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We propose a tiling-and-decoration model of the icosahedral phase of
Al-Mn-Si, in which a 126-atom "double" Mackay icosahedron and a 54-atom "simple" Mackay
icosahedron alternate on the even and odd nodes of the tiling of four canonical cells. The model struc-
ture exhibits weak six-dimensional fcc ordering introduced by Al-vacancy alternation, similar to that ob-
served in the related a phase. The density of the model is consistent with experimental data and calcula-
tion of the x-ray- and neutron-diffraction intensities leads to good agreement with experimental data in

both cases: R factors are 0.09 and 0.16, respectively.

I. INTRODUCTION

The so-called tiling-and-decoration approach to the
structure of quasicrystals is based on the assumption that
a small number of favorable building blocks can be asso-
ciated with the nodes, bonds, faces, and cells of the tiling,
quasiperiodically filling the space. In the particular case
of icosahedral quasicrystals, the favorable blocks are un-
doubtedly large icosahedral clusters, containing typically
not less than 100 atoms. The structure of these clusters is
well known —in Frank-Kasper (FK) phases they often
order periodically on the bcc lattice, let us mention only
two representative cases: u-Al-Mn-Si (Refs. 1 and 2) and
a-A1-Zn-Mg. 3

In spite of some interesting results, " the tiling-
decoration scheme applied to the familiar three-
dimensional (3D) Penrose tiling (3DPT) has led to
difficulties that cannot be easily solved. The icosahedral
clusters are in FK phases linked exclusively along two-
fold and threefold icosahedral directions, but there is no
simple algorithm to find a good (dense) network based on
the inter cluster bonds that would uniquely decorate
rhombohedra in the 3DPT. The experimental data were
better reproduced by the models (for i-A1-Mn-Si, see
Refs. 5 —8) that treat icosahedral quasicrystals as six-
dimensional cubic crystals. The real-space structure is
obtained as an intersection of the properly oriented (with
respect to the underlying 6D lattice) 3D "physical" space
with 3D "atomic surfaces" decorating the 6D hypercubic
lattice. The surfaces are embedded in complementary
perpendicular 3D space. The constraint on the boun-
daries of the atomic surfaces comes from such require-
ments as (i) avoiding unreasonably short real-space in-
teratomic distances, (ii) faceting of the surfaces with the
rational 6D planes, and (iii} mutual "closeness" of the
surfaces in 6D. ' '"

However, even if the 6D model is designed so as to
maximize the density of the icosahedral clusters, the
above conditions constrain mostly the ordering of "con-
nective" atoms, not belonging to the clusters, while there
is still considerable freedom in the choice of clusters net-
work. In fact, the requirement of maximal density of the
icosahedral quasiperiodic networks —and this argument

comes into play on both the atomic and cluster levels —is
another physical constraint limiting the degrees of free-
dom in modeling, but the density of the available
icosahedral quasiperiodic packings is obviously not maxi-
mal and no efficient density-maximization method is
available.

The model of the icosahedral phase Al-Mn-Si present-
ed in this study (the preliminary short version was pub-
lished in Ref. 14) is motivated by the recent proposal of
the 3D icosahedral tiling, "which appears to be a promis-
ing alternative to the 3DPT as a basis for the models of
icosahedral quasicrystals. Henley s tiling of four canoni-
cal cells (TCC) is based exclusively on the twofold and
threefold intercluster bonds and it supports a straightfor-
ward implementation of the cluster-based decoration. In
such a quasicrystal model, the long-range icosahedral or-
der is promoted by the icosahedral clusters, while the
"connective" atoms are rigidly filling a small number of
allowed interstitials. The most important features of this
model are the following: (i} The density of icosahedral
clusters is supported to be maximal, (ii) the network of
cluster centers is a tiling, and (iii) the fraction of the
atoms, not belonging to the clusters is minimal. For-
tunately, property (i) induces a tractable solution (ii): two
bonds, three faces, and four tiles of the "tiling of canoni-
cal cells" (TCC). '

