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Fermi-hypernetted-chain scheme for Gutzwiller correlated wave functions
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A set of integral equations in the Fermi-hypernetted-chain scheme is formulated for Gutzwiller
correlated wave functions. The weQ-known exact analytical results of Vollhardt, Metzner, and
Gebhard for the one- and infinite-dimensional Gutzwiller paramagnetic wave functions are recovered
as a byproduct of the theory. In approximate form, the theory is applicable to arbitrary Gutzwiller
correlated wave functions, irrespective of the space dimensionality of the model.

Recently, the conventional Fermi-hypernet ted-chain
(FHNC) theory has been generalized to treat lattice mod-
els, and used to perform variational calculations for the
one-dimensional (1D) and 2D Hubbard model at T = 0,
with various types of trial wave functions possessing ei-
ther paramagnetic (PM), spin-density-wave (SDW), or
BCS symmetry properties. ' It has been found that the
FHNC provides reliable estimates of the pair-correlation
function and the momentum distribution only for weak
and intermediate values of the coupling constant U/t (
6.2 No direct connections were found between the FHNC
approximations and the exact solutions for one and infi-
nite dimensions found by Vollhardt and co-workers. '

The FHNC theory provides the technological back-
ground necessary to perform correlated-basis-function
(CBF) perturbative calculations, extensively applied in
the studies of strongly interacting continuous systems,
such as liquid helium and nuclear matter. ' CBF calcu-
lations constitute an interesting alternative to stochas-
tic calculations, such as quantum Monte Carlo or
green-function Monte Carlo, which still suer &om the
thermion-sign problem, and exact diagonalization, lim-
ited to small systems.

The CBF theory requires evaluating nondiagonal ma-
trix elements of the Hamiltonian and the unity operators
on CBF states ~4„) = E [4 ), where ~4„) are mean-field
states and F a correlation operator. Such calculations, at
present, cannot be carried out by Monte Carlo sampling,
which is instead successfully applied to compute expecta-
tion values on ]No). Therefore, the FHNC technologies
need to be further developed for lattice systems in order
to be applicable for a wide range of the Hubbard coupling
constant.

In this paper, we show that for the particular class of

Gutzwiller correlated wave functions the FHNC theory
can be recast in a form which, on the one hand, allows
one to easily recover the well-known exact solutions for
one and infinite dimensions 4 and, on the other hand,
suggests suitable scaling approximations providing very
good results as tested in 1D and 2D for a wide range of
the coupling constant U/t.

The on-site character of the Gutzwiller correlation op-
erator

implies that the FHNC diagrammatic structures dis-
played in Fig. 1 correspond to configurations which
are Pauli violating: (i) the star structure of diagram

(W ~1
(a) (b) (c)

2a

(e)

FIG. 1. Diagrammatic structures in GHNC theory: (a—c)
are forbidden structures; (d,e) are GHNC diagrams contribut-
ing to the pair function and (f) to the density matrix.

I'G = [1 —(1 —g)n;tn;t] = [1 —(1 —g)b, ,~,,~], (1)
igj
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(a), where two or more dynamical correlators h(i, j)
(g —1)b, , ~

(represented by a dashed line joining the
points i and j) have a single common particle label, and
therefore imply three or more particles on the same site;
(ii) the correlated parallel spin structure of diagrams (b)
and (c), where the correlator h(i, j) implies that the two
particles with the same spin assignment occupy the same
site.

All diagrams containing the above structures are
bound to give spurious contributions. They cancel each
other only after an exact FHNC summation. This im-

plies that the various FHNC approximations, like, e.g. ,
FHNC/n or FHNC-n, corresponding to diB'erent ways
of truncating the FHNC cluster series, suffer &om this
problem which becomes more and more severe for in-
creasing coupling constant in the Hubbard Hamiltonian.
Therefore a better chain summation method should sum
up only the nonspuri ous diagrams, hereafter referred to
as GHNC (Gutzwiller-hypernetted-chain) diagrams.

The GHNC diagrams, contributing to the pair-
correlation function g(rq2), are characterized by the prop-
erty that each point is reached by one and only one
correlation line, except for the two external points 1
and 2, which do not need to be reached by a correla-
tion line. As a general property, each point has also
to be reached by one incoming and one outgoing ori-
ented solid line representing the exchange correlation op-
erator p (i,j ) =g&eF„,„p& (i) Ip~~ (j), where Ip~ (i)
are the single-particle states entering ~4o). The exchange
lines form closed loops (one-point loops are often omit-
ted in FHNC diagrams in the case of spin-independent
correlations) . Since all particles belonging to the same
exchange loop must have the same spin assignment, it
follows that any two points cannot be joined by both
dynamical and exchange correlations [see diagram (c) of
Fig. 1].

The removal of the Pauli violating diagrams implies
that the reducibility theorem of FHNC theory ' does
not apply anymore and therefore the GHNC reducible
diagrams do not caacel each other.

