

~ 0
~0

~ &
~0

~O
~gO

~ 0
~ yO

~% ~~ ~ ~ 8+
~ SQSQ ~ ~ ~ ~ &0 ~ ~ ~ ~ ~ ~

0.60 '

-0.4—
0.40 '

0.20 '

-08 P
0.00

0.00 2.00-2.00 4.00
-0.6

1.501.000.50Frequency 0.00

Temperature

FIG. 4. Energy as a function of the temperature for a
value of U = 2 in the metallic region (solid line), and U = 4

in the insulating phase (dotted line).

FIG. 2. Density of states for the metallic (thin line) and
insulating (bold line) solutions at T = 0 and the same value

of the interaction U = 2.9, obtained with the self-consistent
perturbative calculation.
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IV. THE BREAKDOWN OF THE METALLIC
SOLUTION

In this section we investigate the fate of the metallic
solution. While we cannot settle the domain of stabil-
ity of the metallic solution at zero temperature with the
present approach, it is quite clear that the metal and the
insulator are very close in energy and therefore the in-

vestigation of the metallic phase is of interest in the light
of the considerably large mass renormalizations observed
in some transition-metal oxides.

The destruction of the metallic state is driven by the
collapse of the Fermi energy scale 4 which we showed
is proportional to U,2

—U. From the mean-field equa-
tion Go ——i~„—t G, we realize that this scale is also
the bandmiChh of the conduction-electron bath which hy-
bridizes with the local impurity in the Anderson model
picture. It is easy to understand, then, that for suK-
ciently large U this scale vanishes. Imagine solving the
system of Eqs. (1), (2), and (3) by iteration. Consider
a conduction-electron bandwidth b," (W" in the nota-
tion of Ref. 12) at the nth iteration step. For large
U, solving the Kondo problem produces a bandwidth
6"+ = e /'4". Therefore, the effective energy scale
iterates to zero for n -+ oo.

Close to U,2, there is a clear separation of energy scales
and the local Green's function can be written as a sum
of a low-energy and a high-energy part: G~ and Gp.
The high-energy part resembles the solution of an atomic
problem while the low-energy part obeys a scaling form.

In terms of a spectral representation:

()d

G„J ~ ()de
(i6)

(»)

with p~(e) =
~ f(&) exhibiting a scaling form as 6 oc

U,2 —U goes to zero. Ph (e) describes the high-energy non-
scaling parts (Hubbard bands) centered around +U/2. A
somewhat oversimplified but transparent picture of the
spectral function is obtained by taking pp to be two semi-
circles with overall weight 1 —4/D, t = D/2. The cal-
culation of the scaling function f is an open problem, in
the exact solution of the large-d Hubbard model. Here we
determine it within the second-order perturbation theory
scheme outlined in Sec. II.

ture is much reduced. An upper bound for the TN;, ) as
obtained from QMC simulations is indicated in Fig. 11.
Simulations also indicate a jump in the Neel temperature
line as the interaction U crosses the first-order transition
boundary. The TN-, ~ on the metallic side is smaller than
the one on the insulating side.

It is clear that Slater's point of view is completely
correct for non&ustrated lattices such as the Bethe lat-
tice with nearest-neighbor hopping only. The onset of
antiferromagnetism makes the metal-insulator transition
within the paramagnetic phase completely irrelevant. On
the other hand, it is also clear that the presence of
magnetic &ustration makes Mott's viewpoint fully rel-

evant, as demonstrated in the above diagram of the two-

sublattice fully &ustrated model.
Go = (1+2t C)~—

2S'I F

where F = ~ f f(z)dz and C = fz ~",~(')de. The pole

results at up = ~6( z+z~, &)~~2.
Notice that the existence of this pole follows &om the

general scaling argument. Now, combining this with the
second-order expression for the self-energy, one can make
further progress and determine the value of U,2 analyti-
cally.

