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Photomagnetism of metals: Microscopic theory of photoinduced bulk current
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It is shown that visible light incident perpendicular to the surface of a normal metal and partly
reflected at the surface can excite in the metal a dc bulk current that extends over a distance of the elec-
tron mean free path. For the case where the current is short circuited by another conductor (for in-
stance, a superconductor) the magnetic flux built up in such a loop is estimated. It is expected to be
much larger than the photoinduced magnetic flux associated with the dc surface current that was recent-
ly observed in normal metals illuminated by light falling obliquely on a metal surface. A microscopic
theory of such a photomagnetic dc current is worked out for the case where the current is due to light-
excited interband transitions of the electrons and their interaction with the metal surface.

I. INTRODUCTION AND PHENOMENOLOGICAL
CONSIDERATIONS

In a recent paper,! observation of the photomagnetism
of metals was reported. In a double-connected metal
sample illuminated in such a way that a circular dc sur-
Jace current could be excited a build up of magnetic flux
was observed. In a subsequent paper? dealing with a mi-
croscopic theory of the effect, two contributions to the
surface current were discussed. One of them is due to the
quasimomentum transfer to the conduction electrons
from the light partially reflected at the metal surface.
Another is due to the anisotropy of the electron transi-
tions with regard to the light polarization direction, in
combination with diffuse reflection of the electrons at the
surface. Both contributions exist for the light falling ob-
liquely on the metal surface.

The purpose of the present paper is to point out that,
along with the surface current, a dc bulk current can be
excited by light® and to work out a microscopic theory of
that effect. The surface current is rather sensitive to the
geometry. It vanishes, if, for instance, the light falls nor-
mally on a plane that is perpendicular to an axis of sym-
metry of the metallic crystal. To the contrary, the bulk
current is present for any angle of incidence. We shall
calculate the excited current for the simplest case of light
incident normally on a metal surface. The light is partly
reflected from the surface and partly absorbed due to the
interaction with the conduction electrons.

In this section we repeat the phenomenological argu-
ments given in Ref. 3. The microscopic theory will be
presented in the following sections, starting by establish-
ing the Boltzmann equation for the excited electrons in
Sec. II and giving its solution in Sec. III. After defining a
simple model for the electron spectrum in Sec. IV, the ex-
cited current is explicitly calculated in Sec. V and com-
pared in Sec. VI with the phenomenological estimate of
Sec. I. In Sec. VII the calculated effect is compared with
the photoinduced surface current (and the magnetic flux
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associated with it) as observed and calculated in Refs. 1,
2, and 4.

There are two ways in which bulk current can be pro-
duced in a metal by incident electromagnetic radiation:
interband and intraband transitions of the electrons. For
visible light the first effect often plays the dominant role,
and in view of current experiments with visible light (see
Refs. 1 and 4) only interband transitions in a metal are
considered in this paper. We would like to mention here
that in semiconductors a surface current due to the inter-
band transitions and diffuse scattering of the electrons
from the semiconductor surface was observed and dis-
cussed theoretically in Ref. 5 whereas intraband transi-
tions were considered to calculate the voltage (in semi-
conductors) (Refs. 6 and 7) and the bulk current (in met-
als) (Ref. 7) produced by the radioelectric effect.

For the sake of definiteness, let us consider transitions
from a full valence band into the empty states of the con-
duction band above the Fermi level. Let us assume that
the average effective mass of the electrons in the conduc-
tion band is much smaller than that of the electrons in
the valence band, so that most of the current is carried by
the former. If the z axis is perpendicular to the illuminat-
ed surface of the metal, all the excited electrons fall into
two groups: those with v, >0 and v, <0, where v, is the z
component of the electron velocity. Both groups contrib-
ute to the electron current density j,, the first group
directly, the second after a reflection from the surface.
Taking these processes into account one can calculate the
light-induced current density j{"(z).

