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Polarization response of crystals with structural and ferroelectric instabilities
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A simple phenomenological model with two coupled structural and ferroelectric order parameters is
under consideration. The small-signal dielectric response, dielectric response to a strong electric field

(hysteresis phenomena included), and the phase diagram in the presence of the bias field are analyzed in
the framework of Landau theory. It is shown that for the set of properties studied one can single out six
qualitatively difFerent types of behavior of the model. It is also shown that, in the framework of a unified

phenomenological scheme, this model can describe the gradual conversion of ferroelectric to antifer-
roelectric behavior. The application of the model to the description of real compounds with a sequence
of phase transitions is discussed.

I. INTRODUCTION II. FREE ENERGY

It is well known that there exist many crystals with
several soft modes at different points of the Brillouin
zone. This is a common situation for perovskite-type
structures. For example, SrTi03 crystals possess two in-
stabilities: a ferroelectric one with a soft mode at the
Brillouin-zone center and an antiferroelectric distortion
with a soft mode at the R point of the zone. Another
well-known example is antiferroelectrics. That became
clear after the papers by Cross' and Okado who
transformed the Kittel model to a form explicitly con-
taining two instabilities (ferroelectric and structural).
However, this model is not sufhcient to describe some im-
portant features of systems with ferroelectric and
structural instabilities, especially in the case of a crystal
with a sequence of antiferroelectric and ferroelectric
phase transitions.

The behavior of systems with two order parameters has
been studied in several papers (see, e.g. , Refs. 4 and 5,
and the references therein). In those papers, the main at-
tention has been paid to the analysis of the phase diagram
in the absence of an external electric field for a number of
cases with a rather complicated structure of the free-
energy expansion. However, such important properties
of the system as the phase diagram in the presence of an
external electric field and the behavior of the hysteresis
loops was not addressed and no analysis was done of the
whole set of dielectric properties of the system, in order
to identify its characteristic features.

The aim of this paper is to present a detailed analysis
of the simplest phenomenological model with ferroelec-
tric and structural instabilities, the Kittel model being a
special case. For this model, we theoretically investigate
the dielectric response, the phase diagram in the presence
of an electric field, and the behavior of the hysteresis
loops. We analyze the whole set of results obtained to
show that one can single out six types of behavior of the
system considered, the set of aforementioned properties
being qualitatively different for any two of them. The ap-
plication of the model to real compounds is discussed.

For our analysis of the problem we choose the simplest
system, a system with two one-component order parame-
ters: I', the polarization along the polar axis and g, a
nonpolar order parameter. The free energy of the system
1s

F= ,'a)g + ,'P—)r/+ ,'a—zP + ,'P—2P + ,'y—r/P E—P . (—1)

Here E is the component of the macroscopic electric field
along the polar axis, a, =A, ,(T —T„), az=kz(T —T,z)
We restrict ourselves to consideration of the case where
T„)T,z, and p„pz, and y are positive, i.e.: (i) the tem-
perature of the structural instability is higher than that of
the ferroelectric instability. (Note that this relation be-
tween the transition temperatures is of importance for
the phase diagram of the system, which is the main item
of our analysis, so the case where T„&T,2 needs addi-
tional consideration. ) (ii) In the absence of interaction be-
tween the order parameters (y=O), both phase transi-
tions are second order. (iii) The sign of y corresponds to
the suppression of ferroelectric ordering in the presence
of a nonpolar order parameter. One should note that the
sign of y is of primary importance for the behavior of the
system. For y &0, the system may reveal, for example, a
"trigger-type" phase transition.

The free-energy expansion (1) can be normalized so
that only dimensionless quantities are involved:

a= ,'btq + ,'q"+—,'(1+t)Q—+,'—Q + ,'tPq Q e—Q, —(2)—
where

a =Fpz/A, z( T„—T,z),
t =(T —T„)/(T„—T,z),

q =r/ (/3, pz)'/ /A, (T„2—T,z),
Q =P P /A, 2(T„2—T,z),
e —E (p )1/2/1„3/2( T T )3/2
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It is clear from Eq. (2) that there are two independent pa-
rameters y and b governing the behavior of the system:

b =(A, , /k, )(p, /p, )' ', y=y/(p, p, )' ' . (4)

