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Dimensionality dependence of mode-locking dynamics in charge-density-wave transport
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We estimate the widths of the harmonic mode-locked steps observed on the dc I-V characteristic of
charge-density-wave (CDW) conductors when ac and dc voltages are applied together using the classical
deformable medium model. For weakly pinned CDW s in the high-velocity limit,

5Er~, /Er =2~Jr(tosE„/co„E+) ~4~'4 ' where 5E~~, is the width in electric field of the p/1 step and D is

the effective dimension of the pinning. An analytic argument suggests that the phase deformations are
much larger in the mode-locked state than in the normal sliding state. They are largest for ac amplitudes
that yield maxima in the step width. On the p/1 step the time-averaged phase-phase correlation length
is predicted to vary as 5E~/i These analytic estimates are supported by numerical simulations. Mea-
surements of the step width variation with ac amplitude and frequency for NbSe3 crystals whose static
pinning is two dimensional (2D) are consistent with the 2D step width prediction.

I. INTRODUCTION

Motion of charge-density waves (CDW's) in com-
pounds like NbSe3, TaS3, EQ 3 Mo03, and (TaSe4)zI re-
sults in several unusual electrical transport effects. ' These
include nonlinear dc conduction above a threshold field
Ez., ' strongly frequency-dependent ac conduction,
coherent voltage oscillations (narrow-band noise) in
response to dc electric fields, and mode-locking phenom-
ena in response to combined ac and dc fields. ' These
effects result from the interaction between the CDW and
impurities (or other defects) which destroy the transla-
tional invariance of the CDW and pin it to the lattice.
Two types of pinning are distinguished: (i) strong pin-
ning, in which the CD% phase is pinned at each impurity
site so that the CDW phase-phase correlation length (l„z)
is just the average spacing between itnpurities, and (ii)
weak pinning, in which fluctuations in the random im-
purities potential pin the CD% on much longer length
scales.

Recent experiments have established that CDW's in
NbSe3 are weakly pinned, and that the bulk phase-phase
correlation length in undoped crystals is much larger
than the thickness (t) of typical crystals. ' '" Since re-
duced dimensionality is imposed if one or more sample
dimensions are less than the bulk I h value, most crystals
are in the confined two-dimensional (2D) limit for static
pinning.

Here we investigate the effects of pinning dimensionali-
ty on mode-locking dynamics in the sliding CD% state.
%e estimate the harmonic step width dependence on ac
amplitude and dimensionality using the classical deform-
able medium model (CDMM). These estimates are ob-
tained by combining the mode-locking argument for the
single coordinate model (SCM) introduced by Shapiro,
Janus, and Holly to describe Josephson junctions' with
weak pinning scaling arguments introduced by Imry and
Ma, ' and are consistent with the results of numerical
simulations. %'e show that the 2D estimate is consistent
with experimental data for NbSe3 samples whose static

pinning is 2D. We also describe analytical and numerical
calculations which yield insight into the nature of CDW
phase correlations in the mode-locked state.

II. REVIEW OF PREVIOUS WORK

When a voltage V(t) = Vs, + V„cos(to„t) is applied to
a CDW crystal, the dc I-V characteristic exhibits steps
where the dc CDW current remains constant while the dc
voltage varies. These steps are due to mode locking of
the internal CDW frequency associated with dc How

to&/2' with the applied ac frequency to„/2m. Both har-
monic steps, for which co&/co„=p, and subharmonic
steps, for which cot/co„=p/q, are observed. The internal
frequency co& results because the CDW pinning is period-
ic with respect to integral displacements of CD% wave-
lengths. When co„ is near a rational multiple of co, , the
periodic CDW-impurity interaction produces an addi-
tional time-averaged pinning force which adds to the ap-
plied dc electric-field force. The step width 5 Vis propor-
tional to the maximum of this time-averaged pinning
force, and thus provides information about the CDW-
impurity interaction in a dynamic limit.