Another important ingredient of the model presented
here are the "third" shells of the icosahedral clusters,
found by Fowler et al. ' and independently by Yang' in
the a-Al-Mn-Si phase of the quasicrystal i-A1-Mn-Si.
Seventy-two third-shell atoms occupy vertices of rhombic
triacontahedron, truncated along the threefold axis.
Choosing as a network of cluster centers TCC and
decorating it by familiar 54-atom Mackay icosahedra
(MI), the third shells can be added without confiicts
around half of the MI. Heretofore, we shall call the MI
with the third-shell double MI (DMI) (Ref. 18}(see Table
I). In the TCC-based model, 96% of the atoms belong to
the MI or the DMI. Throughout the paper, we will refer
to the "connective" atoms in the model (i.e., to those not
belonging to any of the perfectly icosahedral clusters) ex-
plicitly.

It is fair to point out that the quasiperiodicity of the
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TCC remains a serious theoretical problem that has to be
addressed in the future, but the available cubic approxi-
mants' have as much as about 2500 cluster centers, or
1.8 X 10 atoms in the cubic unit cell, and are virtually in-
distinguishable from the true quasicrystal.

The outline of the paper is the following. In Sec. II we
provide basic information about the TCC, which is de-
scribed and analyzed elsewhere. ' A technical descrip-
tion of the atomic decoration can be found in Sec. III.
Instead of perfect alternation of the DMI and MI on the
two kinds ("even" and "odd") of tiling nodes in the deter-
ministic model, in Sec. IV we consider a modified model,
in which the simple MI are fixed on all of the tiling
nodes, but the deterministic rule forcing third icosahedral
shells around half of the MI is replaced by a Monte Carlo
algorithm maximizing the density of the remaining "con-
nective" atoms. Finally, in Sec. V we compare calculated
diffraction intensities of the deterministic model with the
set of measured intensities.

FIG. 1. A (top left), 8, C, and D (bottom right) cells of the
canonical tiling. b bonds (double lines) are decorated by RD, c
bonds by PR. The interiors of C and D cells are filled by the ad-
ditional PR (see Ref. 15) that are used in the description of
atomic decoration.

II. TILING OF CANONICAL CELLS

It was soon recognized that the so-called 12-fold ver-
tices ( V,2 theretofore) of the 3DPT are good candidates
for the implementation of the cluster-based decoration,
due to the icosahedral point symmetry of the 12 rhom-
bohedral edges, pointing from the center to the 12 ver-
tices of the icosahedron. The network of Vj2 is dom-
inantly connected through twofold and threefold
icosahedral bonds, called b and c, respectively. In terms
of the familiar 3DPT building tiles (prolate rhombohedra,
PR; oblate rhombohedra OE: it is convenient to consider
also rhombic dodecahedra (RD), which is an assembly of
two PR and two OR), the two bonds correspond to a long
body diagonal of RD (b bond) and PR (c bond). Their
lengths are 2.75a and 2.38a, respectively, where a
stands for the rhombohedron's edge length "quasilattice"
parameter.

However, a small fraction of V,2 in the 3DPT is linked
through rhombohedron's edges and this connection is in-
consistent with cluster-based decoration. After minimal
removals, there remains about 91%%uo of V&2, constituting
true be network of b and e bonds.

The requirement of maximal density of the icosahedral

be network has led to the proposal of the tiling of four
canonical cells (TCC). ' The cells, called A, 8, C, and D
(Fig. 1), can be decorated by the RD, PR, and OR in such
a way that the rhombohedra also tile the space. The
nodes of the TCC become V&z of a rearranged rhom-
bohedral tiling, but their density can be even higher, com-
pared with the network of all V,z in the 3DPT, as sug-
gested by transfer-matrix technique and Monte Carlo
optimization of density. '

Actually, while the density of rhombohedra is fixed by
the "background" Goldstone mode strain, the density of
TCC vertices is not. Eighteen A cells have the same
volume as 4 D cells, but there are 3 tiling nodes per 18 A
cells and only 2 nodes per 4 D cells (see Table II in Ref.
[15]). At zero background Goldstone mode strain (quasi-
periodic limit),

n„—1 n,z(1 +a), nz =6r n,h(1+3r 6),

where n„,n,h, r, . . . denote the densities of canonical ver-

TABLE I. TCC bonds and icosahedral clusters in the 6D representation. For bonds, r denotes their lengths, for cluster atoms, the
distance from the center in the units of rhombohedrons edge a~. For double MI, we list only shells additional to the simple MI. In
the last column we list the positions of the corresponding atomic surface on 6D cubic lattice.