Q,' = —(1+t), a& = ——(1+t)',1

respectively. As one can see, for 6) 1, we have a &a&
for any t &0 (i.e., for the temperatures T & T„), and
therefore the polar phase (QWO, q =0) cannot occur in a
system without an electric field. For 5 & 1, the energies
aq and a& can be equal at some t =t„

t, = —(1—b, ) (7)

Parameter cp determines the coupling between order
parameters. To elucidate the physical meaning of 5 one
should compare the free energies of the polar (QWO,
q =0) and nonpolar (Q =0, q&0) phases in the absence
of the electric field. Minimizing the free energy (2), it is
easy to find that, in these phases, the spontaneous values
of the order parameters qo and Qo and the values of the
free energies are

the opposite case we have only a change of the slope.
Comparing the free energy (2) and the transformed ex-

pression for the Kittel-model free energy, we can see
that, for y= 3 and 6= 1, the considered model is identi-
cal to the Kittel model.

III. THK E-T PHASE DIAGRAM OF THE MODEL
AND THK BEHAVIOR OF THE HYSTERESIS LOOPS

AND THE DIELECTRIC CONSTANT

In the absence of an external electric field the phase di-
agram of the model has been analyzed by Gufan and La-
rin. The analysis presented below does not contradict
their results.

The electric-field —temperature phase diagram and the
temperature behavior of the dielectric susceptibility of
our model can be substantially different for different
values of the 6 and cp parameters. One can single out six
regions on the b, @plane (s-ee Fig. 1) corresponding to
different behaviors of the system.

Let us start from the consideration of the U, T, and S
regions which relate to the case of strong suppression
(b.y) 1; "antiferroelectric" cusplike anomaly of the
dielectric constant at T„).

and therefore, for t & t„ there may exist the aforemen-
tioned polar phase. Thus, one can expect the qualitative
behavior of the system to be quite different for 6 & 1 and
6) 1.

As was mentioned above an important feature of the
model is the suppression of the ferroelectric ordering in
the presence of the nonpolar order parameter. In this
respect, one should point out the important role of the
product by: for Ay) 1, the appearance of the nonpolar
order parameter completely suppresses the ferroelectric
instability whereas, in the opposite case, the impact of the
appearance is not so strong and the critical ferroelectric
phase transition is possible. These two cases manifest
themselves in the qualitatively different behavior of the
dielectric susceptibility at the structural phase transition
(at T = T„or t =0 in dimensionless units). Using the ex-
pression for the free energy (2) one can easily find the
normalized dielectric susceptibility X =dg/de [the true
susceptibility X=X/A, z(T„T,2) ]:—

A. Tregion

8 a/Bq )0, 8 a/Bg )0,
[(8 a/Bq )(8 a/Bg ) —(8 a/BqBQ) ])0 .

(12)

The calculation in the Appendix shows that two states of
the system are possible: q =0 and q WO. For t, & t & 0,

In this region b, meets the inequalities: y/(3—2y) ) b, ~ 1. The Kittel model applies to this region.
To determine the state of the system one should consider
the extremization condition of the free energy

Ba/Bq=tb, q+q +q&qg =0,
Ba/Bg =(1+t)g + Q +ygq —e =0,

and the stability conditions

X=dg/de

tA+3q +yg
[(1+t)+3Q +pq ](tb, +3q +pg ) 4qr q Q—

and therefore, for t )0 (T ) T, &), i.e., in the high-
temperature phase (q =0 and Q =0),

X =(1+t)
and, for t &0 in the phase with q =qo = —tb, and Q =0,

X = [1+t (1—hy)]
As can be seen from Eq. (10), for the case of strong
suppression Aqv) 1, we have a cusplike anomaly and in

FIG. 1. The classification of the types of dielectric behavior
of the model. The symbols U, T, S, I, Wl, and W2 on the plane
of 6 and y parameters indicate the areas corresponding to the
different types of behavior. The cross shows the values of the
parameters (5= 1 and y =3) at which the considered model is
equivalent to the Kittel model.
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where

r, = —q)/[(p(1 y—b, )+36(qP 1—)], (13)

these states are divided by the line of the second-order
phase transition, the corresponding critical field being
given by the following equation:

ek =(1 b, lrp)—[t +(pl(y b)—]( t—b, ly)' (14)

0,
-2

FIG. 2. The critical fields for the model in the T region vs
temperature: ek& is the field at which the state with q&0 loses
its stability, e&2 is the field at which the state with q =0 loses its
stability, and e, is the field at which the energies of these two
states are equal. The variables e and t stand for the dimension-
less electric field and temperature, respectively [see Eqs. (3)j.
The temperature t

&
is given by Eq. (13).