In the case of the one-body density matrix n(rq, rq ),
since rq and rq both correspond to the same particle
1, one finds that (i) there is one open exchange pattern
going from 1 to 1'; (ii) the correlation reaching either 1

or 1' are given by ((i, j) = (g —1)h, ,„,, instead of h(i, j);
(iii) the star structure ((1,i)((i, 1 ) is allowed

The structure of the GHN C diagrams is independent
of the particular reference state ~40) considered (like PM,
SDW, etc.) and of the dimensionality. A few examples
of GHNC diagrams for the pair distribution function and

the one-body density matrix are displayed in Fig. 1 [di-
agrams (d)—(f)].

Let us now discuss the properties of the GHNC di-
agrams in the case of the 1D model with a Gutzwiller
correlated PM reference state.

The on-site character of h(i, j) implies that, after the r
space integration, all dashed lines shrink to points, each
carrying a factor (g —1). It follows that the double
occupancy d = (n;tn, g) is given by

d—:g(r;, =0) =g ) C [(g —1)]
en=0

where C sums up contributions from all GHNC dia-
grams having 2m internal points . In the 1D-PM case,
the exchange correlation operator has a simple structure
p (i,j ) = gt(o;)g(oI )p l(kg x,I ), where g(o ) is the spin
state and l(kg x,I ) = sink&x;I/(kg x,I ), kF ——

harp be
ing the Fermi momentum for spin-o component . As
a consequence, the structure of a generic term, in the
case of p = p- = p/2, contributing to C is given by

p + f Q,. s dx;(products of l (kg, x;I )), which is just
proportional to p +, as one can see by changing vari-
ables x; into k+x; in the integral. Using this property and
the particle-hole (p-h) symmetry one recovers the exact
solution originally found by Metzner and Vollhardt,

m+2

( 1)ViX+2

2(m+ 2)'

Similar arguments can be used to get the exact expres-
sion of the momentum distribution, and other correlation
functions. The crucial ingredient of this 1D exact sum-
mation is the p- h symmetry.

In a more general case, p- h symmetry cannot be used
to get an exact analytical result, and the GHNC diagrams
need to be summed up explicitly.

A structural analysis of the GHNC diagrams shows
that they can be summed by integral equations using a
two-body propagator G„(i,j ) and a four-body kernel
I' (i, j; i',j ') as functional variables G„(i,.j) behaves
like a dressed exchange operator and obeys the chain-
type equation

G„(i,j) = —p (i,j )
—) p (i, k)Z (k, l)G„(l,j),

(4)

where the quantity E*(k, j) corresponds to the sum of
proper self- energy GHN C diagrams, calculated from

Z' (i,j ) = (1 —g ) b(r;I )G, - (i,j ) + ) I' - (i, k;i', k')G„-(i',j )G„(j,k)G„(k',j )-

where the first term in the square bracket is related to vertex corrections, while the second term is due to other than
chain GHNC diagrams. With 1" ", as its irreducible part, I' — satisfies a Bethe-Salpeter equation:
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and

d = ) „8(ikp —ki),
g —1 ~ 1+Z'(k)

- 2
1

n k
1+Z.(k)

+ +, , 9 -(g' —1) —~:(k)]~ (8)

It is well known that the two-body elementary diagrams
are short-range functions. Assuming their main contri-
bution to be on site, we propose the following approxima-
tion for the elementary diagrams contributing to Z' (k):

Alternatively, one can write a set of three integral
equations involving two-body quantities only, hereafter
referred to as GHNC equations, which closely resemble
the FHNC equations and whose derivation is a straight-
forward application of the FHNC theory to the GHNC
diagrams. The full expressions of the GHNC equations,
as well as of quantities related to Z' and I' ", appearing
in Eqs. (4,6) are cumbersome, and will be given in de-
tail elsewhere. Obviously, the elementary diagrams in

A

GHNC equations, as well as those occurring in I' ", can-
not in general be calculated in a closed form, except by
using some global property, e.g. , the p-6 symmetry in the
1D PM case. Hence the two schemes expressed either by
Eqs. (4,6) or by the GHNC equations are intrinsically ap-
proximate and differ by the way the elementary diagrams
are included in the iterative procedure. For instance, the

simplest structure of I'~"~„e.g. , b;; b~ ~ h(i,j ), already
implies the inclusion of a large class of elementary dia-
grams in the GHNC equations.

A remarkable property following from the structure of
the GHNC diagrams is that both the double occupancy
d and the momentum distribution n (k) = (cx, cx, ) can

be expressed in terms of Z'(k) only. For the PM wave

function one has

D = oo PM case, Z'(i) is independent of r; due to
the translational invariance, Z'(k) becomes a constant
and can be easily calculated. For instance, at p = p/2,
2' =[—1+ gl+ (g —1)(2 —p)p]/(2 —p).

