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Using an electronic theory we present calculations of the magneto-optical Kerr rotation angle
in second-harmonic generation (SHG). For the longitudinal snd polar Kerr configuration and for
arbitrary angles of incidence it is found that the Kerr angle in SHG may be enhanced by up to one
order of magnitude compared to the linear Kerr angle. This enhancement is caused by interband
snd intrsbsnd transitions (plasmons), which in the linear case suppress the Kerr rotation in the
optical range. Our results will be useful for a microscopic study of two-dimensional magnetism.

Nonlinear optics is of general interest and may in par-
ticular become an important tool for studying fundamen-
tal problems of magnetism at surfaces, interfaces, and
in films. Since second-harmonic generation (SHG) re-
quires inversion-symmetry breaking, it is generally far
more surface sensitive in inversion-symmetric media than
linear optical studies and thus particularly suited to de-
termine magnetic moments, magnetic ordering, magnetic
easy axes, and spin-orbit coupling. In multilayers, SHG
benefits &om both the lack of inversion symmetry at each
interface generating a &equency-doubled signal and the
large penetration depth of the fundamental light giving
access to buried interfaces. Presently, SHG is, for exam-
ple, the only probe of magnetism at the interface of two
magnetic films. Since there is no theory available so far, it
is the goal of this paper to show using an electronic theory
how magnetism affects the incoming light polarization
and to determine the &equency-dependent Kerr rotation
and dichroism. For this we have also to extend the Fres-
nel formulas to the nonlinear magnetic case, which seems
of general interest by itself. Since in the linear case the
Kerr rotation is suppressed by bulk interband and intra-
band transitions (plasmons), one expects in the nonlinear
case with only surface optical response an enhancement
of the Kerr rotation. Indeed we find a large enhance-
ment of the Kerr rotation of the light polarization as a
general phenomenon in nonlinear magneto-optics. This
might explain then also various recent experimental re-
sults on garnets and Heusler alloys. Since, also with re-

gard to the high potential for technological application,
the search for large Kerr rotations in linear optics has
been a longstanding subject of intense theoretical and
experimental investigations, such an enhancement of the
Kerr rotation in the nonlinear magneto-optical Kerr ef-

fect (NMOKE) possibly opens a new route for applica-
tions involving readily available materials, such as iron,
without resorting to low temperatures, large magnetic
fields, or binary and ternary magnetic alloys. Thus, our
theory may become the basis for a unified use of SHG
as a tool for a comprehensive study of surface and inter-
face magnetism including magnetic anisotropy, spin-orbit
coupling, etc.

Using electrodynamical theory the linear and nonlinear
polarizations are expressed by the susceptibilities. The
influence of magnetism on SHG is shown best by deter-

mining the change of the polarization of the incoming
light. For this we use the wave equation (j=1,2)

V x V x E(s)(j ur) + E s (jar)c~ o)ts
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with the nonlinear polarization

P(2) (2~) —y(2) (2~) . E(i) (~) . E(i) (~) (2)

as a source term. To link SHG to the spin-polarized elec-
tronic structure and to understand the microscopic origin
of the Kerr rotation, we use an electronic theory to deter-
mine y( )(ur). Note, Eq. (1) is in the linear case without
the source term a homogeneous wave equation leading
to left- and right-handed circularly polarized waves as
eigenmodes with complex re&action indices N+ and N
as eigenvalues controlling the optical response. In the
nonlinear case the source term in Eq. (1) yields an inho-
mogeneous wave equation having solutions that no longer
relate to N+ and N but directly to the surface response
function y&2~, which does not correspond to indices of
re&action.

We use now for the calculation of the Kerr rotation
the law of refiection and decompose E(s)(ju) into left-
and right-handed circularly polarized light E(+)(s)(jar)
due to the magnetic birefringence. One obtains for the
complex Kerr angle with real part P~ and ellipticity e&s

(amplitude of field E( ): EP )

@( ) y( ) + ( )

E(+)(s)(j ) E(—)(s)(.
)

E(+)(s)( ) + E(—)(s)(. )

Further evaluation of Eq. (3) requires the specification
of the Kerr configuration. We choose the longitudinal
Kerr configuration as shown in inset (a) of Fig. 2 for
arbitrary angles of incidence. Note, other configurations
may be analyzed similarly. In this configuration the mag-
netization vector M lies parallel to the optical plane and
parallel to the sample surface. We assume p-polarized
incident light. For M=o, P~ ~ perpendicular to the sur-
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face gives the maximum SHG yield. Inset (b) in Fig.
2 shows the definition of the linear and nonlinear Kerr
angles with respect to the reHected beam of &equency ~
and 2 cu, respectively.