There are two characteristic lengths that determine the
spatial variation of this quantity, i.e., the light penetra-
tion depth 8 and the electron mean free path I. We will
be particularly interested in the case [ >>§, where the
effect under consideration is rather big. Then [ is the
characteristic length over which the current density
7i9(z) falls off exponentially. The total current density is

J.=i{™z)+06,(z)=const , (1)
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where &, is the dc electric field along the z direction
which builds up in a stationary situation in order to
guarantee charge conservation, and o is the static electric
conductivity. The actual value of the electric field is
determined by the boundary conditions at the surfaces of
the illuminated metal.

The simplest and most effective arrangement is
achieved if the normal current excited by the light is
short-circuited by a superconducting loop. Then we have
no voltage,8

[ 6.@az=0, (2)

and the total current density, determining the magnetic
flux, is obtained from Eq. (1) as

. _ 1 Lo
=7 fo J. (z)dz . (3)

Here we assume that the light falls perpendicularly on
the metal surface, z =0; L >z >0 corresponds to the inte-
rior of the metal.

Let us give an order-of-magnitude estimate of the ex-
pected photomagnetic effect. The intensity of light will
be measured by the time-averaged Poynting vector in the
ingoing wave Q,. For the Poynting vector of the
reflected wave Q, we have

0/=—(1-rQ, . @

Then the absorbed energy flux is rQ,, or the absorbed
photon flux is

rQ, /fiw (5)

where @ is the frequency of light. Assuming that inter-
band transitions of the electrons are mainly responsible
for the absorption of the photons, the last ratio also gives
the number of electrons excited per second within the
volume that equals unit area times the penetration depth
5.

Now, the excited electrons move away from the
penetration layer, producing the current j!(z) which
falls off over the distance /, so that

jz(l)(z)zjoe—z/l . (6)

For j, one writes

jo _ 1.

e o
where 7 is a numerical coefficient of the order of (but
somewhat smaller than) unity. Its value can be calculat-
ed on the basis of a microscopic theory (that will be done

in Sec. V).
Making use of Egs. (3), (6), and (7) we arrive at

@)

rQ, |
., = — . 8
Jz Ueﬁw L (8)
The total current J is
Q. 1
= —_ s 9
T=me o S ©)

where S is the area of the illuminated part of the metal.
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Now we are able to give an order-of-magnitude esti-
mate of J. Assuming 7=0.5, r =0.1, //L =0.1, Q,=1
W/cm?, s=0.1 cm?, and @=3X10" s~ ! we obtain
J=0.3 mA.

The magnetic flux through the closed loop formed by a
small normal-metal part and the superconducting short
circuit is given by

d=c LT, (10)

where L is the self-inductance of the system. As a result,
we get for the magnetic flux measured in units of the
magnetic-flux quantum, ®y=mc#i/e,

b re? leS“)L
o s L o

(11)

The order of magnitude of this ratio, assuming .L=5
ecm=5X10"° H, is ®/®,~10>. This means that the ex-
pected effect is very large. In Sec. VII we will show that
this effect is, for instance, much bigger than the one due
to the photoinduced surface current observed in metals in
Refs. 1 and 4 and discussed theoretically in Refs. 1 and 2.

II. BOLTZMANN EQUATION

To calculate the dc current we shall use the Boltzmann
equation for the stationary distribution function of the
electrons in the upper band f,. Omitting (where no con-
fusion arises) the band index (2) we can write the
Boltzmann equation in the form

” 3fp= fp afp
Z 9z ot ot

(12)

E coll

Here the term on the left-hand side allows for the z
dependence of the distribution function. The terms on
the right-hand side represent the interband transitions
due to the light and the collisions with, for instance, the
impurities. In analogy with Ref. 2 we write the latter as

o | __ Lo (13)
ot ’

coll Tp

where f” is the equilibrium distribution function and 7,
is the relaxation time.