In any finite dimension, Z'(k) is not a constant. Ne-

glecting ZGHNc in Eq. (9) is equivalent to the well-known

Gutzwiller approximation (GA). The inclusion of ZGHNc

obviously improves the GA and moreover goes beyond
other recently proposed approximation schemes, like that
of Refs. 13 and 14, based on an expansion of Z* around
its D = oo value, and that of Ref. 15 practically limited
for the low-dimensional case.

Figures 2—4 report the results obtained for the Hub-
bard model in the 2D PM case at half- and quarter-filling,
by including elementary diagrams, along the GHNC-n
scheme up to the fourth order, in the calculation of
Z' (k, j), appearing in Eq. (9). The GA and variational
Monte Carlo (VMC) (Ref. 10) results are also reported
for comparison. Figure 2 shows the double occupancy
d, the kinetic energy T/Nt, and the total energy for
U/t = 6, at half-filling, as a function of the Gutzwiller
parameter g. The energies at half- and quarter-filling
are displayed versus the coupling constant U/t in Fig.
3. In addition, Fig. 4 displays the It..-dependent momen-
tum distribution at p = 1, 0.5 for U/t = 8. Other k-
dependent quantities are in principle calculable and will
be presented elsewhere. At D = oo, p = 1 the present
scheme coincides with the GA and has therefore the same
spurious metal-insulator transition at a finite U . ' For
D = 2, however, it is apparent from Figs. 2 and 3, that
this transition has disappeared. A more detailed discus-

0.25

0.20

0.15

g~ (l ) gGHNc(k) + "
(9) 0.10

where Z is calculated by solving the GHNC equa-
tions at a given level of approximation for the elementary
diagrams and p is obtained by imposing the normaliza-
tion property P& n (k) = p .

In infinite dimensions Z is diH'erent from zero only for
r = 0, so that the above procedure leads to an ewact re-
sult for the double occupancy and the momentum distri-
bution. In fact, in the limit D ~ oo, the behavior of the
exchange operator is p (i, j) h(r;~) + ~ 'h(r;~ a) +— —

0(D), which trivially follows from the sequential rela-
tion, satisfied by the exchange operator. Because the
exchange correlations forxa closed loops, the contribu-
tions to GHNC diagrams coming froxn p (r;z g 0) van-
ish as 1/D. In the infinite-dimensional Hubbard model
the nearest-neighbor hopping integral must be properly
scaled, 4 since the kinetic energy T/N = —2Dtp (a)
~Dt It follows that. the GHNC diagrams shrink in
their irreducible points and then Z (i, j) is difFerent froxn
zero only for i = j, as seen from Eq. (5). In the
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FIG. 2. Double occupancy and kinetic energy at
half-filling, as a function of g for the 2D PM case. The total
energy is given for U/t = 6, and is variationally minimized
for go ——0.42.
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FIG. 3. Total energy at half- and quarter-filling, as a func-
tion of the coupling constant.

sion of the double occupancy as a function of U for higher
D will be given elsewhere. i~ The GHNC results are very
close to the VMC results in the whole range of the cou-
pling constant. Such a GHNC approximation works ex-
tremely well for the 1D PM case also, where it provides
energy estimates, 2 in very good agreement with the ex-
act solution. 5 Results of similar quality are expected for
other Gutzwiller correlated trial functions as well.

In conclusion, we have presented a FHNC scheme,
called GHNC, specialized for Gutzwiller correlated wave
functions, where the Pauli principle violations of the
standard FHNC theory are completely removed at any
level of approximation. For the one- and infinite-
dimensional PM cases, the exact analytical results by
Metzner and Vollhardt3'4 are recovered. More generally,
the GHNC equations can be solved by approximating the
elementary diagrams. A suitable approximation scheme
for the elementary diagrams has been found, which pro-
vides very good results for the 1D (Ref. 12) and 2D Hub-
bard model. The method may be applied for different

FIG. 4. Momentum distribution for the 2D PM case. The
optimal values g = 0.25 and 0.40 have been used for p = 1
and 0.5, respectively.

model functions I@o), such as SDW, BCS, etc. , irrespec-
tive of dimensionality. The present GHNC scheme can
also be used to evaluate nondiagonal matrix elements of
the Hamiltonian and the identity operator and, should
be particularly useful for CBF-type calculations. Such
matrix elements can be calculated exactly at D = oo,
which may be useful to go beyond the variational the-
ory for the infinite-dimensional Hubbard model. Work in
this direction is in progress. Finally, we believe that the
GHNC scheme can also be extended to more structured
correlation operators. For instance, in the case of Jastrow
correlated wave functions, the correlation operator f (r;~)
can be considered as a product of a Gutzwiller operator
f~ and a smooth long-range correlation fL, (r,~) fl, (r;~)
can be treated by ordinary FHNC reasonably well, while
GHNC can take care of the short-range part very accu-
rately.
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