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The continuous n-state Potts model is reinvestigated. The partition function is cast in a form allowing

the limit, n ~1, to be taken prior to perturbation-theoretical expansions. Proceeding in this way, we

free the theory of pathologies known to plague other approaches. Several alternatives are presented for

a Feynman-diagrammatic expansion of the theory, two of which are identical to those utilized in previ-

ous analyses of the mdoel. One of the introduced diagrammatic approaches is used to recover known re-

sults of one-loop renormalization calculations. It is also utilized to calculate the partition function of the

(1+@)-state Potts model, and, hence, the generating function for bond percolation, on a finite lattice.
This generating function for cluster statistics exhibits the scaling features proposed by Privman and

Fisher for systems of finite size.

I. INTRODUCTION

Much is known about percolation and the percolation
transition. ' Even so, uncertainties and ambiguities
still plague the model on which many of the calculations
pertinent to the transition are based. This model was in-
troduced by Fortuin and Kasteleyn, in a seminal paper,
in which they established a set of remarkable correspon-
dences between the n-state Potts model in certain limit-
ing regimes and a variety of combinatorial and graph-
theoretical problems. In particular, they demonstrated
that the derivative with respect to n of the n-state Potts
model's partition function in the limit n =1 gives rise to
the generating function for cluster statistics in bond per-
colation. Field-theoretical calculations of the critical
exponents of the percolation transition are carried out on
the Ginzburg-Landau-Wilson version of the effective
Hamiltonian for the n-state Potts model. In performing
the calculations involved, however, one encounters a
series of complications. For example, the effective Ham-
iltonian contains a third-order term, which according to
conventional wisdom, dictates a first-order transition to
the ordered phase. This prediction of Landau' theory is

apparently violated in the case of the percolation transi-
tion. However, it is violated in the context of the Potts
model because one insists, essentially by fiat, that the or-
der parameter take on values that fall within a specified
range. The argument in support of this restriction is
based on the correspondence between the Potts-model or-
der parameter and a quantity relevant to the percolation
transition. " While the argument is superficially per-
suasive, nothing in the steps leading to the effective Ham-
iltonian lead in a natural way to a restriction on the al-

lowed values of the order parameter.
The perturbation theory of the Potts model at the limit

appropriate to percolation contains additional pitfalls.
The effective Hamiltonian on which e expansion calcula-

tions are based has as its highest-order term one that is
third order in the order parameter. ' If one integrates
the function exp( —ux rx )

—over x, the integration con-
tour cannot be taken to + ~ on the real axis. It is possi-
ble to recover a finite result, but only at the expense of a
deformation of the contour that results in a complex
value for the integral. In the context of a field-theoretical
calculation, a problem analogous to the one above mani-
fests itself in a perturbation series with a "malignant"
higher-order limiting form. This issue was addressed by
Houghton, Reeve, and Wallace, who carried out an in-
stanton calculation of high-order terms in the perturba-
tion series of the percolation limit of the Potts model.
They discovered that it was necessary to reformulate the
perturbation-theoretical expansion to recover a series
with an asymptotically "benign" form. Their approach is
similar to our own. The correspondence between the two
methods will be discussed in an appendix.

Both of the issues mentioned above are directly
relevant to the problem addressed in this paper —how to
arrive at a quantitative description of the percolation
transition that yields information in the regime in which
finite-size effects are important. We are required to per-
form an integral over the amplitude of a spatially uniform
mode in which we retain the third-order term in the ex-
ponent of the Boltzmann factor and must, thus, confront
the troubling issues outlined above.

In this paper we report the derivation of an expression
for the free energy of the one-state Potts model that
yields predictions concerning bond percolation on a finite
lattice in the immediate vicinity of the percolation transi-
tion. While we are not able to provide a rigorous
justification of the expression, we are confident that it is
correct in all essentials, and we believe that it can serve as
the basis for a comprehensive theoretical investigation of
the percolation transition in the finite-size-rounding re-
gime. ' Furthermore, we are optimistic that in deriving
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the expression we have cast a little more light on the kind
of extrapolation methods that are utilized in the applica-
tion of "replication" techniques in statistical mechanics
and many-body theory. Thus this work should contrib-
ute to progress in understanding the mathematical struc-
ture of theoretical models of spin glasses and other ran-
dom systems.

For future reference, we will, as we have above, refer to
the Potts model appropriate to percolation as the one-
state Potts model. The actual one-state limit is known to
be trivial. As this latter limit also plays a role in the dis-
cussion to follow, we will henceforth refer to it as the
strict one-state Potts model.