Previous investigators' ' have shown that some qual-
itative features of mode locking in NbSe3 are described by
an overdamped SCM with a sinusoidal pinning potential,

yg= [E —ETsin(P)],

where P is proportional to the CDW current. ' This
model is analogous to the resistively shunted junction
model for Josephson junctions with I and V exchanged.
Early measurements' ' on poor-quality NbSe3 crystals
that did not show complete locking were reported to
yield step width oscillations which agreed qualitatively
and quantitatively with the SCM predictions. Subsequent
measurements' indicated that oscillations could not
be observed in samples of the quality used in Refs.
[14—16], and that in extremely high-quality crystals' '
the oscillations differed qualitatively and quantitatively
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from the SCM predictions. In particular, the predicted
maxirnurn value of the harmonic step widths and predict-
ed shape of the step width oscillations with ac amplitude
were all inconsistent with experiment. Furthermore, the
SCM predicts subharmonic steps only if the pinning po-
tential is nonsinusoidal.

Extensive theoretical efforts have been made to under-
stand how spatial degrees of freedom inAuence mode-
locking behavior. ' Numerical simulations of the
CDMM have found complete locking in large systems
and have reproduced many of the salient features of the
experimental data. In an analytic treatment of mode
locking within this model, Matsukawa and Takayoma
found that a standard perturbation expansion breaks
down near where the mode-locked steps are expected to
occur. Assuming the size of this region is proportional to
the width of the 1/1 step, 5E,«, he showed that to first
order 5E,&,

~ ~J, (tu„Er/tu„Er)~ ' ' for weak pin-
ning in the high velocity (Ed, ))Er) limit.

III. ANALYTIC ESTIMATE

The CDW state is typically described by a complex or-
der parameter %=he'~, where 5 is proportional to the
amplitude of the lattice distortion and P is the phase (po-
sition) of the distortion within the crystal. The CDMM
assumes amplitude distortions are of high enough energy
so that can be neglected. The equation of motion in the
overdamped limit then reduces to

y = E+Fp[x, g(x, t)],BP ePett

Bt Q

where y is a phenomenological damping constant, ep, ff

the effective CDW charge density, E is the electric field
along the CDW chain axis, and Q is the CDW wave vec-
tor. The pinning force is given by

Fp [x,P(x, t) ]= — H,„[x,P(x, t) ],6

where

H„;„[x,P(x, t)]=f (—b, (5) d x

1mp

+ g up, cos[gx, +P(x,-, t)] .
t

(4)

UP&

p- —1+2/D
gn,

which is the ratio of the characteristic pinning energy per
impurity to the characteristic elastic energy per impurity,
is much less than 1. In this limit Auctuations in the ran-
dom impurity pinning potential pin the CDW on a length
scale l~h n,

' ' if D (4 and Ez ppQ .
Here we will proceed to estimate the width of the har-

monic mode-locked steps in the weak-pinning limit. In-
stead of using perturbation theory, we will follow a more
intuitive approach based on that due to Shapiro for the
SCM model [Eq. (1)]. We consider the case where the
CDW is biased with a superposition of a dc and ac
current, (BP(x, t)/Bt )„=—tu, +co, cos(cu„t ). Then

P(x, t) = tu, t + c—os(tu„t)+5/(x, t),
~ac

(6)

where (B5$(x,t)/Bt) „=0. Substituting Eq. (6) into (4)
yields

Here f represents the CDW strain coefficient and up, the
magnitude of the pinning potential for an individual im-
purity. The short-range interaction of an individual im-
purity has been approximated by a delta function. The
sum g,. ' ' is over a random distribution of impurities of
concentration n;. Length scales have been rescaled to
make the phase-phase correlation lengths isotropic. In
this model, the CDW current is just proportional to
(BJ/Bt ) where ( ) indicates a spatial average.

