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Peak efFect anti anomalous flow behavior of a flux-line lattice
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Dynamics of a "quasi-two-dimensional" flux-line lattice in the layered superconductor 2H-NbSe& for
field normal to the layers is investigated at high fields. Comparisons with numerical simulations imply
the presence of plastic flow for soft lattices. Dimensionality effects are more pronounced in the
disorder-dominated regime, where a power-law scaling form for the I-V curve yields the conductivity ex-

ponent above the percolation threshold.

The magnetic flux-line lattice (FLL) in a type-II super-
conductor has become a subject of renewed interest along
two specific avenues of inquiry. First, in the context of
high-T, superconductors, ' new equilibrium phases have
been predicted and new regimes of "thermal" dynamics
have been postulated. Experimental evidence for these
scenarios, or the lack thereof, has generated varying de-
grees of controversy. Second, the FLL is also a prototype
of "driven" nonlinear dynamics of disordered many-body
systems where randomness and interaction compete; in
this case the focus is on nonequilibrium issues such as a
depinning transition and the dynamics in the moving
state. Transport studies often require a careful disentan-
glement of these two distinct issues. Indeed, experiments
showing a change of mobility of an FLL have been vari-
ously described as equilibrium phenomena such as melt-
ing or nonequilibrium ones such as depinning without a
resolution of the controversy as yet. '

In order to understand this complex issue, we have fo-
cused on the remarkable phenomenon of the "peak
effect, " observed in conventional superconductors where
the pinning force density reaches a pronounced peak
slightly below H, z. The effect is attributed to the rapid
softening of the FLL (Ref. 5} and it occurs in the same
part of the (H '1) phase diagram-where phase transitions
in the FLL are likely to occur. In spite of spawning im-
portant theoretical ideas such as collective pinning, it
has eluded a comprehensive explanation so far. It was re-
cently shown that the I-V curve changes drastically in
the peak regime for a three-dimensional (3D) FLL,
caused by a crossover of the dynamics from an
interaction-dominated regime to a disorder-dominated
one. The onset of motion was interpreted as a plastic
flow of the FLL in the latter case, in a qualitative depar-
ture from descriptions in terms of an elastically distorted
FLL.

In this paper we report new results on the dynamics of
a highly coherent and weakly pinned quasi-2D FLL for
the magnetic field normal to the layers in 2H-NbSe&.
The purpose of this study is to, first, understand the role
of the effective dimensionality on the dynamics and,
second, compare experimental results with theory and/or
simulations. Extensive numerical simulations are avail-
able for the 2D FLL, ' in contrast with the 3D FLL.
Our results show that the effective dimensionality has a

stronger effect in the disorder-dominated regime and pro-
vide a testing ground for, e.g., some of the scenarios of
FLL dynamics envisaged for the high-T, superconduc-
tors. '

Measurements were made on high-quality single-
crystal samples which show a marked peak effect. The
relevant parameters" are T, =7.2 K, the in-plane
Ginzburg-Landau parameter sc-9, and the anisotropy in
the upper critical field -3.2. Typical sample dimensions
are (1 mmX2 mm X25 pm) and the normal-state resis-
tivity above T, is -5 pQcm.

Figure 1 summarizes the observed behavior near the
peak effect: the H dependence of the resistance R, of the
sample at two values of T, measured at a constant ac (100
Hz) current by the standard lock-in detection, shows a
dramatic minimum in R„corresponding to a conduc-
tance peak (i.e., the "peak effect"} at a field slightly below

H, z. The minimum occurs approximately at the reduced
field b (- H/H, )z-0.9, for all values of T. The same
effect is also observed when T is varied at a fixed value of
H, as shown in the lower inset, i.e., the peak effect has a
unique locus in the (H, T) space. The upper inset shows
the strong nonlinearity of R, : a twofold increase in I re-
sults in an order of magnitude increase in R, at the
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FIG. 1. Peak effect in 2H-NbSe for H perpendicular to the
layers. The minimum in the resistance occurs slightly below H
at both temperatures. The upper inset shows the nonlinearity of
the effect through the strong current dependence of the resis-
tance. The lower inset shows the same effect obtained at a fixed
field and varying temperature.
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minimum. This implies that the effect is related to an
unusual H dependence in pinning.

From the I-V curves measured at various H, we can
obtain J„the critical current density for the onset of flow

(given by a voltage criterion of 100 nV). The resulting H
dependences of F~( =

~ J,X B~) are shown in Fig. 2; the
lower inset shows the variation of J„which is propor-
tional to the pinning force per flux line. Both reach a
pronounced peak at b~ -0.9 and decrease rapidly to zero
as H, 2 is approached. The upper inset shows that the
data for two temperatures can be collapsed to a single
plot by normalizing F by H,2, ' and the magnetic field

by H, z.
The first qualitative explanation of the peak effect is

due to Pippard who argued that the shear modulus of
the FLL softens faster than the depletion of the pinning
interaction, as H approaches H, 2. Thus the competition
between the pinning interaction and the elasticity of the
FLL, results in an enhancement of the threshold pinning
force. A more elaborate explanation was provided by
Larkin and Ovchinnikov (LO) within the collective pin-
ning model. Here we briefly described the essential ele-
ments of this model. The presence of random pins des-

troys the true long-range order of the FLL but it remains
ordered over a correlation volume V, =R„L„where R,
and L, are the transverse and longitudinal correlation
lengths, respectively. The pinning force and the correla-
tion lengths are given by I' =~J,XB~=(W/V, )'