Name

b bond (RD)
c bond (PR)

6D vector

(1,1,1,1,0,0)
(1,1,1,0,0,0)

Mult.

30
20

2.753
2.384

6D position

Small icosahedron
Icosidodecahedron

~ (1,0,0,0,0,0)

(1,0,0,0,0,0)
(1,—1,0,0,0,0)

Simple MI
12

12
30

0.5
1.0
1.052

Edge
Node
Node

20 triangles
7 -leos

(1,1,—1,0,0,0)

2 (1,1,1,1,1,1)

Double MI
60
12

1.451
1.618

Node
Body center
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tices, rhombohedral vertices, and canonical cells, respec-
tively. The parameter e, measuring the deviation of the
TCC to node density relatively to the density of V, 2 in
the perfect 3DPT (equal to ~ n„h), simplifies the arith-
metic of Eq. (1) compared with the parameter
g:—9nD/(9nD+2n„), defined in Ref. 15, though at the
price of the loss of generality. The case e=O corre-
sponds to the TCC ((=0.317), in which local patterns of
b and c bonds of the pure A, BC, and D tilings are forbid-
den. ' The Monte Carlo study' suggests that e might go
up to 2~ in the quasiperiodic limit.

In an arbitrary TCC, the B and C cells are always
paired: They adjoin either directly through the Y faces
(equilateral triangles of b bonds) or through the D
cell(s). ' Throughout the paper, we shall treat the B C-
pairs as a virtual BC cell.

III. DETERMINISTIC MODEL

Let us at first set up a few necessary conventions. The
parity of a TCC node (or atom decorating TCC) at
r=+6 in;e; is even (odd), if g; ~n; is even (odd), where
we choose the six basis vectors e; to point to the vertices
of icosahedron in such a way that e, is symmetrically sur-
rounded by the remaining five basis vectors. Lifting the
TCC network from a three-space to a six-space is a stan-
dard procedure and was described in Ref. [15]. In this
paper, we measure the distances in the units of "quasilat-
tice parameter" aq, the rhombohedron's edge length. In

0
the i-Al-Mn-Si case, a =4.6 A.

Our model is basically defined by the statement that
126-atom double-shell MI decorate even and 54-atom
simple MI odd vertices of the tiling of canonical cells.
The clusters involved in our model were described else-
where' ' and their 60 representation is given in Table I.
Except small distortions of some third-shell atoms along
twofold directions that will be explained later, the clus-
ters overlap and mutually share atoms along both twofold
and threefold directions. The robust cluster decoration
defined 96% of the atomic positions. In order to provide
complete information about the model covering also
atoms filling up the canonical interstitials, we have
worked out a somewhat laborious labeling convention
based on PR decorating TCC. A reader interested in
technical details is recommended to consult also the orig-

inal paper on TCC. '

Rhombohedral decoration of the TCC includes five
kinds of PR: (1) PR(c}, decorating c bonds: (2) PR(RD),
constituting RD (two pairs of them are ouerlapping in the
RD interior); (3) PR (BC), filling the BC-cell interior; (4}
PR(Dc) in the D-cell interior along its threefold axis
("central" ), and (5) PR(Da), three other PR in the D-cell
interior, adjacent to the PR(Dc), and pointing to the
three TCC vertices, which form equilateral triangles of b
bonds. It is not necessary to consider OR; their atomic
decoration is always determined by the adjacent PR,
since the two OR (out of RD) in the rhombohedral
decoration of the TCC never share face.