An outline of the paper is as follows. In the next sec-
tion, we introduce the effective Hamiltonian of the n-

state Potts model and perform the standard set of trans-
formations and truncations leading to the third-order
field theory of the general n-state model. We then formu-
late the model in such a way as to make it possible to take
the n ~1 limit appropriate to percolation in advance of
any other limiting procedures. The results of mean-field
theory are recovered. Section III contains a discussion of
the renormalization group as it applies to the one-state
Potts model. Recursion relations in 6—e dimensions are
presented, and the solutions are shown to yield previously
calculated exponents. Section IV is devoted to a deriva-
tion of the renormalized mean-field theory that consti-
tutes the lowest-order approximation to the behavior of
the critical finite system. The ultimate result of this pa-
per is an expression for the free energy of the one-state
Potts model in the immediate vicinity of the transition
temperature.

II. FORMULATION OF THE PROBLEM

H [S(x)]=g [aoS, (x)+rS, (x) + ~VS;(x)~ +uS, (x) ] .

Higher-order terms will be less relevant in a
renormalization-group sense.

The partition function is the path integral

Z= exp —H Sx Sx (2)

It proves useful to reexpress S(x) as

S;(x)=S(x)+s,(x),

with the subsidiary condition

gs;(x)=0 . (4)

The effective Hamiltonian is now given by

The most straightforward construction of the
Ginzburg-Landau-Wilson effective Hamiltonian for the
(1+e)-state Potts model utilizes standard arguments
based on symmetry. In the case of the n-state Potts
mode, the effective Hamiltonian is a functional of an n-
component order parameter S,. (1 ~ i ~ n ). This function-
al is invariant under permutation of the components; no
other symmetry restricts its form. If we postulate a
position-dependent S and assume ferromagnetic interac-
tions, we end up with the following expression appropri-
ate to a continuous version of the n-state Potts model:

H=n g [aoS(x)+rS(x) +~VS(x)~ +uS(x) ] + g [rs;(x) +~Vs;(x)~ +us;(x) ]
X l~X

=n g [aoS(x)+rS(x) +~VS(x)~ +uS(x) ] +H[s, (x)] .
X

We ignore the first line on the right-hand side of Eq. (5),
because we anticipate that the integration over S(x) will
yield an uninteresting contribution to the partition func-
tion. The percolation transition arises from the integra-
tion over the s, 's.

The partition function in the limit n =1 is trivial in
that the only way to satisfy the constraint equation (4) is
to set the single component of the one-dimensional vector
s(x) equal to zero. However, as noted in the Introduc-
tion, the quantity of interest is the derivative of the parti-
tion function with respect to n at n =1. Two methods of
evaluating the appropriate limiting form of the partition
function have been described in the literature. ' In the
first method, one replaces the s s by the diagonal entries
of a traceless, symmetric n Xn matrix. The first @-

expansion calculations were performed with the use of
this approach. The second procedure was developed to
produce a benign form for the high-order terms in a per-
turbation expansion (in powers of u) of the (1+e)-state
Potts-model partition function. This latter approach is

based on the introduction of a ghost field into the Hamil-
tonian. The s s are no longer subject to the constraint
equation (4). In the work reported here, we utilize a third
method, to be described immediately below. As is shown
in Appendix A, this method is equivalent to both of the
approaches above. It also leads to yet another variation
of perturbation theory for the (1+e)-state Potts model.
This fourth technique is also described in Appendix A.

The key step in evaluating the partition function is to
replace the site-by-site constraint (4) with its representa-
tion as a Fourier functional integral:

g
'

g s,.(x) = f exp 'iso(x) g s;(x) dao(x) .1

2'

We thus introduce a new field co(x), conjugate to g;s;(x).
This method is strongly reminiscent of a key element of
the Martin-Siggia-Rose development of perturbation
theory for semimicroscopic dynamical systems' and to
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the Fadeev-Popov method of gauge fixing. '

The immediate effect of this representation of the 6
function is that, prior to the integration over the field
co(x), the s;(x)'s are decoupled in the effective Hamiltoni-
an. We have, when n =1+a,

Z„=f exp g —[rs;(x) +~Vs;(x)~ +us;(x)

+iso(x)s;(x)] 2)co(x)2)s;(x)
I

Im s
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Pes

Z AX co X

and, thus,

Z„~ Z cox 1+sin Z &ox +. coax

FIG. 1. Regions, shown shaded, in which the integration
contour must lie, for asymptotically large magnitudes of ~s ~, in
order that the integral on the right-hand side of Eq. (9) con-
verges.