The self-energy is Z = UGo(r)—, which can be con-
veniently expressed in terms of the density of states of
the Go,

Po( i)Po( 2)Po(es)deide2d s

p p p (ty + e2 + es) —ld

(20)

where pp(ur) = ——ImGp(u). As b, -+ 0, pp develops a
b-like peak positioned at urp with a weight of 2(z+z~, &) .
Therefore, the integrals can be performed in closed form,

U2(u

4(1 + 2t'C) s(9~p' —(u') ' (2i)

asAm0.
Comparing this expression with the one given by its

definition, Z = Go —G = —&, where only the most
singular term at small &u is kept, at U = U, 2 (i.e., b, = 0),
we have

U., = 3D(1+D'/U. ', ), (22)

where D = 2t, and the approximations F —2D and
C —

&, that follow from the parametrization discussed
c2

before are used. The value at which the metallic solution
disappears is then U,2 ——3.28D which is very close to
the numerically determined value U,"2" ——3.37D. From
Eq. (21) it is clear that the scaling part of Z is pro-
portional to & and that the scaling function f in this
approximation is a semicircle. Figures 12(a) and 12(b)
contain the numerical solution for the density of states p~

and its scaling form f, as obtained from the second-order
perturbation theory supplemented by the self-consistent
condition near U 2. They demonstrate that the region
where scaling holds is actually quite large.

Approaching the transition, Go develops a pole at a
scale Qb, t )) E. The pole can be determined exactly
f'rom the relation Gp ——iu —t2G. In the frequency

range of b, « u « U/2, the Green's function can be
simplified to

G = — p)(e)de —2(u de+ ivrp(u)),=2 pa(e)
(d p o

(is)

where particle-hole symmetry p( —e) = p(e) has been used

to change the integration limit. In the energy region we

are considering, the imaginary part is negligibly small

and we will ignore it in the following calculations.
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D
Gp = Nd~+

and therefore,

o. =!1+ U2~3 )
(29)

2G= (i~„+Z(Gp) y isgn((u ) QD + [(u„+iZ(Gp)]2)

(27)

Considering the most singular terms in the self-
consistency condition in Eqs. (2) and (3), for small ur

we have

plots of the imaginary-time spin-spin correlation function

which exhibit a divergence in y&
——Jp (m, (v)m, (0))dr,

shown in Fig. 13.
In principle y& can be determined in NMR experi-

ments. However, it is the q = 0 susceptibility that is
easily accessible to experimental probes. The q = 0 quan-
tities differ &om the local ones because of the polariza-
tion of the Weiss field due to the external perturbation.
We will illustrate how this eKect, which is at the heart
of Fermi liquid theory, modifies the low-energy responses
near U,2.

In the presence of a small chemical potential away &om
the particle-hole symmetric value and a small magnetic
field, the mean-field equations are

There are two solutions for n' for U ) U,q. The one with
a smaller a' is always unstable and unphysical since it
is not connected continuously to o. = 1 as U tends to
infinity. At the transition U,q, the unstable fixed point
collides with the stable one, and the fixed-point solution
disappears. U, q ——3~3/2D 2.6D which is the same
as the result numerically obtained. Since o. is finite at
the transition, the Mott-Hubbard gap is finite. Across
the critical line U,q(T) there is a first-order jump in the
dielectric constant. There are, however, soft fiuctuations
associated with Buctuations in o. . An important issue
left open is whether a diverges as U ~ U, q in the full
solution. As was previously noted in Sec. II, we observed
using QMC that in the exact finite-temperature solution
the U, 1 vs T line is shifted to lower values of U, indicating
a further reduction of the minimum gap. We are not
able to determine whether the gap collapses to zero as
in Hubbard's original scheme (a oc U —U,q), or whether
it remines finite until it disappears, as described by the
second-order perturbation scheme.

(31)

Inserting (31) in (30), we have for small frequencies,

—1 mg2

Gp = t(d + p + ha + 2 (32)

Gp =ice„+p+(rh —t G .