Let us consider PR with the vertices (000), (100) +c.p. ,
(110}+c.p. , and (111), where we choose first three of
six icosahedral vectors as a basis (e~ ei=e, e&=ez e,= I/&5). Now, since each PR is decorated symmetrical-
ly with respect to its threefold axis, we label each possible
atomic position by a letter: tip, (000), denoted T; edges,
(1,0,0/2+ c.p. ,E;r ( 1, 1, 1),N (projected from 6D
nodes); ~ (1,1,1), G (projected from 6D body centers);
and r ' (1,1,0), F (face diagonal point). Hence, the
decoration of each PR can be described by the formula
[T,E,N, G, F,F, G, N, E, T], in which a minus sign will
denote unoccupied orbit of sites and 1 or 3 occupied
(with multiplicity 1 or 3); see Table II. We have omitted
the remaining six PR vertices, because they are always
occupied by atoms. One of the two possible decorations
of PR(BC), which fits into the central hole of the triangle
formed by RD decorating b bonds (called the Y face in
Ref. 15), is shown on Fig. 2(b). In Fig. 2(c), the three
PR(Da) in a D cell surround PR(Dc) (not shown). With
respect to the Y face, the PR(Dc) is equivalent to
PR(BC).

It is amusing to realize that the rhombic dodecahedra
(RD) pack together in one of the two modes: "perpendic-
ular, " like in the a-Al-Mn-Si phase [see Fig. 2(a)], or "tri-
angular, " like in the P-Al-Mn-Si phase [see Fig. 2(b)] and
Ref. 1. In TCC jargon, the first mode corresponds to the
A cell and the second to the Y face. As a matter of fact,
there are only very few atoms out of these two objects in
the TCC model, which could explain the intriguing rela-
tionships between the &' phase on the one hand and n and
f3 phases on the other, suggesting that the i phase is an in-
termediate state between the u and P phases.

TABLE II. Decoration of prolate rhombohedra. The notation is explained in the text. Parity (+ / —) of each site is deined as a

, n; (see Sec. III). The unoccupied "T+"sites are vacant DMI centers; unoccupied "T "sites are vacant —MI centers. Except-
ing PC(c), there are two ways of decorating each kind of PR, depending on the parity of its sharp-tip —cluster center. Atoms out of
DMI and MI are marked by (+ ).

Name

PR(c)
PR(RD)
PR(RD)
PR(BC)
PR(BC)
PR(Dc)
PR(Dc)
PR(Da)
PR(Da)

g1
g1
gl Q 3

3

gl
~1
gl
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Modification of the RD decoration. Each twofold link-
age between perfectly icosahedral DMI leads to short
pair distances (0.406a~ ) on the "top" and "bottom" faces
of the RD decorating b bonds [see Fig. 2(b)]. In the
Elser-Henley description of the a-phase structure, ' the
corresponding "Al(y)" atoms are shifted from their
"ideal" positions at the ~ ' and ~ points of the
rhombohedron's face diagonal to the 1/3 and 2/3 face di-
agonal points. As explained elsewhere, even more accu-
rate modification of the a-Al-Mn-Si idealized structure is
to distort only two pairs of atoms on the "top" and "bot-
tom" faces of RD, linking two cluster centers. After this
modification, the shortest pair distance in our model is

0.5a along fivefold directions in MI.
Density. In order to calculate how the atoms are ap-

portioned among the cells, we at first associate them with
TCC objects without sharing (for the sake of simplicity,
the numbers per "even" and "odd" objects are averaged):
nodes (54 MI atoms), b-bond "connective" atoms (five
atoms in RD), BC-cell "connective" atoms [7/2 atoms of
PR(BC)], and D-cell "connective" atoms [29/2 atoms in
PR(Da) and PR(Dc)]. There are (1/6 MI + 1/2 RD)
per 3 cell [1/2 MI + 3/2 RD + PR(BC)] per BC and
[1/2 MI + 3/2 RD + 3 PR(Da) + PR(Dc) ] per D cell.
The result is shown in Table III and the compact expres-

0 3sion for the total atom/A density of an arbitrary (period-

C

FIG. 2. Lar e o eng open circles are centers of Mackay-icosahedra —vacant-TCC nodes. Small o en circles are Al n
atoms. Atoms are labeled by the conventio 1 d . S