To express the field amplitude E„, )( (jfd) of the re-

fiected beam by the incident field amplitude E, (j~)
I

we use the usual Fresnel formulas for the linear case and
derive such expressions for the nonlinear case extending
results by Bloernbergen and Pershan to the case of mag-
netic surfaces. %'e find for the nonlinear magnetic Fresnel
formula in p-polanzation the result

y( )+[E, sin 8,] sin8;
6'p C

X
[1+y(1)+(2pr)] cos 8;
y(')+(2(u) —y

'
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with S+. (8;) =
)) 1+2t ia(jw) —sin 0; for j=1,2. The

F+ follow by comparison (n=1,2,3). Here the tensors

kiy sine; and y( )+ = y +y are de-
composed in diagonal ("nonmagnetic" ) and off-diagonal
("magnetic") contributions. Due to the source term in
Eq. (1) the i is missing in y(2)+. We find then for the
longitudinal geometry the linear Kerr angle

(5)

Eqs. (5) and (6) are the basis for determining the ur and
0; dependence of the linear and nonlinear Kerr rotation.
Since yi « yp, Eq. (6) may be expanded in powers of

~ (~) (~)

(&1~ /pp ) and linearized. One gets using F&+ ——Fjtp
Fj,i (Ih=1,2,3)

~(2) . ~ Xi Fii(2)
an ~ = i () +

Fi0 +2O
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with Fj,p ——F&+ (Fj,i = 0), (If. = 1, 2, 3),
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and for the nonlinear Kerr angle

~(2)+F+F F~(2) F-F+F+--
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where Sto(O;)—:)j 1 t 2o (jw) —sin (e;).
Note, the first term in Eq. (7) results from g(2)+ g

, and has been previously neglected. This term,
however, gives the main contribution to the nonlinear
Kerr rotation. It vanishes in the case of inversion sym-
metry in the bulk material, but not at the surface. The
I"I,q and FA,p, however, depend only on Linear suscepti-
bilities. Hence, nonlinearity exhibits a much stronger
surface sensitivity which is responsible for making the
NMOKE a very useful tool for studying surface mag-
netism. It is interesting, that for all configurations the

factor 1/ltcoss 0; + 2o (w), which ceases the small irrr
in Eq. (5), is not present in the nonlinear case [Eq. (7)].
Despite the complex dependence of the parameters it is
clear that the nonlinear Kerr rotation is for all 0; al-

ways enhanced by a factor cos 0, + yp u . Note,(~)

this enhancement can be traced back to the source term
of the wave equation (1), where P(2) y(2) and g(2)

depends sensitively on the magnetic properties at the
surface. This is the mathematical manifestation of the
di8'erent character of the solution of the homogeneous
and inhomogeneous wave equations Eq. (1) as pointed
out already and of the diferent physics involved in lin-

ear and nonlinear optics. In the nonlinear case only the
surface contributes to the optical response. Thus, the de-
structive contributions to the Kerr rotation by bulk inter-
and intraband transitions are avoided. Furthermore, it
follows clearly from Eq. (7) that the interaction between
the light and magnetism is mediated by the spin-orbit
coupling. For vanishing spin-orbit coupling constant A,

one gets yi = Fi, i ——0 (k=1,2,3) and thus 1/ja-
——0. All

Egp and yo are independent of spin-orbit coupling.
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To demonstrate now numerically the effect of mag-
netism on SHG, in particular the frequency-dependent
enhancement of the Kerr rotation, we use Eqs. (5) and
(6) assuming 0; = 45'. The functions I"&+ (k=1,2,3),
see Eq. (4), are determined by the susceptibilities g,
(i=0,1; j=1,2). These have been calculated previously by
us for Fe. The obtained results should be representative
for transition metals. Only for the nonmagnetic linear

susceptibility gp we include additively interband and
intraband contributions. For the intraband contribution,
we assume as usual a non-spin-split conventional Drude

form yo,.„t, ——uo/[u(a+ij7)], using v=9.12x10 sec
and A&up=0. 74 eV. We neglect Drude contributions to the
magnetic susceptibilities since the d electrons dominate
the electronic spin polarization. For the nonlinear non-
magnetic susceptibility a Drude contribution if apprecia-
ble at all should occur only at much lower frequencies
than in the linear case. Note, we use A, = 50 meV,
which is the bulk value for Fe.

To check the accuracy of our electronic calculations we
calculate first for Fe the &equency dependence of the lin-

ear polar Kerr angle P~ (ur)=Re/& and compare with(~) (~)

the experiment by Krinchik and calculations by Oppe-
neer et aL Results are shown in Fig. 1. Note, we find
excellent agreement up to hu = 4 eV. The linear Kerr an-
gle is of the order of 0.5'. The inclusion of the intraband
contribution which changes P&()(ur) mainly for small ur

leads to a further reduction of the linear Kerr angle and
is responsible for changing P~( to zero. It is of interest
that our analysis reproduces also the enhancement of the
linear Kerr angle at the plasma frequency as was already
discussed by Feil and Haas.