The weak pinning limit in this model occurs when the
dimensionless pinning parameter,

imp + oo

Hp, „[x,g(x, t)]= —(V5$) d x+ g g up, Jp cos[gx, +5/(x;, t)+(ptu„tu, )t] . —
2

t p- ~ac

The mode-locked state is assumed to occur when the time-averaged pinning energy in the locked state is lower than in
the unlocked state. On the harmonic steps the CDW advances an integral number of wavelengths per ac cycle so the
dominant contribution to the time-averaged pinning energy arises from the time-independent part of 5$(x, t) Assum-.
ing 5$(x, t) =5/(x), Eq. (7) reduces to

(Hp;„[x,P(x)]),= J (V5$) d x g— g up, Jp
t pcs —co

Cc)~~
ar 1

cos[Qx, +5/(x, )] .

Thus, in analogy with the argument of Shapiro, Janus,
and Holly, the time-averaged pinning energy to depend
on the particular configuration 5$(x ). For some range of
configurations, the CDW pinning energy will be less than
in the unlocked state. Through variations over this range
the time-averaged pinning force can adjust itself to cancel

changes in the dc electric field, so as to keep the total
time-averaged force on the CDW, and thus the dc CDW
current, constant.

In the weak-pinning limit, scaling arguments can be
used to estimate the maximum magnitude of the time-
averaged pinning energy. '3 Equations (4) and (8) indicate
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5Ep /$ amp=2 J
ET N~~

p (9)

that the pinning Hamiltonian or the static case and the
time-averaged Hamiltonian for the harmonic mode-
locked case are identical, except that the individual irn-

purity pinning strength in the static case, up&, is replaced
by J (rv, /rv„)vp& on the p/1 step. Assuming the angle
through which the CDW must be polarized before depin-
ning is the same for the static case and the p/1 step yields

4/(4 —D)

)— 00

~ O

(Q

1=8 ET=0.035
+ i=128 ET——0.016

1=512 ET——0.02 I

where D represents the "effective" pinning dimension of
the sample. For D =0, the SCM result is recovered. In
the high velocity limit Ed, »Er, rv, /rv„=E„/ET,
and the Bessel function argument reduces to
rv„E„/rv„Er. This result is thus consistent with
Matsukawa's perturbation analysis that was discussed in
Sec. II (Ref. 26) except here we have also estimated the
numerical prefactor.

IV. 1D NUMERICAL SIMULATIONS

To investigate the range of validity of Eq. (9), 1D nu-
merical simulations were performed. y was set equal to
unity and the lattice was discretized by the same pro-
cedure used by Matsukawa and Takayama. The equa-
tion of motion was developed using the alternating-
direction-implicit method ' and cyclic-boundary condi-
tions were imposed on the lattice.

Great care must be taken to ensure that simulations of
weak-pinning dynamics are not finite size limited. The
static phase-phase correlation length gives a rough esti-
mate of the cross over from bulk to finite size behavior.
If the sample size l is much less than l h the dynamics
will be in the D =0 (SCM) limit. Matsukawa and Takay-
ama estimate that

2/(D —4)

lph = ——1/D
nl. (10)

This presents a problem. To study weak-pinning dynam-
ics, e, ((I, but this makes l~h large so very large simula-
tions are required. However, increasing e; to reduce l~h
may contaminate the dynamics with strong-pinning
corrections.

For 1D self-consistency checks were performed to
determine the bulk limit solution for the width of the 1/1
step in the weak-pinning limit. We began the 1D sirnula-
tions with c, =1 and 128 lattice sites and found the
6E,/,

—E„curve to fall between the D =0 and D =1
predictions of Eq. (9). Simulations were then performed
with c.; =—,', —,', and —,'. The 5E, /&

—E„curves converged
toward the D =1 prediction with decreasing c;, and the
c,-= —,

' and c, —,
' results were almost identical. Simulations

of various lattice sizes with c; =—,
' were then performed to

distinguish between the bulk and finite size limits.
Figure 1 shows 5Ei/i/ET versus &coEac/MacET for

three 1D simulations with lattice sizes 1=8, 128, and
512. Here c; =—,', n, = 1, and co„=12'„. As expected the
l =8 lattice reproduces the D =0 SCM result since
l h=14. For i=128 and 512, Eq. (9) for D= 1 gives a