To proceed, we extend the simplified form of the
parametrization discussed in Sec. IV to account for the
magnetic properties. The high-frequency part of the
Green's function is polarized like a local moment which
can be described as a superposition of Hartree-Fock so-
lutions. It has been demonstrated that as U U, the
upper and lower Hubbard bands are weQ developed, so
that for low &equencies and fields, a good approximation
for G is

VI. SUSCEPTIBILITIES AND THE
MOTT-HUBBARD TRANSITION l.ooL

I

6.2
4

In what follows we are going to present a combina-
tion of theoretical arguments and numerical results, in
order to discuss the behavior of the susceptibilities in
the vicinity of the transition. Unfortunately, we cannot
take further advantage of the perturbative approach. The
vanishing of higher-order corrections in the self-energy
in the atomic limit does not necessarily imply that this
will be true also for the calculation of other quantities.
Therefore, all the numerical results in this section were
obtained with the QMC method. Although the present
computational power does not allow a detailed quantita-
tive analysis of higher correlation functions at very low
temperatures, our results are sufficient to give support to
the theoretical discussion.

Much theoretical insight about the behavior of the spin
and charge susceptibilities can be gained from the fact
that the impurity model describing the Hubbard model
is an Anderson impurity model.

In a previous work we have already discussed the fact
that, when the Mott point is approached, magnetic or-
der of the local spin sets in. This is observed from the

0.80
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IO

6
0.50

0.40'
0.20

0.10

0.00

0.0 32
I

6.4 9.6 128 16

FIG. 13. Moment-moment correlation function as a func-
tion of imaginary time at P = 32. (See Ref. 28.)
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where n = n+ 2 . Equation (32) describes an impurity
problem in the presence of an external field h,g ——6—

t~
2&m . We can compute the magnetization &om the
theory of the Anderson impurity model in an effective
field h,g. We know that m = noh, g with go
where Tg is the effective Kondo energy of the problem,
which in our case corresponds to 4, and n is a numerical
coefFicient of order unity. Solving for m we find

dm

dh a=0

1 1

[g, '+ 2L~] cr&+ Jo
(33)

where we have defined the magnetic exchange energy
t2 DQ

Jo =
2U (= .v)

The physical interpretation of this equation is trans-
parent: the exchange arises Rom high-energy processes
which are largely unaffected by the Mott transition. As a
result the susceptibility varies continuously, as U passes
through U, . Remarkably, Eq. (33) was also obtained
in the large-N limit. These findings are consistent with
the QMC results of Fig. 14. For smaller U, an initial fast
increase in g, is observed as 6 rapidly decreases. As the
critical value of U is approached we see the divergency
being cut ofF by the finite magnetic exchange Jo.

Similar considerations apply to the charge suscepti-
bility. Applying a chemical potential does not cause a
change (to order bn) in the distribution of integrated
spectral weight between the upper and lower Hubbard
bands. This can be readily understood by extending the
observation of Ref. 12 that the high-energy features are
correctly reproduced by an expansion around the atomic
limit. In this limit a small particle-hole asymmetry shifts
the energies of the atomic levels but does not transfer
spectral weight. The change in the low-energy part of
the Green s function is easily estimated using Fermi liq-
uid theorems. The change in G(0) as a result of a change
in chemical potential is given by the phase shift, which

in turn is given by the shift of the location of the center
of the resonance. Its width does not change to order 4
because of particle-hole symmetry. Assuming that at low
&equencies the result of applying p is to shift the center
of the resonance by ef ..

