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Ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor interactions
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The possible ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor pair
interactions are investigated by constructing an eight-dimensional configuration polytope and enumerat-
ing its vertices. Although a structure could not be constructed for most of the vertices, 31 ternary
ground states are found, some of which correspond to structures that have been observed experimental-
ly.

I. INTRODUCTION

Alloy phase diagrams are of considerable interest in
materials science and condensed matter physics. They
serve as guidelines to determine processing conditions
and are often needed to explain the properties and
behavior of a material with a given environmental histo-
ry. From decades of experimental results, a relatively ac-
curate picture has now been compiled for most binary al-
loy systems. ' From the theoretical side, first-principles
theorists are trying not only to reproduce some of these
well-known phase diagrams, but also to understand their
topology in terms of microscopic models for the energy
and the entropy. Using a powerful combination of quan-
tum mechanics and statistical mechanics, ab initio alloy
theory has advanced to the point where the topology of
simple phase diagrams can be reproduced, starting from
only the atomic numbers of the constituents.

Whereas binary systems have been studied extensively,
both experimentally and theoretically, much less is
known for three-component systems. No systematic
compilation of ternary phase diagrams exists (although
one has been started" ) and only a few attempts have been
made to compute ternary phase diagrams with first-
principles models. ' ' An essential part of a first-
principles phase diagram computation is the prediction of
the ground states in the system. In this paper we will
present general ground-state results for ternary systems.
Using a lattice model with only nearest- and next-
nearest-neighbor pair interactions, we will attempt to
predict which ordered fcc superstructures can exist in

three-component systems. In the binary case, only nine
distinct ground-state structures are possible with this in-
teraction range. ' ' This number increases drastically
when extending the interaction range to the fourth
nearest-neighbor distance. ' ' A recent study on the
ground states in a ternary bcc lattice model indicated
that only a few real ternary structures could be stabilized
with nearest- and next-nearest-neighbor pair interac-
tions.

II. FORMALISM AND METHOD

The zero-temperature energy of an alloy that is re-
stricted to order on an underlying fcc lattice can be con-
veniently mapped onto a lattice model Hamiltonian. ' In
the binary case, a spin variable, o;, takes on the value + 1

(
—1) when site i is occupied by an A (B) atom. Al-

though the energy of binary alloy depends on the
configuration of all the spins, represented by to ), it can
be expanded exactly in a basis of local cluster functions

E([o I)=g V o.

with the cluster function 0. defined as the product of all
the spins on sites in cluster a:

cr =go.;.
iCa

The expansion coefficients V are effective cluster in-
teractions (ECI) and have been found to converge rapidly
with distance and cluster size. The practicality of Eq. (I)
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lies in its rapid convergence: once the values of the ECI
have been determined, the energy of a given configuration
can be obtained by summing a few loca1 cluster functions
around each lattice site.

The transfer to an Ising-like Hamiltonian does not im-

ply that the alloy is modeled on a static, fixed lattice.
The spin configuration I

g.
I only refiects the state of con-

nectivity of the atoms, but not their exact positions.
E(IgI) could, for example, be parametrized so that it
gives the energy of a configuration I g I where atoms have
been allowed to relax to their lowest-energy position,
which need not coincide exactly with the lattice position.
The effect of relaxation on ground-state energies has been
shown to be substantial and significant errors can be in-
troduced when neglecting it. We recently indicated
how, in a similar way, the effect of high-temperature vi-
brations can be included in expansion (1). '

To describe ordering in a ternary system a three-state
occupation variable is needed. The obvious choice is a
spin-1 model, although more symmetric state variables in
the complex plane can be used as well. In the following
we will adopt the simple three-state spin model and
represent A, B, or C occupation of a lattice site by the
spin value + 1, 0, and —1, respectively (see Fig. 1).