R, =(C' C r )/W, and L, =(C 4/4C )' R„where
W =

n~ (f ); f is the elementary pinning interaction and

n~ is the volume density of pins. C~ and C66 are the tilt
and shear moduli, respectively, and rf is the interaction
range between the pinning center and the FLL. In the
LO scenario, F (H) is given by the field dependences of f
and, more nontrivially, of the elastic moduli. This also
shows that a softer FLL will be more strongly pinned as
envisaged in the Pippard scenario. Note also that the
critical current density is nearly six orders of magnitude
smaller than typical superconductors. We obtain an or-

der of magnitude estimate, at, e.g., T=4.2 K and H= 1

T, for the correlation length: L, -400 JMm, which is
much greater than the sample thickness and thus the sys-
tern is in the quasi-2D regime. In this regime the expres-
sion for R, is diFerent: R, -rf C66 I Sad /[8'ln(w/
R, ) j )

'~, where w is the width, and d the thickness of the
sample. Using this expression we obtain an estimate of
R, /ao -400, ao being the lattice constant, and the
description of the system as a highly correlated FLL of
rigid flux lines is well satisfied, in agreement with earlier
work. '

We have measured the H dependence of the I- V curves.
A systematic study near the peak regime is complicated
by the presence of severe thermal instabilities. As a re-
sult, reliable data can be obtained only if the system is
submerged in normal or superfluid He. In Fig. 3 we
show the evolution of behavior in a narrow field regime,
between 1.9 and 2. 1 T, for T=4.2 K, of the differential
resistance (dV/dI) versus I, which is more illustrative
than the I-V curve. The evolution of the shape follows
the same trend observed earlier for the 3D case: at fields
below the peak, d V/dI grows monotonically, correspond-
ing to a concave upwards V-versus-I curve, as is com-
monly seen in FLL's. In the peak regime, however, the
shape changes to a peak in d V/dI slightly above the on-
set of motion. For H=1.975 T, for example, this peak
value is greater than the normal resistance and is thus a
nonlinear effect and not an asymptotic flux flow resis-
tance. At even larger fields, it returns to the earlier shape
as is obvious in Fig. 3(a).

Simulations of flux flow for the 2D case have been per-
formed by Jensen and co-workers and recently by Shi
and Berlinsky (SB).' These results have striking similar-
ities with our data. Figure 3(b) shows results of a numeri-
cal simulation of a 2D FLL by Shi and Berlinsky who
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FIG. 2. The field dependence of the pinning force density E~
at two values of temperature. The field-independent regime at
low fields is followed by the sharp peak and the rapid decrease
to zero near H, 2. The upper inset shows that the data can be
collapsed to a single curve by normalizing E~ by H, 2 plotted
against the reduced field. The lower inset shows the peak effect
in J„ the critical current density. Note the extremely small
value of J, . See the text for discussions.

FIG. 3. (a) The current dependence of the differential resis-
tance obtained from dc I-V curves at different fields near and in
the peak regime. Note the rapid crossover from the convention-
al behavior for H=1.9 T to a peaked structure at H=2. 0 T. (b}
Current dependence of the differential resistance obtained from
the 2D simulation of plastic flow in Ref. 10. Note the close
similarity with data in (a) for H=1.975 T. The simulations
show that the dynamically generated defects heal above the
peak in d V/dI. See the text for discussions.
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evaluated the I-V curve for one value of the quenched
disorder. Given that the simulation is identical to our
data for, say, H=1.975 T, there is little doubt that the
essential physics of these experiments is captured in the
simulations.

These authors ' point out that a purely elastic medi-

um description of the FLL is not adequate. In their
simulations they find that the interaction of the FLL with

quenched disorder generates defects in the FLL and the
onset of motion is due to the so-called plastic flow of the
FLL in channels, rather than a coherent motion of an
elastic medium. We note that the importance of dynami-
cally generated defects ("phase slips"} and plastic flow
has been emphasized recently by Coppersmith' in the
case of the charge-density wave (CDW) conductors. SB
(Ref. 10) have also obtained a measure of the dynamically
generated defects from their simulations and find that
they heal at large drives where pinning is very small. We
find that in experiments, this corresponds to an inflection
point in the I-V curves, i.e., a peak in dV/dI as in Fig.
3(a} (for, say, H=2. 0 T}; the same result is obtained in
the simulations.