The quantity of interest is thus

1+a 1 Zcox ln Z coax cox . 8
I(r, u, co)= f exp( us —rs+ic—os)ds . (9)

It is worth noting that we have taken the limit applica-
ble to percolation prior to taking any other limits —in
particular the thermodynamic limit. This is the basis of
our claim that the procedure readily lends itself to finite-
size analysis. An important feature of the effective Ham-
iltonian in Eqs. (6)—(8) requires our attention. Because
the highest-order term in it is third order, the nominal in-
tegration contour for s;(x) along the real axis is not prop-
er in a formal sense, in that, as s;(x) becomes large and
negative, the Boltzmann factor exp( H) grows w—ithout
bound. As a result, the partition-function integral will
diverge. A possible remedy is to deform the contour so
as to ensure the integral's convergence. The price that is
exacted for this cure is the possibility of an imaginary
contribution to the partition function. Results that we
believe to be correct are obtained if one takes as the parti-
tion function the real part of the integral with the de-
formed contour. We have no proof that this is the proper
prescription, but we will present evidence that we consid-
er to be highly persuasive.

One is led to consider the one-dimensional integral

Convergent contours for this integral must lie, for asymp-
totically large ~s~, in the shaded regions in Fig. 1.

A few straightforward changes of variables transform
the integral in Eq. (9) to

2r
exp

27u

l cor

3u

r
exp us + & co+ s ds

3u
I

(10)

Now we take as the contour of integration for s the
downward sloping line making an angle of m/6 with the
real axis. The integral in Eq. (10) becomes

~ ~

~

2

exp, us 3+;~+ e
—i~/6s e ii~/6ds .

3u

At the same time, we require that integrations over co be
along the upward sloping line making an angle of ~/6
with respect to the real co axis. This is tantamount to re-
placing co by cue' ~ and den by defoe™/6. Neglecting fac-
tors associated with ds and the yet-to-be-introduced de,
we are left with

2r Nr —i n. /3 —1/3
3

I(r, u, co)= exp — + e '"~ (3u) '~ f exp ius + ice+ e '"~ s ds
27u oo 3u

= exp — + e ' (3u) ' Ai
2r cOr 1 —2~i /3I

27u (3u) 3u
(12)

In the last line of Eq. (12), the function Ai is one of the
Airy functions. ' The result embodied in Eq. (12) plays
an important role in the evaluation of the integral in Eq.
(8) and in the evaluation of the mean-field partition func-
tion.

A. Mean-field theory

The approximation leading to mean-field theory re-
places the spatially fluctuating s, (x)'s by uniform fields s, .
The integrals to be performed are those discussed im-
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1 F(r0')
d

277 c co co
(14)

where F(ro) =ln(I) and the contour is as indicated in Fig.
2.

Now, if the contour is sufficiently far above or below
the real co axis, we can replace the function I by

J e ' 'ds=5(Nro),

and the result of the integration over ¹ois

Z=, dc@'= ln[e ™/6I(Nr,Nu, 0)] .
F (ru')

(15)

(16)

This result for ln(Z) also follows directly from Eq. (13) if
one uses a Mittag-Lefler expansion of I'(co)/I(co), as long
as the temperature is not too close to the transition tem-
perature or, in the case of percolation, as long as the
probability of a bond being active is not too close to the
critical value. We now utilize Eq. (12) and the asymptot-
ic form of the Airy function'

Ai(ro) g
'~ e (17)

where g= —,'co . The above asymptotic form of the Airy
function is valid when ~ro~ is large and co is not on the
negative real axis. We obtain

Z~N + +O(1)
27u 27u

(18)

The expression above has precisely the behavior one ex-
pects for the Ginzburg-Landau theory of the percolation
transition. An important feature of Eq. (18) is that the
O(1) term contains no imaginary contributions. The fac-
tor e ™/6is canceled by a compensating complex ex-
ponential in the term g

mediately above, except that the coefficients r and u and
the variable co are multiplied by the factor N, where N is
the number of lattice sites in the system. The mean-field
partition function is

f I(Nr, Nu, Neo) ln[e ™l6I(Nr,Nu, Nco)]d (Nco) . (13)

To proceed with the evaluation of the integral, we note
that I(Nr, Nu, Nru), as a function of co, has no singulari-
ties anywhere in the complex m plane, as long as co is
finite. The logarithmic term will have branch points
wherever the function I (Nr, Nu, Nco } passes through
zero. Because of the relation of I to the Airy function,
we know that these zeros are confined to a line parallel to
the real co axis with one end at ro=r e' ~ /3u and ex-
tending out to co = —00. These branch points are the only
nonanalyticities of in{I) in the vicinity of the real co axis.
We can thus replace the logarithm in the integral by

Im aa

FIG. 2. Contour of integration for the integral in Eq. (14).