The first term on the right-hand side of Eq. (12) is cal-
culated by means of the Fermi golden rule applied to the
interaction Hamiltonian between the electron and the
field,

Hom= 2 FH+H) (14)
itie

FH=-""_(V-A+AV), (15)
zcmo

where m,, is the free electron mass and A is the vector
potential. We assume the light wave to be of the form

E=————=Egexp| —iot +ikz—1kz], (16)

where §=1/k gives the penetration depth. The commu-
tator [V, A] vanishes and we have
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F= fie
®

J(EyV) . (17)
mg

exp( —iwt Jexp[ikz — Lkz

To allow for the z dependence of the electron distribu-
tion function f, in Eq. (12) we can imagine that the sam-
ple is divided into slabs of thickness Az, Az being so small
that the field in a slab can be considered as independent
of z. On the other hand, Az is still large compared to the
lattice constant and to the distance traveled by an elec-
tron within a time equal to the period of the light wave.
This approach permits to take into account the z depen-
dence of the light intensity.

We assume the frequency of light w, to be large
enough, so that the conditions for the energy and quasi-
momentum conservation allow transitions between the
lower band 1 (that is full) and the upper band 2 (that is
filled up to the Fermi level). Not considering the thresh-
old effect, we use here the zero-temperature approxima-
tion. Then we have f =0 in the upper band and
fp =1 in the lower band This gives in the first order of
the light intensity

af
_an L=§, G (p,p')8(ey +Hin—el)) , (18)
where
2
G(p,p ’)—E-ﬁ— |E(2)-Pyy(p,p)I . (19)
Here |E(z)|?*= |E0|2exp( kz) [the factor e’ drops out
when the absolute value is taken in Eq. (19)] and

P,,(p,p’) is the interband transition matrix element given
by
Pyi(p,p")=—ii [ dr {P*(r)Vy{I(r) . (20)
Here 1/1g)(r) are the normalized Bloch functions, p being
the quasimomentum and i =1,2 referring to the lower (1)
and upper (2) bands, respectively.
Since the z dependence of E has been taken out of the

integral, Eq. (20) vanishes unless p’=p. Writing the
Bloch functions in the form

Yy (D) =explip-r/A)uy)(r)

we can write Eq. (20) as

Py(p,p)=—ifi [ dr uP* (r)Vu{V(r) . 1)
Going back to the Boltzmann equation (12) we obtain
Yoy le =Dge ", (22)
? oz T

P
where we have made use of Eq. (13). D, taking into ac-
count Egs. (18) and (19) with p=p’, is given by

T

2%

Dy= |130 P (p,p)I?8(ey +iw—el) . (23)

III. SOLUTION OF THE BOLTZMANN EQUATION

The general solution of the Boltzmann equation (22)
reads
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z/v,T

e F+Ce T (24)

z/vffd, zf

where C is independent of z, but, like D, may depend on
all other variables. C, as well as the lower integration
limit a, will be determined by the boundary conditions.
To do this, we have to distinguish two cases, v, <0 and
v, >0.

fp(2)=

A. Casev, <0

For this case f, =/} is due to interband transitions
taking place within a layer of width §=1/k near the sur-
face z =0 of the metal. For z >>8, f P =0. Therefore, we
have to put C=0and a — . With

B=1/|v,|7 25)
we have
f(_)(z)—lv—eﬁzf dz'e P¥Dye " (26)

The z' integration yields

e"'KZ e—KZ

D
=77

=D <0). 27
lv,| B+x % 1/7+kv,] (v; <0) @n
B. Casev, >0
Here f,=f_"’ consists of two parts. One is due to in-

terband transmons with v, >0 and vanishes for z =0; the
other stems from the electrons that were created by inter-
band transitions with v, <0 and have been reflected by
the surface z =0. The latter part is just represented by
the last term in Eq. (24). Thus

fg,“(z)‘—: ie ‘ﬁzfozdz'eBZ'DOe Tk Ce P, (28)

The z’ integration is again trivial and yields

—KzZ

;+’(z)"Do—l/———+Ce B (9,>0). (29

C has to be determined in such a way that at the surface
z =0 there is no net current in the z direction, i.e.,

fvz>0d3p f(+)(0)v,_+ fuz<0d3p f(—)(o)vzzo . (30)

Taking the values of £‘*)(0) and f‘~(0) from Egs. (29)
and (27), we obtain

-fvz>0d3‘l7

In order to determine the relation between C and D, we

are going to use a specific model. This will be defined in
Sec. IV.