'
ated unven ion exp aine in text. olid circles are atoms located u

o y iagonal. (a) Decoration of the A cell. Lon er arrows o
RD tips) to the G atom [(Al(5) via notation of E

onger arrows point from even-parity MI centers (sharp
via notation of Elser and Henley (Ref. 1)] in the interior of the adjacent odd- arit RD. Short

indicate that the pairs of Fatoms, belonging to the third h 11 f DMI [ h
and two-thirds of the face diagonal, as pro osed in Ref. 1. (b De

e ir s e o t eyarecalled Al{y) by Elser and Henle ' ren ey'„are shifted to one-
pose in e . . ecoration of the Y face. Three RD acked in this m

in the center, into which PR(BC) is inserted. (c) Three PR(Da) decorating the D cell
p e in is mode form the hole
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TABLE III. Atomic decoration of A, BC, and D cells. The atoms in the last column are included in column "others"; the num-
bers illustrate how a small fraction of atoms is not determined by the MI-DMI decoration rule.

BC
D

TCC-576

1320
576
136

TCC-592

1608
576
72

Node (MI)

9
27
27

b bond (RD)

5/2
15/2
15/2

Other

7/2
29/2

Sum

23/2
38
49

Out of MI, DMI

3/2
13/2

ic or quasiperiodic) model reads Comparison with 6D models. Both 6D and TCC mod-
els seek for the densest possible icosahedral network of
54-atom MI. There are two main differences and they
seem to be mutually independent: (i) The density of the
cluster-centers network is 10' higher in the TCC model,
but so far we do not have a truly quasiperiodic solution to
the tiling problem; (ii) while connective-atom ordering is
6D bcc in DO (Ref. 7) and Yamamoto's models, in the
TCC-based model it is 6D fcc. From a 6D point of view,
a common feature of these models is an abrupt change of
the real-space local environment when crossing the
boundary of the cluster-center motif decorating 6D cubic
lattice nodes, which is characteristic of models, consisting
of strictly defined clusters and "connective" atoms. This
feature is even more pronounced in the TCC model with
perfectly icosahedral third shells.

Comparison with Yang's' model. Yang used two kinds
of icosahedral clusters (MI and DMI) to build a quasi-
periodic model of i-Al-Mn-Si. Instead of choosing a
quasiperiodic network of cluster centers, he constructs an
infinite hierarchical inflation procedure. The way the MI

p =
—,
' (23n „+76n~c+ 98no ) .

Nit)i
'fk ~ i t(I@a)

A'
4xr, '- o

Ig+ A

n

~ '
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FIG. 3. 2D cut perpendicularly to the twofold axis through
the node (top) and body-center motifs projected onto perpendic-
ular space. The slice is 1.2 A (four succeeding [100] planes)

thick. The deterministic model, 13/8 approximant, has 185 252
atoms in the cubic cell (@=0);96% of these atoms belong to
2440 icosahedral clusters. Larger circles correspond to even
motif sites, smaller to odd; hence, the dark region is the identi-
cal part of both. Note that there is only "even" BC motif. Scale
is in angstroms.

Note that the 1/1 approximant (pure packing of A

cells, " 12 A cells per unit cube) is exactly the a-Al-Mn-Si
structure with 138 atoms per unit cube. Inserting
n,„=(r+2) /(2a '&5 ) into Eq. (1), where a =4.6 A is
the quasilattice constant, we find in the ~uasiperiodic lim-
it the (E=O) density p=0.0669 atom/A, or 3.611 g/cm
with the composition A174 2Mn~oSi, 8. In this model,
about 4% of the atoms do not belong to MI or DMI.

Adjustability. The sensitivity of the physical properties
to the variation of e decreases as the homogeneity of the
A-vs-D cell decoration increases. In the i-Al-Mn-Si mod-
el proposed here, A cells contain only MI or DMI atoms,
but D cells certainly cannot be decorated equally densely;
in the present model, we find 0.0680 at/A for A, 0.0670
for BC, and 0.0644 for the D cell. The e variation can be
quite impressive. Considering the known 8/5 TCC ap-
proximants, ' 8% of the total volume can be decorated
either by A- or D-cell-type structure; hence the density of
the present model is adjustable in the interval
3.611—3.626 g/cm with 4.2-3.1% of the atoms out of
MI or DMI ~