The expression above holds as long as the system is not
so close to the bulk transition that finite-size efFects come
into play. It is possible to extract the leading-order
corrections to Eq. {18)in the bulk critical region. They
are of the form u /Nr . This last result provides a mea-
sure, in the context of mean-field theory, of size of the re-
gion within which finite-size effects play an important
role. There is a dimensionality in which the criterion
r -u /N is consistent with the both mean-field theory
and the standard finite-size scaling hypothesis for the
crossover to finite-size-effect dominance, ' specifically,
there is crossover to finite-size behavior when g-L,
where g, the correlation length, is proportional to
(T —To} and L is the linear dimension of the finite sys-
tem. Setting v= —,

' we find that the special dimensionality
of the system is 6, the upper critical dimensionality of the
percolation system. If a renormalized mean-field theory
is possible, the criterion above ought to be adaptable to
accommodate nonclassical exponents and a variety of
spatial dimensionalities, in particular to 6—e dimensions.

As mentioned previously, demanding that the integrals
over co converge requires that the partition function be
defined as the real part of the integral given in expression
(13). There is an independent way to demonstrate the
correctness of this prescription; Eq. {13)can be manipu-
lated to yield an expression that corresponds to a limiting
result derived by two of us in an analysis of the infinite
range and, hence, the mean-field one-state Potts model. "
The steps taken in this previous work are not related in
any obvious way to those described above, and the parti-
tion function derived by Rudnick and Gaspari is unques-
tionably real.

B. Correspondence with esrIier work

Consider the mean-field partition function as defined
by (13), with the requirement of reality explicitly incor-
porated:

T

Z =Re de exp Nius —Nrs e ' +iNes ds ln I Nr, Nu, Neo (19}

Given that the singularities of in[I] as a function of ro are all in the upper half of the complex plane, we can restrict the
integral over s in Eq. (19) to s & 0. Now alter the contours of integration over s and co by shifting them back to their
original orientations in the complex planes, i.e.,
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s ~s exp(im /6), to —+co exp[ —i vr/6)] .

Then

Z =Re f dto f exp( N—us N—rs +iNtos)ds 1n[I(Nr, Nu, Ntoe ™/6)] (20)

Finally, we rotate the m-integration contour to the imaginary axis. This yields

Z=Re f i—dQ f exp( Nus —¹s—+NQs)ds in[I(Nr, Nu, iN—Qe ' )]

=Im f dQ f exp( Nus —Nrs —+NQs+NQs)ds in[I(Nr, N u, NQe ' )]

The function I [Nr, Nu, Ntoe "'~
] is equal to the integral

f ds' exp( Nus' —Nrs' —+NQs'),

where s'=s "e ' . If we shift s' so as to eliminate the quadratic term in the exponential, making the replacement

(22)

s ~s
3Q

we have

2

Qs +rs Qs ~Qs +
3Q

2r ~,+ Qr3

27Q

(23)

(24)

Now let Q~Q+r2/3u. The exponent in Eq. (22) becomes

and

rus' + —Qs'
279

(25)

1VrI~f ds'exp[ N(us' —Qs')] exp—
27Q

PfQr
3Q

(26)

Because we are interested in the imaginary part of the logarithm of I, the exponential multiplying the integral can be
discarded. The partition function is now given by

'3
Z= f dQf dsexp ~ N —u s+—oo 0 3Q

r+ +Qs Im ln f ds' exp( N[us' —Qs'—] )
27Q

(27)

where the shift in 0 has been taken into account in the
integral over the variable s. Once appropriate correspon-
dence have been made, this result is essentially identical
to Eq. (49} in Ref. 11, which is an expression for the par-
tition function of the strict mean-field one-state Potts
model in the immediate vicinity of the transition temper-
ature.