Similarly to what is used in computations on binary
systems, we can expand the energy of a ternary system in
a complete basis of cluster functions. Sanchez, Du-
castelle, and Gratias suggested to use orthogonal Che-
byshev polynomials in 0.; and cr;. The orthogonality of
the basis functions leads to a simple and powerful,
definition of the ECI: they are the projection of E( I g ) )

onto cluster function 0. . This definition has been judi-
ciously followed in one of the methods to compute these
effective interactions from first principles ' and its
feasibility for ternary systems has recently been demon-
strated as well. In this ground-state study we will, how-
ever, choose a set of basis functions suggested by Inden
and Pitsch, ' and in a limited form by Taggart, as this

I

~ ~ I ~ ~ ~ ~ I—+-—-0 -+-—-+-0 -+.ii)i)l) i—————4- O —0 -4-—+-—
I I l I l I l l———0 ————-+—————-+

I-4-+-—-+-———-o-+
I i »

l E la1F %F

b)
O =Aatom a=+1

=B atom o=o
= C atom g = -&

FIG. 1. The configuration of atoms (b) in a three-component
system is represented by a three-state lattice model {a). A spin
value of + 1, 0, and —1, respectively, indicates the occupation
of the lattice site by an 3, B, or C atom.

basis is more apt for ground-state models. In the S basis,
as we will refer to it, the cluster functions are simple
products of g; and g. . Consider two figures p and y on
the lattice, with y completely in p. The ternary cluster
function 4& y

is defined as

E(I&I)=X X Vere'(i, r .
P yCP

(4)

Limiting the effective interaction range to nearest-

neighbor (NN) and next-nearest-neighbor (NNN) pairs,
the last equation can be written explicitly:

The set of all cluster functions for all combinations (p, y)
forms a complete set in the space of all configurations.
Although this basis is not orthonormal, it is desirable for
ground-state work as the values of the cluster functions
are always integer in the S basis.

In its most general form, the Hamiltonian of the ter-
nary system can be expanded in the S basis as

NN

E(I It)r—Vg+gH g;+gH g,. +g V~&~g. g. +g V«(& &2+&&g )+y Vcr cr 2 2

I l,j l, j 15 J
NNN NNN

2 NNN
+ g V2 g;gj+ g V2 (cr;g +g, o)+ g V&

.g~g~ .

Equation (5) is the most general Hamiltonian for a three-
state spin model with NN and NNN interactions. In a
more restricted form it is known as the Blume-Emery-
Griffith model used for the study of superfluidity in heli-
um, liquid-crystal mixtures, and electronic conduction
models. As the effective interactions have the symmetry
of the underlying lattice, Eq. (4) can be averaged over the
whole lattice to get the energy per lattice site:

e(Ig. I)=g' g' VIiymii (4'ii~) .
p ycp

The primes indicate that the sums are only over the types
of figures that are distinct, considering the symmetry of

the lattice. The coefficient m& gives the number of
(P, y) figures per lattice site and the correlation function

(4& z) is the average value of all the cluster functions
defined on those clusters.

To find the ground states of our ternary system, Eq. (6)
has to be minimized with respect to the values of the
correlation functions. Although the energy is linear in

the correlation functions, the ground-state minimization
is nontrivial as the values of the correlations are restrict-
ed by the fact that they have to represent a physical state
of ordering on the parent lattice. It is, for example, im-

possible for all correlations of a binary alloy on the fcc
lattice to have the value —1. The difficulty in ground-
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state studies lies in finding the exact constraints the lat-
tice imposes on the correlation functions. Once these
constraints are found, Eq. (6) can be minimized with stan-
dard linear programming techniques.

One approach to finding these constraints, that has
worked successfully for some binary problems, has been
to require that the probability of an atomic configuration
on a given cluster be between zero and one. Since this
probability can be written as a linear function of the
correlation functions on the cluster, these conditions im-
pose linear inequality constraints between the correlation
functions. Using only constraints on the tetrahedron and
octahedron, for example, it is possible to exactly predict
all binary fcc superstructures that can be stabilized with
NN and NNN interactions. ' ' We will follow a similar
procedure to look at the possible ground states of a ter-
nary fcc lattice model with NN and NNN interactions:
First, we will express the probability functions for the
configurations on the tetrahedron and octahedron in
terms of the correlation functions that are defined on
figures contained in these clusters. We will then elimi-
nate, from the constraints, all the correlation functions
for which no interaction appears in Eq. (5). The resulting
set of inequalities limits the values of the correlation
functions on the NN and NNN pair figures and on the
point figure. The inequality constraints between the
two-point correlation functions and six-pair correlation
functions define hyperplanes in an eight-dimensional
space. The values of the correlation functions are re-
stricted to lie inside the polytope bounded by all con-
straints. The vertices of this configuration polytope are
the possible ground states of Eq. (5). This can be easily
understood by noting that the energy is a linear function
of the correlations; hence, it will only reach an extremum
at the boundary of the existence domain. The extreme
points of a convex polytope are its vertices.