IV. ISOTROPIC ELECTRON SPECTRUM MODEL

D()vz

C ————
Ve 1/7+«kv,

=0. (31

For the further calculations we exploit a simple model
of an isotropic electron spectrum. It will enable us to
make order-of-magnitude estimates of the expected
effects.



10 084

We assume the electron spectrum in both bands to be
isotropic and quadratic:

eVp)=p2/2m,, £P(p)=e,+p*/2m, . (32)

Here we assume the effective mass to be positive if the
curvature of the band is positive, or, in other words,
d%/dp2>0. As for the probabilities of the interband
transitions, we make one of the simplest assumptions
compatible with the isotropic model, namely

P, (p,p)=2ap, (33)

where a is a dimensionless constant. In reality the angu-
lar dependence of the matrix element may be much more
complicated. This, however, is of little consequence as
we are going to use this equation only for rough esti-
mates. What is of importance, though, are the numerical
values of the coefficient a. In the cases where the almost
free-electron model is applicable a should be considered
as much smaller than one. The smallness is determined
by the parameter proportional to the ratio of the pseudo-
potential constant(s) to some characteristic energy of the
order of the Fermi energy.

V. CALCULATION OF THE CURRENT

For simplicity, we again start by assuming that the
effective mass of the electrons in the upper band is much
smaller than the absolute value of the effective mass of
the electrons in the lower band. Then it is sufficient to
calculate only the contribution to the current stemming
from the upper band. At the end of this section we drop
this assumption and give a formula for the contribution
of both bands to the current.

We have now to find the relation between C and D in

Eq. (31). According to Eq. (33), D, [Eq. (23)] takes the
form
D0=B|E0-pl28(s;,”+ﬁa)—si,2)) , (34)
# mayw

The simplest way of satisfying condition (31) would be
to put
D,

= 36
¢ 1/7+«kv, (36)

However, we have to keep in mind that C represents the
excited electrons that have been reflected by the surface.
If the reflection were specular Eq. (36) would be justified.
However, it is more realistic to assume that the electrons
are elastically, but diffusely reflected by the surface.
Therefore, C should have the energy dependence, but not
the angular dependence (in particular, favoring the elec-
trons with p in the direction of Ey) of D, [Eq. (34)]. Con-
sequently, we take

C=Ab(e)+Hi—el?) . (37)

With the help of Egs. (34) and (37) we are now able to
evaluate the integral in Eq. (31). It takes the form
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g ]5(s;l’+ﬁm—e;3’)=o

UZ
(38)
According to Eq. (32)
v, =03ey /dp,=p,/m, ;
the argument of the § function is
e+ —ell)=—p?/2m +#o’ , (39)

where

S =——— o' =fo—¢, . (40)

The integrals in Eq. (38) are straightforward and lead to
the result

A=B|Eo|2m2:”' F, ﬂ’;: (41)
where
P =V2m#o'
and
1(y)“f dg%_’_—f,_
=%+%y—y2——y(l—y2)ln—%1 L @)

The density of the current excited by the light is given by

(l) (z)=2 f,, - 21rﬁ)3f(—

2e fuz>0 2M)3f(+ @3)

What we actually need is the total current density j,, Eq.
(1), which is given by Eq. (3). Using Egs. (27) and (29), we
obtain

1 pL, .
=ff0 dz j{'(z)

_2e dp |y e
L fo zfuz>0(277-ﬁ)3 Uz l Dy 1/7+«kv,

(44)

Assuming that kL >>1, BL >>1 and remembering that
B=1/7lv,|, the z integration yields

1

% k(1/7+kKv,)

]z L v >0(27Tﬁ)3 Z

+Dy = +Cr,
K
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Introduction of the expressions (34), (37), and (41) leads
to integrals similar to the ones in Eq. (38). The result is

‘2_”_'_

Jo= PS5 BIEpl—F(y) 46)

where [compare with Eq. (42)]
F(y)=(:—v)F(y)+;
=1y 72+7’3+1’(Y—§)(1—72)1n———1’—1_; .