It is clear that a good deal of necessary discussion has
been left out of the derivation of Eq. (27). Needless to
say, we believe that a proper consideration of issues relat-
ing to the convergence of integrals and the freedom to
close contours at infinity will yield a full justification of
the above form for Z. However, the fact that it matches
previously derived results provides a persuasive, if not ab-
solutely compelling, argument for its correctness.

III. RENORMALIZATION GROUP

The key to the calculation of renormalized quantities is
an identity that holds between two types of propagators.

I

The first is the P-connected contribution to (s(x, )s(xz}).
(Note that we use the phrase "P-connected" even though
it is inconsistent with our notation to maintain consisten-
cy with the terminology of Houghton, Reeve, and Wal-
lace whose method is close in spirit to the method used
here. ) This propagator is the sum of contributions of the
diagrammatic form illustrated in Fig. 3. Appendix A
contains an explanation of the diagrams. The diagrams
shown in Fig. 3 have the property that they remain con-
nected when lines with an x in them are cut. The excep-
tion to the above rule is exemplified by the last diagram
in the figure, in which cutting all "x propagators" li-
berates isolated (i.e., unrenormalized) three-point ver-
tices. These isolated vertices will play an important role
in the analysis that follows. They represent the lowest-
order unrenormalized contribution to a class of three-
point vertices denoted by the symbol vc (represented
graphically as shown in Fig. 5). At lowest order the
"disconnected" vertex U~ is equal and opposite in
strength to the unrenormalized "connected" three-point
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+ ~ ~ ~

FIG. 3. Contributions to the f-connected propagator.
V(i + eel

G, (x„x2)+Gd(x&,xz)=0 . (28)

This identity follows from

sx&sx2 exp —H sx +i coxsx &x x

=G, (x),x2)+ Gd(xt, x2)

s x& s x2 exp —H s x s x; & x

vertex v„(also depicted in Fig. 5).
The second type of propagator is P disconnected A.

few contributions to this propagator are displayed in Fig.
4. These propagators fall into exactly two pieces, each
containing one of the two terminal dots, when "x propa-
gators" are cut. As in the previous case, there is an ex-
ception in that isolated three-point vertices may also be
liberated as a result of the process of severing x propaga-
tors.

If we denote by G, (x&,x2) the sum of all contributions
to P-connected propagators and let Gd(x, , x2) stand for
all contributions to P-disconnected propagators, the iden-
tity referred to above is

FIG. 5. Diagrammatic representations and low-order contri-
butions to the three vertices defined above.

tices and one-loop contributions to them are displayed in
Fig. 5. An important rule in the diagrammatic construc-
tion of the vertices and in the construction of all quanti-
ties of interest here is that there may be no
disconnected internal portions. Utilizing the three ver-
tices above, we can construct the one-loop contributions
to the renormalization of each of them.

As it turns out, we do not need to analyze the full set of
equations. This is because they are all consistent with the
relations vA = —vc and v~=0. Furthermore, as noted
above, these relations are satisfied as initial conditions.
The one-loop renormalization-group recursion relations
in 6—e dimension are=0. (29)

The second line in Eq. (29) follows from a consideration
of the diagrams generated when one integrates over s (x)
and then over co(x). Once again, the reader is referred to
Appendix B. The equality on the third line is obtained by
integrating over co(x). The fourth line follows immedi-
ately.

The renormalization of vertices proceeds straightfor-
wardly. For example, we may consider the lowest-order
contributions to the renormalization of a P-connected
three-point vertex, displayed in Fig. 11. Because of the
relation above, which holds whether the propagator lines
are renormalized or not, we have for this contribution the
net combinatorial factor of —2 (+1 from the first dia-
gram and —3 from the second one). In order to fully
evaluate vertex renormalization, it is necessary to define
three types of vertices. They are (1) a vertex in which P
connects all three of the lines that attach to it, which we
call v„, (2) a vertex which P connects only two of them,
v~, and (3) a vertex in which all three lines are P discon-
nected, vc. The graphical representation of those ver-

dVA 3

dl 2
d ——(d —2+ri) v —72A v3

A 6 A

=—
VA

——gV„—72A6V A, (30)

'g= 636VA

VC VA

vs=0 .

(31)

(32)

(33)

For a discussion of the diagrams contributing to the
equations above, see Appendix B.

The stable fixed point solution of Eq. (30) is

V2
12636

This and Eq. (31) imply

(34)

(35)

The critical exponent y =1/v is obtained by solving for
the exponential growth of r, the renormalized reduced
temperature, where r satisfies the equation

dr =(2—
7) )r —36A 6U & r

FIG. 4. Contributions to the f-disconnected propagator.