CI 2 4 6 8 10
&co~ac/&ac~T

FIG. 1. 6E&/I /ET vs co«E„/co„ET for 1D numerical simu-

lations with 8, 128, and 512 lattice sites. For the simulations

c;= —,', n; =1, and co„=12'„.Dashed and solid lines give the

best fits of a
~ J, (bee„E„/co„Er ) ~' to the 1=8 and 512 data, re-

spectively. For 1=8, a=2. 1, b=1.00, and c=0.99 and for
i=512, a=2. 1, b=1.00, and c=1.39, in good agreement with
the D =0 and 1 fits of Eq. (9).

more accurate fit to the numerical data. Coefficients ex-
tracted from l =512 data using a fit

5Ei/&/Er=a~J~(bco„E„/ro„Er)~' are a=2. 1+0.1,
b=0.99+0.02 and c=1.39+0.05 in good agreement
with Eq. (9).

Figure 2 shows 6E2/i /Er versus co„E„/cv„Er for 1D

o L= 8 ET——0 035
g g & $=5t 2 ET——0.02'I

/

/

LLJ

~o
O

CU

C3

3.0 6.0
&coEac/&ac~T

FIG. 2. 5E2/I /ET vs co„E„/co„ETfor 1D numerical simula-
tions with 8 and 512 lattice sites. For the simulations e;= —,,

n; =1, and co„=12'„.Dashed and solid lines give the best fits
of a

~
J2(bee„E„/co„Er))' to the 1=8 and 512 data, respectively.

For 1=8, a=2. 1, b=1.00, and c=1.00 and for 1=512,
a=2.05, b=1.00, and c=1.33, in good agreement with the
D =0 and 1 fits of Eq. (9).
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simulations of l =8 and 512, using the same parameter
values as in Fig. 1. CoeScients extracted from the arbi-
trary fit a~J~(boy„E„/co„ET)~' are a =2. 1+0.1,
b = 1.00+0.02, and c = 1.00+0.01 for l = 8 and
a =2.05+0. 1, b = 1.00+0.02, and c = 1.33+0.01 for
i=512, consistent with the D =0 and D =1 predictions,
respectively.

The good agreement between the 1D numerical simula-
tions and Eq. (9) suggests that the basic ideas involved in
the analytic estimate of Sec, III are valid and can be ex-
tended to gain insight into the spatial structure of the
CDW phase on the mode-locked steps. Equation (8) sug-
gests that the ac field "effectively" renormalizes the mag-
netiude of the individual impurity pinning strength.
Thus, many of the ideas used to describe the E(ET
pinned state in the absence of an ac field can be extended
to the mode-locked state. On the 1/1 step the pinning
parameter in the high-field limit is effectively

coEac
J1 UP1

~ac T

p- —1+2/D (11)
Jn;

From Eq. (10), the "effective" time-averaged phase-phase
correlation length on the step I'h' will be greater for E„
values that give smaller J1 values. Furthermore, since

~
J&(x)

~

& 1 for all values of x, l'h' will always be greater
than the static phase-phase correlation length.

1D simulations were performed to investigate the ac
amplitude dependence of l „'h'. To help evaluate these re-
sults, simulations of the E„=O sliding and pinned states
were performed. Figure 3 shows the time and space-
averaged correlation function ([P(n) —P(0)] ) versus n

for four different Ed, values greater than EI. Here n

represents the distance between discretized lattice sites.

( [P(n) —tt(0)]') =(n/1 ph' )' (12)

for n & 50 varied by +10% as Ed, was scanned between
the high- and low-field sides of the locked region. ' We
did observe a small amount of hysteresis on the step, con-
sistent with previous observations by Middletown. Fig-
ure 5 shows typical ( [P(n) —P(0)] ) data on the 1/1 step
versus n for E„values between the first width maximum
and the first width node of the 1/1 step. At the first
node, the CDW remains unlocked for all dc electric field
values and the phase is advancing with almost no spatial
distortions. As the step width increases the phase defor-
mations also increase. To analyze the length scale diver-
gence at the node, I'h' was calculated for each E„value

The time-averaged phase deformations decrease with in-
creasing velocity; for Ed, )25ET the time-averaged phase
deformation s are practically undetectable implying a
sample-size limited phase-phase correlation length.