(47)

_—_——=—=— 4
Y I (48)

gives the ratio of the penetration depth of the electromag-
netic wave to the mean free path

1= (49)

of the high-energy electrons in the conduction band with
velocity p, /m,. Introducing ! and § into Eq. (46) and
substituting for B Eq. (35) we obtain the final result

|E0| 3 I5F %

em

_ém (50)
2w L#

J:=

Let us look at the limiting cases y =8/ <<1 and y >>1.
We have

y<<1, Fly)—%, (51)

3
y>1, F(y)»—— 0y (52)

The physics of these results is rather transparent. If
the mean free path [ of the electrons is large compared to
the penetration depth 8, then y <<1, and the average
current density j, [see Egs. (1) and (3)] is proportional to
18 because 8 is the thickness of the layer in which inter-
band transitions take place and [ is the length over which
the current j'” [see Eq. (6)] decays due to the collisions in
the bulk of the metal.

In the opposite case, if the mean free path [/ of the elec-
trons is much smaller than the penetration depth 8 (or, in
other words, ¥ >>1), of all the electrons excited in the
layer of thickness & only those within a thin layer of the
width [ near the surface are sensitive to the presence of
the surface scattering. Elsewhere, because of the symme-
try of the transition probability in regard of exchange of
p by —p, there is a cancellation of the contributions with
v, >0 and v, <0. Then the previous result is reduced by a
factor 2(1/6) and j, is proportional to 1%,

We can add to this that, whereas the actual behavior of
the current in the intermediate case § /] =1 and the actu-
al numerical coefficients in the extreme cases are sensitive
to the model for the electron spectrum and the transition
probabilities, the dependencies on the electron mean free
path and the penetration depth given by Eq. (50), in com-
bination with (51) or (52) for the limiting cases are quite
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general.

At the end of this section we wish to give an equation
for the two-band contribution to the current for the case
where for both bands the conditions I"?>>8§ are
fulfilled. We have

2

25 em 72 D
] E —_— (53)
2736 2L % Eol’p : my |’
where 7'1'?) are the times of relaxation and m, , are the

effective masses (with their appropriate signs) in the first
and second bands, respectively.

VI. COMPARISON OF PHENOMENOLOGICAL
AND MICROSCOPIC APPROACHES

Now we are going to calculate the rate of the interband
electron transitions, per square centimeter, induced by
the light. On the one hand, this should be equal to the
rate of photon absorption by the electrons, rQ, /#iw. On
the other, the same quantity in the limit / >>§ should
determine the current density, Eq. (8). Comparing both
expressions we shall be able to determine the coefficient
entering this equation.

One obtains the rate of electron generation in the
upper band, which is equal to the rate of photon absorp-
tion within the layer of the width & near the surface, by
integration of Eq. (18) over 2d°>p and dz. One gets

0 o 1
fio 37K
where B is defined by Eq. (35). Equation (54) can be used
in principle to establish the relation between the
coefficient r (defining the light absorption) and the matrix
element P,, as well as the electron dispersion laws in the
two bands. However, we use it here for comparison with
Eq. (46), which, in view of Eq. (49), for the most interest-
ing case [ >>& (6=1/k) gives

mp3.B|Ey|*, (54)

l
=== B|E,|*mp},— .
By comparison of Egs. (8), (54), and (55) we get
=% - (56)

The value of this coefficient is model sensitive. Howev-
er, we wish to emphasize that for any type of interaction
of the electrons with light (i.e., for any realistic depen-
dence on p of the matrix element P,;) our microscopic
calculation confirms the estimate given by Eq. (8) with
the numerical coefficient 7 of the order of 1.