=(2—
—,', e)r
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These results for y and g are entirely consistent with the e
expansions previously obtained with the use of traceless
symmetric tensors. '

IV. RENORMALIZED MEAN-FIELD THEORY

(& I I'5 I'I
&&V 4)

Because of the way in which diagrams are generated, it
is not immediately obvious that fluctuations act to renor-
malize mean-field theory as one might a priori expect.
According to such expectations, the lowest-order-in-e
version of the finite-system partition function is just the
right-hand side of Eq. (13) [or Eq. (27)], with the parame-
ters r, u, co (or 0), and s suitably renormalized and res-
caled. ' However, we know that there can be no Auctua-
tion corrections to the exponent in Eq. (13), because the
integration over co leads to a cancellation of all terms
arising from the functional integra1 over s, unless there is
a "coupling" with diagrams from within the logarithm.
As it turns out, mean-field theory is, indeed, renormalized
in the expected manner, but the perturbation-theoretical
demonstration is not entirely direct. It relies on the iden-
tity relating renormalized three-point vertices that played
a key simplifying role in the derivation of the
renormalization-group results of the previous subsection.

We start with the Feynman-graph expansion for the
one-state Potts-model partition function. Now we distin-
guish between propagator lines for the q=o, or uniform,
modes and those for all the other s (q)'s. We organize the
diagrams according to loop order with respect to the
q=0 propagator lines. At lowest nontrivial order, the di-
agram. s contributing to the partition function are as
shown in Fig. 6(a). The vertices and propagators in Fig.
6 are taken to be fully renormalized with respect to all
q%0 fiuctuations. Note that all diagrams are P connect-
ed in the sense established in Sec. III. The bottom vertex
in the diagram on the left in Fig. 6(a), in which all the
external legs are P disconnected, was denoted by vc ear-

FIG. 6. (a) Diagrams contributing to the two-loop-order re-
normalized mean-field-theory free energy. (b) A diagram that
does not contribute to the free energy, because the vertex at the
bottom of the diagram is equal to zero.

lier. All other vertices, which "P-connect" external legs,
are of the type vz. Now, as established to lowest order,
the E=6 dex—pansion, vc= —v„. Furthermore, vs =0.
Thus there is no contribution to the partition function
from the diagram displayed in Fig. 6(b).

We now appeal to the identity, expressed in Eq. (28),
between P-connected and P-disconnected propagators to
establish the equality displayed in Fig. 7(a), which implies
that the diagram sum in Fig. 7(b) is equal to the lowest-
nontrivial-order loop contribution to the renormalized
partition function. This digram sum is precisely what one
obtains from Eq. (13) with parameters r and u replaced
by their renormalized counterparts. An extension of the
demonstration to higher-order diagrams is straightfor-
ward to construct.

Note that our argument rests on a relation between
three-point vertices that we have shown to hold up to
one-loop order. Although we have not demonstrated that
this identity holds in general, we are confident that it
does and that it is based on a relationship such as the one
leading to the identity (23) between G, and —Gd.

Putting together all the preceding elements, we arrive
at a simple expression for the partition function of the
finite one-state Potts-model system:

3

Z= f

deaf

ds exp —u' s+ + +Os Im ln fds'exp —(u's' —Qs')tL" (rL "")'
I Q l3

—oo O 3Q 270
(36)

This result holds in the immediate vicinity of the bulk
critical point under the assumption that the bulk correla-
tion length is much larger than a characteristic linear di-
mension L of the system (t ')&L). The system is
confined to a d-dimensional hypercubic volume with
length per side equa1 to L. In Eq. (36) the quantity u * is

(I (I t'I (I

FIG. 7. (a) Diagrammatic identity leading to the result that
the two-loop renormalized partition function is given by the dia-

gram sum displayed in (b).

the fixed-point value of the third-order coupling and t is
the reduced temperature [t o- ( T —T, )/T, ]. Setting
t =0, we immediately obtain from Eq. (36) an expression
from which we can extract a universal value for the
finite-system partition function (or the percolating-
system-generating function) at the bulk transition point,
in accord with the Privman-Fisher hypothesis. ' '