Therefore we conclude that the dynamics of a disor-
dered flux lattice in the quasi-2D regime is qualitative
similar to the 3D case. Below the peak regime (e.g., in
the H-independent part of F in Fig. 2) one obtains a
coherent depinning of a largely defect-free elastic medi-
um. In the peak regime the rapid increase in Fz is due to
the appearance of plastic deformations in the FLL (Ref.
14) and the onset of motion is due to the filaments of con-
nected paths through which the FLL moves. ' Above
the peak regime the defective flow dominates the dynam-
ics. In what follows we focus on the new insights on the
role of disorder that may be obtained by a comparison of
the effects of dimensionality on the FLL dynamics.

In order to accomplish this, it is essential that the I-V
curves presented here be understood in some detail and
be compared and contrasted with results obtained in 3D
FLL's. Since little has been done in this area for the
FLL's, we follow the analogous system of the CDW con-
ductors which have been explored in much greater detail
both theoretically and experimentally. Most of the CDW
work starts with the basic premise of a dynamical critical
phenomenon describing the depinning transition first pro-
posed by Fisher. ' In this scenario a power-law scalin
form is supposed to describe the I-V curve: V-(I I, ) . —
Figure 4 represents typical results of these fits. We show
two curves at T=4.2 K below and above the peak regime
with P-1.2 and 1.3, respectively. A power-law fit to the
data is poor in the peak regime. For a comparison, a 3D
FLL yields P-1.2 and 1.8, respectively.

In order to understand the dimensionality efFects in the
interaction-dominated regime of flux flow we consider the
simulations of the elastic model by Sibani and Littlewood
(SL) (Ref. 17) for the CDW case. They yield an apparent
exponent slightly greater than unity, nearly 1.2 for re-
duced forces as small as —10, typical for CDW experi-
ments as well as what we report here. Although it ap-
pears not to be the true critical exponent, ' one may view
the power-law form as a useful parametrization. SL find
that in this reduced force regime the apparent exponents
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FIG. 4. Typical scaling plots for the I-V curves at Selds
below the peak regime {H=1.5 T) and above the peak regime
(H =2. 1 T) at T=4.2 K. For clarity, the latter data set is shift-
ed up by one and a half decade in the reduced current.

vary only slightly, -15% between 3D and 2D, which is
not outside the uncertainties of our fitting procedure.
The situation for the elastic regime for the FLL appears
to be similar. The difFerence in the apparent exponents, if
any, is small and not qualitatively difFerent from what is
expected for the CDW.

The situation is different and more interesting for the
regime above the peak where disorder dominates and the
FLL motion resembles a fluid flow. ' Since the density of
pins typically exceeds that of the fiux hnes, the latter are
likely to be individually pinned. In this situation the on-
set of voltage corresponds to the formation of the first
end-to-end continuous path for the vortices to flow along.
This path or filament then represents the path along
which the maximum local pinning barrier has the small-
est value of all possible paths. Upon further increase of
the driving force, the fiow along this path increases and
at the same time other paths connect. Note that the
scenario described above represents the conductance e in
a percolation process, also given by a power-law form:
cr-(p —p, )&, where p, is the percolation threshold and
@=1.3 in d=2. ' Our measured exponent of 1.3 is in
surprisingly good agreement with this naive analogy.
Even in the 3D case the measured exponent of 1.8 is close
to the expected value of 2. ' While the 2D case may
reasonably be a simple percolation problem, the 3D case
could be difFerent due to processes such as vortex cutting
and/or entanglement, etc. , and the resulting topology of
defects and of connectivity. Although more work is
needed to understand if the agreement is fortuitous or
not, the results described here suggest a new way to view
the FLL dynamics in the disorder-dominated "fluid flow"
regime. '

To conclude, we have observed anomalous I-V curves
in the peak regime in a clean and extremely weak-pinning
quasi-2D FLL. The results are in excellent agreement
with numerical simulations ' that take into account
dynamically generated defects of plastically distorted
FLL's. We also find that the nonequilibrium phase dia-
gram is similar to the 3D case. The flow behavior in the
interaction-dominated regime is weakly dependent on
dimensionality in the reduced force regime studied in this
work. This is not inconsistent with simulations of elastic
media. But in the disorder-dominated plastic flow re-
gime, the difFerence is large. Interestingly, we find that
the apparent scaling exponents are close to the conduc-
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tivity exponents for percolation. More work is needed to
explore this interesting possibility. These results exempli-
fy the importance of dynamically generated defects on
the flux flow problem in particular and in driven non-
linear many-body systems in general. ' '

Note added. It has been brought to our attention
that an essentially identical peak effect occurs in high-
quality single crystals of the high-T, superconductor
YBa2Cu307 &. Moreover, anomalous I-V curves also ob-
tain. ' These results imply that the FLL dynamics is

similar in fundamental ways in the high-T, systems as
well. We thank Xinsheng Ling and W. K. Kwok for
bringing these results to our attention.

We acknowledge discussions with S. Coppersmith, B.
Doucot, D. Fisher, H. Jensen, A. A. Middleton, O.
Narayan, and N. P. Ong. We thank P. M. Chaikin and
C. Tang for a discussion of the percolation analogy. We
are particularly grateful to An-Chang Shi and A. J. Ber-
linsky for providing us with their simulation data.
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