G(iur„)
(rid~ + sf + tDsgn(d~)

(34)

with bn P&. We find bG(0) = & and, therefore,
&om Eq. (30), the effective chemical potential seen in

the impurity model is Sy,,tr = bp —&bn. The response
of the impurity to this shift in the chemical potential is
bn = g; pbp, ,tr, with y; ~ b the charge susceptibility
of the impurity. Combining these equations we obtain:

that is, the charge susceptibility vanishes as (U, —U)
as we approach the Mott transition. These results are
also consistent with the numerical simulations. Figure
15 shows the slope of the p vs n curves going to zero as
U approaches U, . On the other hand, the moment ((ni-
ng) 2), a quantity closely related to the double occupancy,
does not saturate as the transition is crossed, as can be
seen in Fig. 16. This is consistent with the local charge
susceptibility being finite. In fact, the impurity charge
compressibility equals minus the kinetic energy by virtue
of the mean-field equations.

We argued before that the local spin susceptibility di-
verges at the Mott transition as & while the q = 0 spin
susceptibility stays finite at the transition. This and an
independent estimate of the exchange constant Jo can be
obtained by approaching the transition from the insulat-
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FIG. 14. Local magnetization m as function of an exter-
naI magnetic fieM, for diferent values of the interaction U.

FIG. 15. Difference in the occupation number bn from the
half-filled case as a function of the chemical potential bp, =
p —U/2, for different values of the interaction U.
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1.00,' is large, and we obtain the free energy per particle
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N (8+ 2PJp) P
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82f 1

Bh (4T+ Jp)' (40)

FIG. 16. Local magnetic-moment formation (m, ) as a
function of interaction U for inverse temperature P = 32.
The double occupancy (D) can be simply obtained from

(m, ) = 1 —2(D). (See Ref. 28.)

ing side and by analyzing the fully frustrated model.
For large U, the fully frustrated model in Eq. (4) re-

duces at half filling to

IIg = ) J~S; S~, (36)

where J;~ are independent random variables with an ex-

ponential distribution P(J) = ~ exp —(JN/Jp), with

8(x) = 1 for x ) 0 and e(x) = 0 for x ( 0.
An important observation is that J,z ——

N while the

variance J, —J; = ~~ so the randomness is irrelevant in
the thermodynamical limit. The solution of Hamiltonian
(36) with J;~ =

N is elementary.
We exhibit the solution to confirm and interpret the

finite susceptibility in the insulating phase. The eigen-
states of Eq. (36) are labeled by the total spin e,
NNi[S(S + 1)]. For simplicity we will take N to be even,
N = 2NO. For a given value of the spin the degeneracy of
a state with a

driven
value of total spin S and projection

Sz is: dp = (N
'

&)
—

(N
'

& i). The partition function
in the presence of a uniform field reduces to:

)'. p ~o p(p+, ) sinh[Ph(S+ 2)]
sinh(P2")

(37)

In the thermodynamical limit No -+ oo it is convenient
to introduce the variable x = S/Np and Eq. (37) reduces
to

1
P JpNpa 2

Z=N,
0

ehPNoo: e hPNoo: (—
+&/

2sinh(~2) (Np)
(38)

with g(x) = ln ~i+ ~&i
+ xln[i ] being the density

of states. This system is peculiar in that the number
of states decreases as the energy (or the spin) increases.
g(x) = 2ln2 —x2 as x ~ 0, and therefore it has negative
temperature. Equation (38) is easily evaluated when Np

which displays the Curie law for T && Jo but saturates at
the magnetic energy Jo at low temperatures, in complete
agreement with the discussion of the paramagnetic phase.
Prom the free energy we can extract the entropy and the
energy —E = && and S = &+. Notice that when

h = O, E = 0 and S = 2Noln2. This is the result of
the large degeneracy of the singlet sector. In fact the
number of states per particle in the singlet sector can be
estimated directly from Eq. (39).