Thus we see that the renormalized partition function,
when evaluated beyond steepest descents, yields a
description of the percolation transition on a lattice of
finite size. We expect a rounding of singularities and ap-
propriate corrections to bulk-limit results. While there
are still loose ends, we feel that a start has been made and
that there is a basis for significant future progress. It wi11

be interesting to compare predictions based on Eq. (36)
with the results of simulations. Such a comparison will
be the subject of future work.
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APPENDIX A: EQUIVALENCE OF THE
VARIOUS APPROACHES TO PERTURBATION
THEORY OF THE ONE-STATE POTTS MODEL

1. Traditional approach (Refs. 6 and 7)

Here the constraint (4) on the s, 's is satisfied by writing

S+ S& $2 ' '
S& (Al)

The quadratic term in the effective Hamiltonian is of the
form

2. Present method

Here the Fourier representation (6) of the 5 function
that enforces the constraint (4) introduces linear terms
into the effective Hamiltonians of the individual s; s. If,
prior to the integrations over the co(x)'s, the s, (x)'s are
integrated out, one obtains a Feynman-diagrammatic ex-
pansion containing terms like those shown in Fig. 8. The
x's at the ends of the dangling lines stand for factor of
iso(x). The single lines are unrenormalized propagators
G(x,x'), where

a(s, + +s„,)+a( —s, — . —s„&)2 2 2 (A2) G '(x, x') =
—,
' [r5(x—x')+5"(x—x') ]; (A 10)

a(I+/)(P), (A3)

where I is the (n —1)X(n —1) identity matrix and g) is
the column vector

S)

$2

(A4)

Sn —1

The propagator in perturbation theory, which is the in-
verse of (A3), will then be

where the position or wave-vector dependence of all
terms has been suppressed. If we regard the s s
(1 i n —1) as the component of an (n —1)-
dimensional vector, then the quadratic coefficient can be
represented in tensor notation as

i.e., the first diagram above stands for

g iso( x)G( x, x)i'( x) .
X, X

(A 1 1)

The subsequent integrations over the co(x)'s result in con-
tractions of the lines. This is achieved by expanding the
exponential consisting of all connected diagrams with
respect to all diagrams except the diagram representing
(Al 1). The result of the final set of integrations and reex-
ponentiations is a set of diagrams containing two kinds of
unrenormalized propagator. The first is a solid line,
representing the propagator generated as a result of the
integration over the s (x) s. The second, a solid line with a
cross in the middle, is the result of the contraction of two
lines each ending in a cross. An example of a low-order
diagram generated by this procedure is displayed in Fig.
9. The two upper propagators on the top of that dia-
gram, which we call x propagators, are the result of the
contraction of two propagators ending in ic0(x)'s. Each
of these propagators is of the form

G~(x, x')= —g G(x,x()G '(xt, x2)G(x2, x')

(A5)
Xl, X2

= —G(x, x') . (A12)

(s I Gls ) =—5"——1 1

a " n
(A6)

Furthermore,

The diagonal elements of this (n —1)X(n —1) matrix are
The relation above —between propagators that fall into
two pieces when lines are cut at x's, i.e., x propagators
and those that do not hold —holds at all orders in pertur-
bation theory. A demonstration of this can be found in
Sec. III.

and

na
(A7) 3. Ghost-field method of Houghton, Reeve, and Wallace

In order to derive the formulation of Houghton, Reeve,
and Wallace, we rewrite the effective Hamiltonian in

(A8)

The above relationships imply

G;.=(s;iGis )=—5..——1 1

a " n
(A9)

for all i and j, including i and/or j =n. Now the dia-
grams in the perturbation expansion consists of third-
order vertices arising from the terms vs,- that are con-
nected by propagator lines of the form G;. as given by
(A9). This is the perturbation expansion utilized by
Priest and Lubensky.

FIG. 8. Diagrams generated by the integration over the
si (x)'s. The crosses stand for factors of icy(x).
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—,'f"[s(q) —i~(q)][s( —q) —co( —q)]+ ,'f—"~(q)~(—q) .

(A19)

If we redefine s(q) as s(q) —ice(q), the exponent takes the
form

FIG. 9. Low-order diagram resulting from integration over
the s {x)'sand the co{x)'s.

terms of the spatial Fourier transform of the order-
parameter field. For the time being, we only need to
display the quadratic terms in the effective Hamiltonian:

02 [s(q) ]= g [s;(q)s;( —q)( r + &
I q ~')

H'[s (q) ]= ,' f"[s—(q)s( —q)+co(q)co( —q) ]

+F [s(q)+ice(q)] .