6D fcc modulation. The perfectly icosahedral third
shell around half of the TCC nodes leads to the atom-
vacancy alternation that breaks the simple-cubic quasi-
crystal space group P5 3 2, /m into the face-centered
F5 32/m. Although in the high-quality samples of i-Al-
Mn-Si such ordering was not observed, there are more in-

dications, justifying this approach: (i) Similar topological
ordering is observed in i-Al-Cu-Fe and i-A1-Pd-Mn,
which are structurally related phases; (ii} while in i Al-
Cu-Fe and i-Al-Pd-Mn the 6D fcc ordering is easily visi-

ble due to a robust chemical ordering, the atom-vacancy
alternation in the i-Al-Mn-Si case leads only to a weak
superlattice peak (see Sec. V); (iii) upon annealing and
prior to the crystallization, the diffuse superlattice peaks
develop in the diffraction pattern of i-Al-Mn; (iv) the
same atom-vacancy alternation is observed in the a-Al-
Mn-Si phase.

6D atomic motifs The model str. ucture can be straight-
forwardly lifted to the 6D space, but since the acceptance
domain of the quasiperiodic TCC is not known, in Fig. 3
we present the cuts through the 6D node and body-center
atomic motifs of the 13/8 approximatant, based on ran-
dom TCC tiling. There are four distinct atomic motifs:
(1) Inner-shell MI sites are projected from the motifs at
the edge midpoints of the 6D hypercubic lattice; the
motif, not shown on Fig. 3, is a copy of the underlying
TCC perpendicular-space image (2) "even" -node motif
(3}"odd" -node motif, and (4) even-BC motif.
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and DMI are linked (MI-DMI bonds along threefold,
MI-MI and DMI-DMI bonds along twofold icosahedral
directions) is an implicit definition of 6D fcc order. Since
Yang forces quasiperiodicity of his model by a cluster-
inAation algorithm with a vague definition of the filling of
the gaps, it is not clear if the networks of the atoms and
clusters can remain reasonably we11 connected after few
inflation steps.

IV. PACKING EFFICIENCY AND 6D fcc ORDER

In this section we address the question, does the pack-
ing eSciency criterion play a role in the development of
the 6D fcc order in i-A1-Mn-Si-type quasicrystals? We al-
ready know that constraining the minimum interatomic
distance to 0.563a, the densest packing obtained by the
Monte Carlo density optimization is 6D sc structure,
TCC with r b(0. 649aq) and r c(0.563a ) bonds.
However, elsewhere we have shown using the examples
of 2/1, 3/2, and 5/3 cubic approximants of the i-Al-Mn-
Si Monte Carlo model, that the 6D fcc-type structure is
the maximal-density solution provided that the Mackay
icosahedra, decorating nodes of the 12-fold packing net-
work, ' are axed throughout the Monte Carlo annealing
run.

The Monte Carlo version of the deterministic model of
the 8/5 i-Al-Mn-Si approximant was designed as follows.
At first, 54-atom Mi were fixed at each TCC node. Then
we have generated third icosahedral shells (see Table I)
from both even and odd TCC nodes and added all other
reasonable connective-atom sites at the faces and body di-
agonals of PR decorating TCC, provided that they were
not too close (r &0.56a ) to the MI sites. Subsequently,
the atoms were randomly created at these sites and al-
lowed to jump to another close (r & 0.56a ) site, with the
hard-core condition r;„&0.56a already switched on.
The dynamics of the algorithm was significantly im-
proved by forced P2, 3 space symmetry: Each MC jump
and/or creation of the atom was constrained to occur on
the whole symmetry orbit at once. The whole MC run
[(1) initialization MI at the TCC nodes, all third shell and
other corrective-atom sites unoccupied; (2) MC
connective-atom density maximization) was repeated
many times and the densest solutions were recorded.

We have found that the density maximization actually
restored third shells only around one kind (even or odd) of
the TCC nodes, generating a model very similar to the
deterministic one formulated in the previous section, with
slightly higher atomic density (see Table IV). The cuts
through the optimized domains were very similar to
those already published and to Fig. 3.