This procedure does not always yield acceptable re-
sults. As the inequality constraints are derived from
configurations on a small cluster they might not be re-
strictive enough compared to inequalities resulting from
the infinite system. In this method, the exact
configuration polytope is thus always approached from
the outside, and formulating constraints on a larger clus-
ter may cut ofF some of the vertices that are obtained
with smaller clusters. In that case, the vertex violated
some of the constraints arising from the larger cluster,
and it cannot correspond to a physical state of ordering.
It is referred to as an inconstructable vertex. Conversely,
every vertex for which a physical configuration can be
found with the correct correlations will never be cut o8'
when constraints are formulated on a larger cluster. Ver-
tices of this type are constructable and correspond to real
ground states of the system.

To find the constraints on the correlation functions,
the probability &X (J)), for configuration J to occur on
cluster a, can be expanded linearly in the correlation
functions (see the Appendix for a derivation of the expan-
sion coefficients):

j3ca yc

Only correlation functions on figures in a appear in the
expansion. The set Z& (J) is often referred to as the U

matrix. Requiring that &X (J)) be positive gives the
desired inequality constraints between the correlation
functions. All probabilities sum to 1 by construction. On
the tetrahedron, 14 distinct correlations and 15 atom
configurations can be defined. For the octahedron
there are 55 correlation functions and 56 distinct
configurations. Combined, the two clusters define a po-
lytope bounded by 71 distinct hyperplanes in a 60-
dimensional space. The vertices of this polytope are the
possible ground states that can be stable with interactions
defined in the tetrahedron and octahedron clusters.
What is needed, however, are the ground states that can
be obtained when only NN and NNN pair interactions
are present. To find the constraints between only the
correlation functions that appear in Eq. (5), all other
correlation functions need to be eliminated from the 71
constraints. This can be done by projecting the vertices
of the polytope in the 60-dimensional space down to the
eight-dimensional space spanned by the correlation func-
tions of interest, and determining the convex hull of all
the projected points. This procedure is not feasible in
this case as the number of vertices of the full
tetrahedron-octahedron polytope (in the 60-dimensional
space) may be as many as 10 .

As an alternative, we determined the projections of po-
lytopes derived from the constraints on the tetrahedron
and octahedron onto the eight-dimensional space sepa-
rately and then computed the intersection of these two
polytopes. For the binary ground-state enumeration this
gives exact results. Compare, for example, the results of
Ducastelle' and Finel' with those obtained by Sanchez
and de Fontaine. ' The eight-dimensional projections of
the tetrahedron and octahedron polytopes were charac-
terized respectively by 36 and 699 faces. Six of the faces
of the tetrahedral polytope also appear in the projection
of the octahedral polytope so that the intersected po-
lytope is defined by 729 hyperplanes. The vertices of this
polytope are the possible ground states of the ternary
NN-NNN fcc lattice model.