Now, defining

s+ (q):—s(q)+ice(q),

the right-hand side of (A20) has the form

(A20)

(A21)

q, i

+i co(q)s; ( —q) ]
h [s+(q),s (q)]= ,'f"s+(q—)s ( q) F—[s+—(q)] .

(A22)
:—g [a(q)s;(q)s;( —q)+ice(q)s, .( —q)] . (A13)

q, i

As before, integration over co(q) enforces the constraint
on the sum of the s s. Now redefine co(q) as

co(q)—:2a(q)&(q) .

The quadratic terms are now, for fixed q,

(A14)

a(q) gs, (q)s, (
—q)+2ia(q)Q(q) ps, (

—q) . (A15)

a(q) g [s;(q)—is (q)] —2ia(q)ss(q) g s;(q)

We now redefine Q(q) as the ghost field ss(q). If we shift
s;(q) by —iss(q), the effective Hamiltonian takes the
form

The rules for forming Feynman diagrams are that all
third- and higher-order vertices have lines emerging from
them, as displayed in Fig. 10(a). These lines are associat-
ed with factors of s+. Pairings are allowed only between
an s+ and an s . It is an essentially trivial exercise to
verify that the integral

f exp I h [s+ (q), s (q) ]]2)s+(q)Ss (q)

contains no contribution from the third- and higher-
order interactions. However, to calculate the
percolation-generating function, we must multiply the
partition functional Z by the logarithm of another in-
tegral. Using the reparametrizations above, the in-
tegrand is

=a(q) g s, (q)s, (
—q)+na(q)ss(q)ss( —q) . (A16) exp[ ,' f"s (q)s( ——

q—)—F [s(q)]

Our functional integral is over n fields S; and an addition-
al ghost field s . The third-order term in the effective
Hamiltonian is of the form g;(s, iss) . —If we let
s~~is, then we recover the effective Hamiltonian of
Houghton, Reeve, and Wallace. The propagator for s is
equal and opposite to the propagator for s;, and there is a
natural cancellation of all diagrams that are not P con-
nected.

4. Fourth perturbation-theoretical approach

The exponent in the function whose integration yields
the partition functional Z, as defined in Eq. (7), has the
general form

+ —,'[s+(q) —s (q)]s( —q)] . (A23)

The functional integral over s(q) yields connected dia-
grams having dangling lines that both emerge from ver-
tices, corresponding to factors of s+(q), and that point
into them, corresponding to factors of s (q). An exam-
ple is displayed in Fig. 10(b). The subsequent integra-
tions over s+(q) and s (q) give rise to nontrivial correc-
tions to the bare theory. The explicit notion of P con-
nectedness does not enter.

From this point on, it is straightforward to derive the
rules for Feynman diagrams. As we do not make use of
this approach in the work reported here, we leave further
development to the reader.

—H [s (q) ]= —
If [s (q) ] i co(q )s (

—q—)], (A17)

if we replace the order-parameter field by its spatial
Fourier transform. Sums over q are understood. Now we
write

f [s(q)) =-,'f"s(q)s( —q)+F [s(q)) (A18)

where the functional F consists of third- and higher-order
terms. We rewrite co(q) as f"co(q). The linear and quad-
ratic terms in the effective Hamiltonian then take the
form

FIG. 10. Diagrams appearing in {a}the partition function Z
and {b) the logarithmic factor multiplying Z in the calculation
of the percolation-generating function.
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FIG. 12. Two diagrams contributing to the mass operator
and, hence, to the critical exponent h at one-loop order.

FIG. 11. One-loop diagrammatic contributions to the three
three-point vertices v&, v&, and v&.

APPENDIX B:
RENORMALIZATION-GROUP CALCULATIONS

Under the assumption that the relations vz = —vz and
v&=0 hold between the vertices defined in Fig. 5, the

one-loop contributions to the three vertices are summa-
rized in Fig. 11. After a straightforward calculation, we
find that the two diagrams contributing to vz cancel and
that the relation v„=—vz is preserved. In order to con-
struct the full one-loop renormalization-group recursion
relations for the three-point vertices, it is necessary to
calculate the anomalous dimension g to one-loop order.
The diagrams contributing to si at one-loop order are
shown in Fig. 12. The requisite angular integrations have
been discussed in the literature. If we define A6 as the
result of an integration over the surface of a six-
dimensional sphere with unit radius, we obtain Eqs.
(30)-(33).
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