VII. CONCLUSION

On the basis of the calculation presented one can see
that the expected effect is rather large. It is interesting to
compare it to the photoinduced surface current (and to
the magnetic flux associated with it). Such a current in
metals was observed in Refs. 1 and 4 and discussed
theoretically in Refs. 1 and 2. It exists for an oblique in-
cidence of light on the metal surface and has, in general,
two contributions. One of them is associated with the
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transfer of the x or y component of the quasimomentum
from the light to the conduction electrons. These are the
components parallel to the surface and are conserved at
the metal surface. Another contribution, the so-called
photogalvanic current, is due to the asymmetry in the
electron distribution brought about by the surface
scattering of the conduction electrons.>?

In the geometry considered in the present paper the z
component of the quasimomentum (i.e., the one perpen-
dicular to the surface) is not conserved at the metal sur-
face. The contribution of the quasimomentum transfer to
the bulk current associated with the interband transitions
is of little significance and we do not consider it here.
Therefore, it is worthwhile to compare the photomagne-
tism in the present geometry with that associated with
the photogalvanic surface current.

We begin with pointing out that the current investigat-
ed in the present paper is proportional to the value of
|Eo,|? at the metal surface, while the photogalvanic sur-
face current is proportional to Re(Ej, E;,). To compare
these two values, one should keep in mind some facts
concerning the free-electron contribution to the dielectric
susceptibility of a typical metal. In the zeroth approxi-
mation in the electron scattering it is given by

%
€=€— 5 , (57)
w
where ¢ is a contribution due to atomic core polarization
(usually comprising several units within the frequency
range we are interested in), whereas the plasma frequency
®, is given by

4mne?
—

0= (58)
Here n is the free-electron concentration, whereas m is
their average effective mass. To give an estimate for typi-
cal metals, we take n of the order of 10> cm 2 and m of
the order of the free-electron mass. We get

0l~3X10% 77,

which means that for visible light the absolute value of
the second term in Eq. (57) is at least bigger than ten so
that e(w) is negative. It means, in its turn, that visible
light is strongly reflected at the metal surface.

Now, we wish to indicate the following points. First, if
the absolute value of the metal dielectric susceptibility |e|
is much bigger than 1, |Ey,| is smaller than |E,, | by a
factor |e| ~!/2. Second, in the zeroth approximation in
the electron scattering € appears to be negative. As a re-
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sult, in the same approximation E, is completely out of
phase relative to E,, so that the time average of E,E,,
Re(E§ Ey,)=0. This quantity differs from zero only in
the next approximation, and there it is proportional ei-
ther to the intensity of the interband scattering, i.e., to
a?, or to the intensity of intraband scattering, i.e., to
1/w7.° These are the main reasons as to why the current
considered in the present paper may be big compared to
that considered in Refs. 1, 2, and 4.

To this statement we can add the following considera-
tion. The photogalvanic surface current is very sensitive
to the elastic electron reflection at the surface (see Ref. 5).
It vanishes for pure specular reflection. The bulk current
calculated in the present paper is not particularly sensi-
tive to the character of reflection. We made our calcula-
tion for the diffuse reflection as we consider this case to
be more realistic. However, the calculation could have
been easily done for the specular reflection with a slight
alteration of the result (coefficient 7).

We may also mention that the photogalvanic contribu-
tion is very sensitive to the polarization of the light and,
according to Refs. 2 and 5 can even vanish for the polar-
ization in a particular plane. On the other hand, the
effect can be enhanced for circular polarization. To the
contrary, the current considered in the present paper is
not very sensitive to the polarization of the light. All this
means that investigation of surface and bulk currents re-
veal different properties of the conduction electrons. We
would like to remark once again that the case of normal
incidence of light was considered here only for simplicity.
For oblique incidence, the excitation of a dc bulk current
should also take place.

Generally, the experimental investigation of this effect
may be of considerable interest. First, under the il-
lumination the electrons are highly excited above the Fer-
mi level and in such a way one has a unique possibility to
investigate the properties of these electrons and their re-
laxation. Second, together with the light absorption, this
is a tool to investigate the interaction of the electrons
with light. Third, in this way one can learn a lot about
the interaction of highly energetic conduction electrons
with the metal surface.
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