For t & t, the second-order phase transition transforms
into a first-order one. The latter can be characterized by
two critical fields ek, and ek2 at which the states with

q =0 and qAO lose their stability. The field eki is given
by Eq. (14) for t ( t, . The field ek2 is

e&2 =2(y 1)—[ [1+t (1—@5)]13(y—1) I . (15)

Also we have found by numerical calculations the elec-
tric field e, (the line of the first-order phase transition it-
selfl at which the free energies of the phases are equal.
The details of the calculation can be found in the Appen-
dix. The temperature dependence of the fields ek, e&&,

ek2, and e, is shown in Fig. 2 for 5=2 and y=3. For
5=1 and y=3 the result of our calculation coincides
with those of Okada. On the basis of these data one can
plot the e-t phase diagram of the model. It is shown in
Fig. 3(a). Using this figure it is easy to illustrate the ap-
pearance of the double hysteresis loops in our model. For
cross section 3, a change in the field causes a second-
order phase transition and one has a nonhysteresis polar-
ization electric-field dependence with a change of the
slope at e =ek only, whereas, for cross section B, the field
causes a first-order phase transition that implies a polar-
ization curve with double hysteresis loops. The maximal
width of the loops is given by the difference ek, —eI,2.
However, it is well known that real hysteresis loops are
always much narrower and actually the width of the

loops is governed by nucleation processes that are not
taken into account in the framework here. But it is of
importance that in the common case of rather narrow
hysteresis loops their position is determined by the field
e, at which the energies of the phases are equal. Thus,
the temperature dependence of e, yields the temperature
dependence of the critical field for narrow double hys-
teresis loops.

In the considered T region, as one can conclude from
Fig. 3(a), the double loops diverge with decreasing tem-
perature, following the temperature dependence of e, .
The presence of this behavior of the loops together with
the cusplike dielectric anomaly at t =0 [see Fig. 4(a)] is
the mark of the T region. [For this region and for the U
region, the temperature dependence of the dielectric con-
stant is given by Eqs. (9) and (10).]

B. U region

The border between the T and U regions is the line
where ri = —ac [or b, =y/(3 —2p )]. Therefore in this
region the phase transition is always second order. The
phase diagram is shown in Fig. 3(b). The characteristic
feature of this region is the absence of any hysteresis
loops and the presence of the "antiferroelectric" cusplike
dielectric anomaly at t =0 which is similar to that for the
T region [see Figs. 4(a) and 4(b)]. This similarity is
caused by the common condition Ag & 1 for these two re-
gions.

C. Sregion

The border between the T and S regions is the line
where 6=1. For 6 & 1, the energies of the phase with
q =0 and that with q&0 (in the absence of the field) can
be equal at some t, (0 [see Eq. (7)]. That qualitatively
changes the form of the phase diagram and the tempera-
ture dependence of the dielectric constant. This is shown
in Figs. 3(c) and 4{c). Now at r =r„ in the absence of the
electric field, we have a first-order phase transition into
the ferroelectric state (QWO, q =0). This phase transi-
tion is a noncritical one (the ordered nonpolar state does
not lose its stability at any t (0). It is followed, as is seen
from Fig. 4(c), by an additional steplike dielectric anoma-
ly at t, . For t )t„ the behavior of the dielectric suscepti-
bility X is given by Eqs. (9) and (10) and, for t ( t, in the
ferroelectric phase (q =0, QWO), as is shown in the Ap-
pendix, the following expression for X should be used

(16)