The prediction that y' remains finite as U ~ U,2 is
physically sensible and probably persists in finite dimen-
sions. It refiects the fact that the magnetic energy is finite
when d -+ oo. The same is true in the limit of large N of
the model studied in Ref. 24 in any dimension, provided
we identify the Mott transition with the metal —charge-
transfer-insulator transition. This physics is missed by
the Gutzwiller approximation, which ignores the high-
energy processes and thus the magnetic exchange com-
pletely. The divergence of p (cf. Sec. III) as U + U,
is consistent with the fact that the entropy is ln2 in the

&C T'
insulator. In the metallic phases S(T) = j "&~, ) dT'
Since this quantity vanishes as T ~ 0 in the insulating

phase "& diverges at the transition. This is the re-
sult of a large spin ground-state degeneracy. It is rooted
in the fact that since J;~ &

one needs long-range or-
der to gain finite magnetic energy. This is clearly un-
realistic and will not persist in any finite dimension. In
fact, in the large-N limit in finite dimensions the specific
heat remains finite when the metal-insulator transition
drives the system into a resonating-valence-bond state.
It would be interesting to construct a loop expansion
around the d = oo solution to remedy this problem.

We also demonstrated that for U ( U,2, the one-
particle Green's function of the model captures some as-
pects of the Brinkman-Rice scenario. In particular, the
mass renormalization diverges as (U,2 —U) . At the
same time the solution of the Hubbard model in infi-
nite dimension also allowed us to perform calculations of
physical quantities at finite temperatures and eliminate
some of the shortcomings of the Brinkman-Rice descrip-
tion of the Mott transition. In the actual solution, the
number of doubly occupied sites is finite and changes
smoothly at the metal-insulator transition ' resulting
in a finite exchange constant which gives rise to a finite
susceptibility. We also observed that the single-particle
gap opens discontinuously at U 2, which is difFerent from
the predictions of the slave-boson method, but is not
inconsistent with the experimental observations of Fuji-
mori et al.
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VII. COMPARISON WITH EXPERIMENTS

A theory of the Mott transition would be incomplete
without a comparison to some of the existing experiments
on the subject. Our goal here is to assess to what extent
the Hubbard model in the limit of large dimensions cap-
ture the main trends of transition-metal oxides near the
Mott transition, rather than to obtain the best possible
fit to the experimental data.

We 6rst focus on the beautiful set of experiments
by the group of Tokura et al. , where the system
Laq Sr„Ti03 is studied as a function of doping z.
They measured the specific heat coeKcient p as a func-
tion of x. Since the photoemission study shows that the
x = 0 point is close to the Mott transition, we picked
U = 3.2D and performed quantum Monte Carlo simu-
lation to calculate p vs doping. The results are shown
in Fig. 17, together with the experimental data. The
agreement is quite good.

We 6nally turn to the V203 system. This system was
studied extensively before, and has been studied again
most recently by Carter et al. We have compared the
experimental phase diagram with the one obtained for
the two-sublattice fully &ustrated model. On a qualita-
tive level we 6nd that the overall agreement is remark-
ably good, especially regarding the features of the three
phase boundaries, antiferromagnetic insulator to param-
agnetic metal, paramagnetic metal to paramagnetic in-
sulator, paramagnetic insulator to antiferromagnetic in-
sulator, and the crossover regime. Interestingly, we also
found a small region of a metallic antiferromagnetic state
similar to the experimental observation of Ref. 18. Un-
fortunately, it occurs at a very low temperature and the

~ Theory

O Experiment

5.00 0

0.00

0.00 100.00 300.00

FIG. 17. Comparison to experimental observation of the
linear coefBcient of the specific heat p as a function of doping
for an inverse temperature of P = 32. Experimental results
from Ref. 19. Quantities normalized to the full (or zero)
61ling value.

determination of the phase boundary is outside the appli-
cability of the QMC method. Nevertheless the existence
of this phase can be seen by a simple Hartree-Fock cal-
culation in the frustrated case.

It is also notable that the temperature scales are con-
sistent if an energy of D = 1 eV is considered. The
comparison on the abscissa is less transparent. In this
case, we have identified increasing pressure as increasing
hopping constant t or decreasing interaction U.