This result encourages us to conjecture that the 6D fcc
modulation in i-Al-Mn-Si-type (i-A1-Pd-Mn, i-Al-Cu-Fe)

quasicrystals is linked with the dominating stability of
the 42-atom icosidodecahedron (its inner shell need not
be Al icosahedra with a central vacancy such as in the i-
Al-Mn-Si model; an alternative is partially occupied
dodecahedron), playing a role of a building block in the
quasiperiodic structure. Dense icosahedral packing of
these units (TCC is the best candidate for such geometry,
but 12-fold packing and similar networks also work)
forces through a packing-eSciency requirement applied
to "connective" atoms: (i) 6D fcc modulation, (ii) fur-
ther maximization of local icosahedral symmetry (third
icosahedral shells), and (iii) creation of (say) an even 6D
body-center motif. It is natural to expect that the 6D fcc
modulation of the atomic density (atom-vacancy alterna-
tion) should induce also some chemical modulation
(atom-A —atom-8 alternation), because two atoms with
identical perpendicular position but different parity have
in general different local environments. Obviously, also
the appearance of the 0.618aq pair distance from the 6D
node to the 6D body-center site [( - 1 1 1 1 1 1)/2 in 6D
notation] should contribute to the stability: (i) Environ-
ments of the 6D bc atoms are mostly perfectly
icosahedral; (ii) this interatomic distance relaxes the
strains that arise from the pure ~ b and ~ c bonding
(which is favored by the packing-efficiency argument)
with a c/b length ratio as large as &3/2.

V. DIFFRACTION

Calculated x-ray and neutron structure factors of the
deterministic model in the 8/5 approximation were fitted
to the experimental data. ' Mn atoms were assigned to
the vertices of the rhombohedral tiling, inscribed into the
TCC (Ref. 15) (about 18% of the sites in the model) and
to further 6D node-motif sites with the smallest magni-
tudes of perpendicular coordinate vectors —up to the
(A1Si)79Mn2, composition.

We have minimized the residual R factor,

kAO k%0
(3)

p, (lkl)'=g' g+cubpcub(~k ~)2& Bk /2—1

p
(4)

In Eq. (4), p"' which stands for the total multiplicity of
icosahedral orbits of reflections with the same
~k~ =[(N+Mr)/(2+r)]' /a (we used indexing after
Ref. 30), scaling factor A. , and one global Debye-Wailer
(DW) temperature factor 8 are the parameters intro-
duced into the minimization. All experimental x-ray and
neutron icosahedral rejections have their cubic counter-

where I', and I', are observed and calculated structure
factors,

TABLE IV. 8/5 models (@=0,576 MI per cubic cell): the Monte Carlo (see Sec. IV) and deterministic. The density is expressed in
atoms per rhombohedron vertex and "%"denotes the fraction of all atoms

Name

MC
Deterministic

Atoms

43 880
43 732

MI (%)

70.9
71.1

BC motif (%)

4.8
5.4

Density

4.245
4.231

Space group

P213
P213

6D lattice

fcc
fcc
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parts with multiplicity p"'=gp';", where i runs through
all cubic orbits at ~k,'~ on which an icosahedral orbit has
been split.

We have obtained R =0.089 and 0.160 for x-ray and
neutron data, respectively [Figs. 4(a,b)]. The Patterson
functions along the fivefold axis calculated from the ex-
perimental and 8/5 model intensities (Fig. 5) also confirm
the consistency of the two data sets. Especially the agree-
ment between the neutron calculated and observed data
with negative scattering length of the Mn is remarkable.
We find only a weak R dependence on the following fac-
tors: global Goldstone mode (perpendicular-space) DW
factor, e variation of the initial canonical tiling [see Eq.
(1)], and expansion or contraction of the first two MI
shells, preserving their icosahedral symmetry (though
this modification in fact slightly decreased the neutron R
factor to 0.141).

On the other hand, we find an obvious increase of both
x-ray and neutron R factors, when a fraction of Al atoms
on the 6D body-center positions is replaced by Mn, con-
trary to the conjecture that the 6D body-center motif is
occupied by Mn.