In Fig. 2 we show results for Fe in the case of the lon-
gitudinal Kerr geometry for the frequency dependence of
the nonlinear Kerr angle P~ (u) =Re/& (u) for an angle(2) (2)

of incidence of 45' and compare with the corresponding
results for @ (&u). We obtain for the optical range (up
to 2.5 eV) a considerable enhancement of P~ (ur) over

P~(') ((u). For hu) ) 2.5 eV one has IP~(') (u)) I
= IP~() (ur) I

0.5' and for bur in the optical range one gets Pa (w)
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FIG. 2. Theoretical results for the frequency dependence
of the nonlinear longitudinal Kerr angle P» (u) for Fe at an
angle of incidence e, = 45' using the same parameters. For
comparison also our results for the linear longitudinal Kerr
angle P~»~(~) are given. Insets (a) and (b) illustrate the defi-
nitions of the longitudinal configuration and the Kerr angle.

0.5' while Pg (~) may become 4' or larger It i.s impor-
tant to emphasize that the enhancement results largely

~(~)
from the term "&» which has been neglected previously. i

Xo

Note, the behavior of $1(( (ur) and P~()(ur) for ~ ~ 0 is
controlled by the factor "~..~ '

In Fig. 3 we demonstrate the enhancement of the Kerr
rotation P~ compared with the linear case as a func-
tion of the angle of incidence 0; for photon energies Ru
=0.6 eV and 3.6 eV. Figures 2 and 3 show that the en-
hancement of the nonlinear Kerr angle with respect to

occurs over a large range of frequency and angle
(~)

of incidence. Similar results are expected for a variety
of magneto-optical Kerr geometries. The &equency de-
pendence of the nonlinear Kerr angle re8ects the surface
electronic and magnetic structure and thus makes the
NMOKE a material-sensitive probe.

It would be interesting to analyze the nonlinear Kerr
angle and its symmetry properties for different magnetic
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FIG. 1. Frequency dependence of the linear Kerr angle for
the polar con6guration. Theoretical results using parameters
corresponding to Fe (see Ref. 11) are compared with experi-
mental data. The interband contribution is shown separately.
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FIG. 3. Dependence of the Kerr angles P» and P» for Fe
on the angle of incidence 8,. To demonstrate that Pi»~ ) Pi»~

we have chosen in view of the results shown in Fig. 2 the
energies hu = 0.6 eV and 3.6 eV.
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metals, semiconductors, insulators, clusters, and adsor-
bates. For materials with large spin-orbit coupling or
large magnetic moments as in Heusler alloys particular
large Kerr rotations could be expected. Note, in ma-
terials where inversion symmetry is also absent in bulk,
like in alloys, the NMOKE probes both surface and bulk.
Magnetostriction changing the crystal symmetry and the
magnetic easy axis may also effect the NMOKE. For
thin magnetic films our theory would permit to deter-
mine surface magnetization, magnetic moments, and the
magnetic anisotropy without involving hysteresis. Since
inversion symmetry is broken at interfaces, these will con-
tribute within the skin depth to the NMOKE. Our results
imply that the nonlinear Kerr rotation is enhanced in all
regions where inversion symmetry is broken. Here it may
be of particular interest to investigate an interface of a
magnetic and a nonmagnetic film with strong spin-orbit
coupling. It follows then from our theory that via hy-
bridization the nonmagnetic material with its large H,
contributes to the NMOKE. For multilayers, the con-
tributions of many interfaces may sum up coherently.

Finally, in order to give our results a more general
significance we demonstrate in detail using Eq. (7) that
nonlinear magneto-optics is a sensitive fingerprint of two-
dimensional magnetism including magnetic anisotropy
where the latter is considerably enhanced at the sur-
face. Note, the basic quantities entering Eq. (7) are the

magnetic susceptibility-tensor elements y~ . These are
characterized by (y(~)+ —y(i) ) (H, ) ]M], where

(H, ) A, , takes into account magnetic anisotropy
and the effect of spin-orbit coupling on the electronic

wave functions. Expanding the wave functions in the

dipole matrix elements determining yz in terms of A,

one gets in leading order I'"I/i g$ ~5
(i)

A, o . It follows from this that tan@~~

The magnetization M enters linearly and expresses the
spin polarization of the electronic density of states. The
direction of M given by an external magnetic field or
by a magnetic easy axis will affect the tensor yU) (M)
only via H, , the magnitude of which depends on
magnetic anisotropy. SHG analyzed for different ge-
ometries reflects sensitively the fine structure (magnetic
anisotropy) of surface magnetism. The nonlinear cir-

cular dichroic asymmetry is given by 4 I++
(4gI )yo( ))/([y&( )]2 + [yI ] ), where I+ refers to the
frequency-doubled light intensity of right- and left-hand
circular polarization, and depends linearly on ]M]. Here,

for an estimate we use y~ (H, ) I dc[Nt(s)Nt(s +(2)

Ru)Nt(s + 2hcu) —Nt(s)Nt(s + Ru)Ni(E + 2hcu)]

Summarizing, we have shown that SHG is a sensitive
fingerprint of magnetism in reduced dimensions. Due to
the enhanced nonlinear surface polarization, magnetism
affects much more strongly the light polarization and el-

lipticity of second-harmonic light than in linear optics.
We have shown how to extend the Fresnel formulas to
the nonlinear magnetic case. This is a result of general
importance.
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