Enumerating the vertices of a polytope for which the
bounding hyperplanes are given is a well-known problem
in combinatorial geometry that has received much at-
tention for its applications in operations research. Most
methods developed, however, are not practical to
enumerate vertices of ground-state polytopes as these po-
lytopes are usually characterized by a high degeneracy.
Degeneracy in vertex enumeration techniques occurs
when more than n hyperplanes go through a vertex on an
n-dimensional polytope. To enumerate the vertices of our
ternary ground-state polytope, both the double descrip-
tion algorithm and the reverse search algorithm were
used. The double description method is an incremental
algorithm that computes all vertices of a polytope by
sequentially adding each hyperplane to the polytope com-
puted in the previous step. Although this method must
store all vertices of the intermediate polytopes, it can deal
with degeneracy quite well. The reverse search method
was developed by two of the authors and only requires
storage space for the input data, making it very useful for
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large problems. The drawback of the method is that
many duplicates of the same vertex can be generated
when degeneracy is present. While both methods suc-
cessfully generated all vertices of the polytope, the double
description method seems to be more appropriate for this
computation because of the high degeneracy and
moderate size of the inequality system. For larger sys-
tems, however, the reverse search method may become
the only feasible algorithm for vertex enumeration.

III. RESULTS

The ground-state polytope we found is highly degen-
erate and consists of 4862 vertices in the eight-
dimensional space spanned by the correlation functions.
Some of the vertices found correspond to structures that
can be transformed into each other by permutations of
the A, B, and C species. If these are considered to be the
same structure, the total number of distinct structures is
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F1G. p. [001] projections of the ternary ground-state superstructures of fcc with first and second nearest-neighbor interactions.
~hite, grey, and black circles correspond to p, p, and C atoms, respectively. Large circles are in [00n ) planes, and small ones in

[00n + 1/2] planes. Half-shaded circles correspond to atoms alternating in the [001]direction, while circles with a shaded quadrant
correspond to particles occupying every fourth site in the [001] direction. Rotations of the shaded parts indicate different [00Z]
planes. The structures are labeled with the number of atoms in their primitive unit cells and letters to distinguish between structures
with the same number of atoms. Structures 8c 1, 8c2, and 8c3 correspond to the same vertex in the configurational polytope and have
the same energy for the range of interactions used.
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TABLE I. Experimental prototypes have been found for three of the structures shown in Fig. 2.

Structure Prototype Space group Pearson symbol Atoms in unit cell

4a
4c
4b

Cu2NiZn
CdPt2Zn
Rh, SnCo

P4/mmm
P4/mmm
P42/ncm

tP4
tp4

EP16

980. Nine of these have only two types of atoms and cor-
respond to the ground-state structures of the binary prob-
lem.

To test the constructability of the 971 vertices with ter-
nary composition, we developed a computer code that
tries to build a structure with a given set of correlation
functions. The only assumption made is that the primi-
tive unit cell of the structure has less than a specified
number of atoms. The code explores all the possible unit
cells up to the maximal size. Setting the maximum size
to 32 atoms, only 31 of the distinct vertices could be con-
structed. Two-dimensional projections of the unit cells of
these structures are drawn in Fig. 2.

IV. DISCUSSIONS

Given the fact that no structures were found with more
than 16 atoms in the primitive unit cell, and only one
structure with more than 8 atoms, it is unlikely that
many of the 940 vertices that we could not construct cor-
respond to real structures with unit cells larger than 32
atoms. We will therefore consider all 940 vertices as in-
constructable even though that has not entirely been
proven. The vertices that can be constructed are true
ground states of the NN and NNN Harniltonian since
they can never be removed by constraints derived from
considering larger clusters. For some of the structures
with sma11 unit cells we have found experimental evi-
dence in real ternary systems. Structure 4a, which is the
only ternary ground state possible if the interactions are
limited to the nearest-neighbor distance, has been ob-
served in Cu2NiZn. The structure is similar to the
binary L 10, but with the minority atoms ordered in one
of the (001) planes. A different secondary ordering
occurs in structure 4c which corresponds to the CdPt2Zn
phase. In this structure, Cd and Zn segregate each to
their own (001) plane, alternating with pure Pt (001)
planes. Structure 4b is the Rh2SnX phase, where X can
be Co, Cr, Fe, or V. This ordered phase can be con-
sidered as the antiphased variant of the Cu2NiZn struc-
ture. Table I lists the space group, size of the primitive
unit cell, and prototype for these three structures.