VIII. CONCLUSION

The solution of the Hubbard model in the limit of large
dimensions has provided a limit where various early ideas
can be put in perspective.

One issue is whether a metal-insulator transition can
take place in the absence of magnetic order. The phase
diagram presented in Figs. 10 and 11 answers this ques-
tion in the aKrmative for a frustrated lattice. The phase
diagram has the same topology and even the same scale
as the experimentally observed phase diagram of V203.

There is a region enclosed by two lines U, q(T) and
U,2(T), where both the metallic and the insulating solu-
tions are allowed. Within this region, there is a first-order
boundary where the two very di6'erent solutions cross in
free energy, and several quantities experience a jump: the
specific heat, the susceptibility, the number of doubly oc-
cupied sites, etc. The 6rst-order line has a negative slope,
indicating that the paramagnetic insulating phase has a
higher entropy than the metallic phase. The line ends
in an interesting second-order critical point, above which
there is a smooth crossover between a metallic and an
insulating regime. In the frustrated lattice, in addition,
at low temperatures there is a first-order line between an
antiferromagnetic metal and an antiferromagnetic insu-
lating phase. We therefore conclude that the Hubbard
model in large dimensions at half 6lling on a &ustrated
lattice can account for the basic experimentally observed
features of the V203 system, vindicating Mott's point of
view.

On non&ustrated, bipartite lattices, however, we find
that the Neel temperature is much higher than the metal-
insulator transition temperature, making the transition
between small and large U continuous. In this case the
physics can be understood in terms of the magnetic long-
range order and a smooth crossover within the broken-
symmetry phase. The Mott transition is irrelevant, vin-
dicating Slater's point of view.

Within the second-order perturbation scheme we es-
tablish that there is a metallic solution with a collapsing
energy scale at U 2, realizing the Brinkman-Rice scenario.
We were unable to prove that this solution is stable down
to U 2 because the energy differences between the metal-
lic and insulating solutions are very small. However, as-
suming the stability of the solution we were able to cal-
culate the critical behavior of various physical quantities
and make contact with the recent experiments of Ref.
19. We conclude that the Hubbard model in large dimen-
sions, therefore, supports the Brinkman-Rice scenario for
the destruction of the metal and eliminates many of its
shortcomings.
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A natural scenario for the destruction of the insulating
solution would be a continuous narrowing of the gap of
the insulator. This would have been a realization of the
original Hubbard scenario for the metal-insulator transi-
tion driven by the closing of the upper and lower Hubbard
bands. In this case, U q would have corresponded to the
value of the interaction where the gap in the one-particle
spectra vanishes, or equivalently where the divergence of
the dielectric constant is observed. This does not occur,
at least within the second-order approximation to the
impurity self-energy.

The experimentally observed phase diagrams of
transition-metal oxides display incommensurate metallic
magnetism. This can in principle be studied by extend-

ing the mean-6eld theory to account for incommensu-
rate phases, as done by Freericks for the Falicov-Kimball
model. 2~ For this calculation to be meaningful, however,
one should include the details of a realistic band struc-
ture of the transition-metal oxide, which is beyond the
scope of our work.

An important open question is what happens to the
transition at finite dimensions' We expect that the Mott
transition and the metal —charge-transfer-insulator tran-
sition are in the same universality class. The large-N
expansion results of Ref. 24 indicate that, for N = 2,

U,'q and U,'z coincide and that the Mott transition is sec-
ond order with continuous disappearance of the Kondo
resonance and a gradual closing of the Mott gap. Simi-
lar results were obtained with the slave-boson approach
to the Hubbard model. Whether the large-N expansion
is missing crucial I/N terms which would split the two

transitions, or whether the I/d corrections would bring
the two transitions to one, remains an interesting open
problem.

Note added in proof. Recently, two zero-
temperature algorithms based on exact diagonalization
were developed. ' We have con6rmed that U, ~ is
strictly less than U 2 and shown that the MIT at T = 0
takes place at U,2.
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