The 6D fcc modulation breaks the Pa 3 space symme-
try of the initial TCC to the P2, 3. ' As a consequence, in
our perfectly ordered idealized model few odd-N

0.2—

refiections have detectable intensity [in Eq. (4) only the
observed, even- X refiections are considered]. When the
BC motif is occupied by Al, we find seven odd-N peaks
with the intensity I(k) ) 1%, the brightest of them
(15/24, 47/76) approaching 3% of the 20/32 peak inten-

sity.
We would like to note that our model is quite close to

that proposed by Cahn and co-workers (C model). A
fraction of sites projected from the 6D body-center motif
is 4.7 and 5.1% in the C and our model respectively, and
the weights of the Al(a) motifs of the first MI shell
atoms (these are in the C model assigned to the body-
center motif are 16.3 and 16.1%, corresponding to the
relative number of MI units by about 10% higher than in
the DO model. The similarity of the two models is, how-
ever, not surprising, since both of them closely follow the
e-A1-Mn-Si phase structure.

Another comparison can be made with x-ray-
absorption fine-structure (XAFS) experiments. Ma and
Stern concluded that cubic distortions of the MI units,
observed in the i-phase and high MI-MI average coordi-
nation number (considering only the c-bond —PR connec-
tion between the clusters), 7.2+15%, imply the presence
of a-phase microcrystallites in the i phase. Within the
TCC framework it is very likely that distortions along
twofold directions, equivalent or similar to the cubic dis-
tortions in the n phase, will be present also in the i phase.
A fraction of the TCC nodes has locally (through b and c
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FIG. 4. X-ray (a) and neutron (b) structure factors. Bars are
experimental data (Ref. 5), crosses calculated data, and open cir-
cles calculated data with expansion corrections (small Al
icosahedron size 1.05, Mn icosahedron 1.03, Al icosidodecahed-
ron 0.97) applied to MI atoms.

—0.2

FIG. 5. X-ray (top) and neutron (bottom) Patterson function
along the fivefold axis. The solid line is calculated from the ex-
perimental data, dotted line from the deterministic model.
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FIG. 6. Layer of 8/5 canonical tiling with 592 nodes per cu-
bic cell. Thin lines are b bonds, thick lines c bonds. There are
large fragments of the bcc structure.

bonds) identical environments with the a structure (the
bcc structure fragments can be seen in the 8/5 TCC
structure; see Fig. 6) and each b bond (linking MI in the
icosahedral twofold directions) has in the present model
one of two identical decorations (even, odd), inferred
from the a phase. Furthermore, the densest 8/5 TCC ap-
proximant with 592 nodes per cubic cell investigated here
has average MI-MI CN 6.66%, 7.5% below the experi-
mental value, but clearly within the error bar (for com-

%'e have proposed a deterministic tiling-decoration
model of the i-Al-Mn-Si quasicrystal: Nodes of the tiling
of four canonical cells (TCC) are occupied by a 54-atom
MI, constituting the fundamental part of the structure.
The density of MI units in our model exceeds by 10%
their density in current 6D models. ' Even-parity TCC
nodes were decorated by additional, third icosahedral
shells, observed in the a-Al-Mn-Si structure a MI with
the third shell thus forms a 126-atom icosahedral cluster,
called a double MI. Two remaining types of interstitials
were filled by additional connective atoms. Since there
are two kinds of nonequivalent icosahedral clusters, asso-
ciated with even and odd TCC nodes, the space group of
the quasiperiodic model is F5 3 2/m. The comparison of
the calculated and experimental x-ray- and neutron-
diffraction data gives 8 factors of 0.09 and 0.16, respec-
tively.

The Monte Carlo version of the model with a MI fixed
at the TCC nodes and densely ordered "connective"
atoms confirmed that alternation of a DMI and a MI on
the even and odd TCC nodes also provides the most
efficient packing rule for the connective atoms (out of the
MI). This result indicates, that 6D fcc order observed so
pronouncedly in perfect quasicrystals with similar struc-
ture (i-A1-Pd-Mn, i-A1-Cu-Fe) can be linked with (i) stabil-
ity of MI units (or their outer shells) and (ii) requirement
of the most efficient (densest) packing of the connective
atoms.
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