Below threshold we observed that after the CDW was
depinned and then repinned there was some hysteresis in
the static phase configuration but little change in

([P(n) —$(0)] ) as Ed, was scanned between E—and
31

T
ET. This is consistent with numerical simulations per-
formed by Middleton and Fisher, and their description of
the CDW polarizations below ET.

Application of an ac electric field has dramatic effects
on the spatial structure of the phase. In the high-velocity
limit, we find that as the 1/1 step is approached, the
phase deformations is increase substantially. Figure 4
shows ([p(n) —(t(0)] ) versus n for four different dc
electric fields near the 1/1 step. Here E„is such that the
width of the 1/1 step is at its first maximum.

On the 1/1 step, we find that ( [P(n )
—$(0) ] ) does not

change significantly as Ed, is varied. I'h' values extract-
ed from the fit

OOOOOO

O
8-

S- O

64.0

O

0.0 32.0 48.0 64.0

FIG. 3. ([P(n) —P(0)]') vs lattice separation
fields for E„=O. For these 1D simulations,

I =512, and M„=12', . The dashed

([P(n) —P(0)] ) for Fd, =0 after the CDW had
and then repinned.

n at several dc
c;=—, n;=1,l

line shows
been depinned

FIG. 4. ([ (4n))
—4)(0)]) vs lattice separation n for different

Ed, values approaching the 1/1 step (at the first step width max-
imum) from the low-field side. Similar behavior is observed on
the high-field side. Simulation parameters were c.; = —,', n; =1,
l =512, and cu„= 12'„,.
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FIG. 5. Typical ( [P(n) —$(0)]') data on the 1/1 step vs lat-

tice separation n for four different E„values. For the 1D simu-

lations, c,;=—,, n;=1, 1=512, and co„=12'„and Ez =0.021.
As J&(cu„E„/co„ET)~0, the time-averaged phase-phase corre-
lations grow and eventually exceed the size of the lattice.

using Eq. (12). We find

FIG. 6. 1D numerical results for (a) the time- and space-
averaged impurity pinning energy (E~™~) and (b) the time- and

space-averaged elastic energy (E'„'„) vs dc electric field at the

first maximum of the 1/1 step width. For the simulation c;= —,
'

„

g;=1, I=512, aud rg„=12'„. On the step (E~'„) displays

hysteresis while (E~™~)does not. The multiplicity of (E~';"„)
on the high- and low-field sides of the 1/1 step is due to the
finite length of the time average (100 transient cycles and 100
averaged cycles).

where c=0.6+0.15. The uncertainty in the exponent
primarily arises from the small amount of hysteresis on
the mode-locked step. From Eqs. (10) and (11), the pre-
dicted exponent in 1D is —„consistent with the numerical

result.
To gain further insight into the mode-locking dynam-

ics, we also investigated the change in time-averaged im-

purity pinning energy per lattice site ( (E™~) ) and time-

averaged elastic energy per lattice site ((E"„))on and
near the 1/1 step. Figure 6 shows results for (E™~) and

(Ez",„)for the E„value where the width of the 1/1 step
is at its first maximum. It is interesting to note that
(Ez",„) is discontinuous at the step edges and shows
significant hysteresis on the step while (E™„)is continu-
ous and smooth at the step edges and exhibits no percep-
tible hysteresis. The nonanalytical behavior of (E~'„) in-

dicates that spatial strains and not the impurity restoring
force control the mode-locked depinning and, therefore,
the dynamic critical behavior. This behavior is notably
different than the SCM where the time-averaged pinning
energy of the sinusoidal potential possess a discontinuous
derivative at the step edges.