The search for prototypes corresponding to our ground
states is hampered by the lack of detailed experimental
information. For many ternary compounds the occupa-
tion of each site has not been determined unambiguously
so that they cannot be compared with the pictures in Fig.
2. However, most often there is simply no experimental
data available for a ternary system. Since the interaction
range we considered here is not at all exceptional (most
systems have significant effective interaction up to at least
the second nearest-neighbor distance), many of the
ground states in Fig. 2 should be found in real ternary
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APPENDIX

Define the occupation operator p;(j) which takes the
value 1 if the site i is occupied by an atom of type j and 0
otherwise. For a ternary alloy, p, (j) can be written as a
linear combination of the o., and o.

, operators '
p;(A)= —,

'o.
, + —,'o~,

p;(8) =1—cr2,

p, (C)= —
—,'o, + —,'o,

(A 1)

If we define the transformation matrix U with columns
and rows numbered as indicated in Eq. (A2),

systems. Maybe this ground-state enumeration can assist
experimentalists in their determination of the structure of
a ternary fcc compound.

In contrast to the success of the tetrahedron-
octahedron ground state analysis for the binaries, the ter-
nary analysis produces a large number of inconstructable
vertices, indicating that frustration effects on figures
beyond the tetrahedron and octahedron need to be ac-
counted for. The polytope method's applicability rests on
the presumption that frustration effects between interac-
tions can be sampled in the local environment around a
lattice point. If this is not so, large clusters have to be
used to formulate the correct constraints and the method
quickly becomes infeasible. We have already found this
to be the case for the binary ground-state problem as
soon as one tries to go beyond the second nearest-
neighbor interaction distance. ' Considering that the

problem presented here already tested the limits of vertex
enumeration methods, it seems unlikely that the polytope
method, in the form used here, will be tractable to solve
the second nearest-neighbor ternary ground-state prob-
lem exactly. Many first-principles computations of the
ECI have indicated that, in binary systems, interactions
are typically significant up to the fourth nearest-neighbor
distance, and there is no reason to believe that this will be
any different in a ternary expansion. In this case,
straightforward structure enumeration methods' '

might form the only acceptab1e alternative to obtain in-
formation on the possible ground states of a lattice
model.
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col 0 col 1 col 2 Using the definition of the cluster function [Eq. (3)j, we
can rewrite this as

0U=—
2 2

0

1 ~row —1

0 —2 ~row 0
~row 1

(A2)

(X (J))= y y (J)(@ ),
pea ycp

(A6)

we can write the general formula for the occupation
operator:

where

2 2

p&(J)= g u krr&~:u p+ g u krr&.

k=0 k=1
(A3)

isa
(A7)

In the last formula, the index i indicates the site, j the

type of atom, and u k the element of matrix U. The occu-

pation operators for configurations on larger figures can

be easily written in terms of the cluster functions by mul-

tiplying the point operators. The following notation

is adopted: a is the cluster on which the cluster

configuration is considered; J specifies a given

configuration on cluster a; T;(J) gives the spin value on

site i when cluster a is in configuration J; X,(J) is

an operator that returns 1 when a is occupied with

configuration J, 0 otherwise; X (J) is the product of the

point operators on sites of cluster a:

(X,(J))=g' g'Zpr(J)(+gr)
pea ycp

with

(A8)

and the clusters p and y are defined as in Eq. (3). For all
pairs (p, y) in a that are equivalent under the symmetry
of the lattice, the value of the correlation function is iden-
tical. If we call 0 (p, y) the orbit of all these symmetry
equivalent figures in a, Eq. (A6) can be simplified by sum-

ming only over correlation functions that are not related
by the symmetry of the lattice:

iEa isa k =0
(A4)

Z/3, ( J)=
(p, y ),. co (p, y)

z(p ) (J) (A9)

2 2 2

(X (J))= g g y Pu
k&:0 k2:0 k:0 l &a iEa

k,.

(A5)

By interchanging the summation and product and tak-

ing the lattice average we get
Z& r(J) is usually called the U matrix. For large maximal

figures, most of its elements are zero. For example, it can

be seen from Eq. (A5) and (A2) that for all configurations

J that have an A or C atom in a-p, the element z& r(J)
will be equal to zero.
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