LJJ~ 0
w ?& o

——- 3D: alJ)(bEac/Ey)l~
a=5.90 b=0.080

2D: alJi (b Eac/Ev)12
76 b=0.080
1 D: a I J ~ (b Eac/Eq)14'~
10 b=0.081
SCM: alJ&'(bEac/Ev)l
84 b=0.080

u„/2m=60 MHz
Eq=160 mV/cm

measured crystals reported here had thicknesses that
were we11 into the limit for confined 2D static pinning.

Figure 7 shows 5E&&&/Er versus ac amplitude for
co„/2m=60 MHz at T=120 K, the temperature where
the quahty of the mode locking is highest. For this sam-
ple, the mode-locking was complete on the 1/1 and 1/2

V. EXPERIMENTAL COMPARISON

We have attempted to test these mode-locking predic-
tions through measurements on undoped NbSe3 crystals.
Transport' and x-ray" measurements have determined
that the static phase-phase correlation length in the bulk
limit along the thickness (a*) direction is approximately
3—6 pm for the upper and lower transitions, respectively,
for undoped NbSe3 Ip(300 K)/p(4. 2 K) =300]. All

C3

C3

0.0 30.0
E„/ET

60.0

FIG. 7. The 1/1 step width 6E1/&, normalized by the E„=O
threshold field, 6E&/&/ET, vs E„/ET for an undoped NbSe3
crystal that mode locked completely on the 1/1, 1/2, 1/3, and
2/3 steps. Sample dimensions are 1=0.50 mm, A =0.9 pm,
and t =0.9 pry. Fits are discussed in text.
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steps, and subharmonics down the the p/q =1/15 could
be resolved, indicating good velocity coherence. The best
fit to the functional form a~J&(bE„/ET)~' with c=2
yields a = 1.76, near the predicted value of 2 for 2D weak
pinning. Driving the CDW at a higher frequency
~„=120MHz yields a =1.9. A 1D fit with a power
law of c =—', also describes the data fairly well, although
the extracted prefactor a =1.1 is almost 50% smaller
than the predicted value of 2. Two other very coherent
samples gave nearly identical results for the upper transi-
tion.

We also took data on two samples near T= 50 K, the
temperature where the mode-locking quality is highest
for the lower transition CDW. The best fit to the data in
the high-velocity limit (co„/2tr) 30 MHz) to the func-
tional form a ~J&(bE„/ET) yields a =1.9 for both sam-

ples, again consistent with the 2D analytic estimate.
The analytic estimates and the numerical simulations

presented in Secs. III and IV indicate that the mode-
locking dynamics are sensitive to the dimensionality of
the pinning in the weak limit. Our predictions for the
functional form of the width of the p/1 step and for the
functional form of the time-average phase-phase correla-
tion length on the p/1 step versus ac electric-field ampli-
tude and frequency are consistent with 1D numerical
simulations. Larger simulations (which are beyond the
scope of our computing power) are still needed to investi-
gate the range of validity for the 2D and 3D predictions
and to explore the nature of the 2D and 3D crossover.

The present experimental results indicate that the
dimensionality dependence of the pinning must be ac-
counted for when interpreting mode-locking data. The
success of the 2D fit of Eq. (9) and 5E &&,

" scaling with ET
Ref. (10) indicates the mode-locking dynamics are 2D for
most undoped NbSe3 crystals. A complete test of the
theory would involve measuring samples in the 1D and
3D limits. Obtaining samples in either of these two limits
is extremely difficult. Large specimens almost always
possess numerous thickness steps, giving a sample many
CDW drift velocities which makes data analysis
difficult. Samples whose widths are small enough such
that the crystal is in the 1D limit would be di%cult to see
optically. Also, thermal Auctuations become increasingly
important with decreasing cross sectional area, altering
the T =0 CDMM analysis. Hopefully, improved sam-
ple preparation techniques will allow investigation of one
or both of these two limits in the near future.
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