To elucidate the properties of the model for the S re-
gion let us consider three cross sections (A, B, and C) of
the diagram [Fig. 3(c)]. For the 3 cross section, we have
no hysteresis loops, for the B cross section we have dou-
ble hysteresis loops, and, for the C cross section we have
an ordinary "ferroelectric" loop. (Note that in terms of
the e-t phase diagram the crossing of a line of the first-
order phase transition at a nonzero value of the electrical
field corresponds to double hysteresis loops whereas the
crossing of a line of that kind at a zero value of the field
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FIG. 3. The electric-field —temperature phase diagrams of the model for various types of its behavior. These types relate to the re-
gions shown in Fig. 1. The variables e and t stand for the dimensionless electric field and temperature, respectively [see Eqs. i3)]. The
temperatures t„ t„ t„and tI are given by Eqs. (13), (7), (18), and (17), respectively. The diagrams have been calculated for the fol-
lowing values of the 6 and y parameters: (a) 6=3 and cp= 1.5 (T region); (b) 6=2 and can=1 (U region); (c) 6=0.4 and y=4 (S re-
gion); (d) 6=0.45 and y=2 (I region); (e) 6=0.45 and y=0. 9 (8'1 region); (Q 5=0.45 and y=0. 35 (8'2 region). A, 8, and C indi-
cate isothermal cross sections. The thin and thick lines stand for the second- and first-order phase transitions between the state with
q&0 and that with q =0. One thick line in a cross section (at e =0) mean a single hysteresis loop. Two thick lines in a cross section
mean double hysteresis loops with critical fields given by the ordinates of the crossing points. Two thin lines in a cross section mean
a change of the slope on the polarization electric-field dependence. The corresponding critical fields are given by the ordinates of the
crossing points.
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FIG. 4. The temperature dependence of the dielectric susceptibility of the model for various types of its behavior. The notations
are identical to those in Fig. 3. The values of the 5 and g parameters used for the calculations of the dependences are indicated in
the caption for Fig. 3.
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corresponds to a single hysteresis loop. ) The diff'erence in
the behavior of double loops for the T and S regions is
that in the latter case the loops converge with decreasing
temperature, transforming into a single hysteresis loop at
t, . The presence of the converging double loops together
with the cusplike dielectric anomaly at t =0 is an indica-
tion of the S region.

Now let us consider the case of weak interaction be-
tween the order parameters (gb, & 1) where the dielectric
anomaly at t =0 is a change of slope. The behavior of
the model in this case differs substantially from that in
the case of the strong interaction. The inhuence of the
nonpolar order parameter now is not so strong and the
phase transition into the polar state appears to be of criti-
cal type (of second order or of first order close to second
order).

D. I region

For this region (pre, &1 and g) 1), the e tphase -dia-
gram shown in Fig. 3(d) and the behavior of the hys-
teresis loops are qualitatively the same as those in the S
region. But the temperature interval t, & t &t, now is
narrower than in the previous case, tending to zero when

y goes to 1. The main difference between the S and I re-
gions is that, for the I region, the ferroelectric phase tran-
sition (at t, ) is of first order close to second order. This
fact is responsible for the crucial change in the tempera-
ture dependence of the dielectric susceptibility [cf. Figs.
4(d) and 4(c)] given by Eqs. (9), (10), and (16). Actually,
in the I region, our model describes the usual ferroelec-
tric phase transition with a strong dielectric anomaly, a
single hysteresis loop below the transition, and double
hysteresis loops above it, as one should expect for a first-
order ferroelectric phase transition. In this region, the
structural instability at t =0 manifests itself only in the
change of slope in the temperature dependence of the
dielectric constant.

E. 6'1 region

On moving from the S region to the 8'1 region
(1)y) b, ) the first-order phase transition from a nonpo-
lar state (qo&0 and QO=O) to a polar state (q0=0 and
QOWO) at t =t, converts into two second-order phase
transitions: the first from the state (qo&0 and QO=0) to
the state (qo&0 and Qo&0) and the second from the
state (qo&0 and Qo&0) to the state (q0=0 and QOWO).
Thus, in the absence of an electric field the transition
from nonpolar to polar phases occurs through an inter-
mediate mixed phase existing in the temperature interval
t& & t & t„where

and

tg =(b, /y —1) (17)

t, =(b(p —1)

For the 8'1 region, the e-t phase diagram and the tem-
perature dependence of the dielectric constant are shown
in Figs. 3(e) and 4(e).

For the high-temperature and ordered nonpolar

where u is the strain and g is the order parameter of the
transition. In the case of the second-order phase transi-
tion between two polar phases, the discontinuity in the
dielectric susceptibility can be obtained on the same lines

using the term in the free-energy expansion proportional
to

POPg (21)

We would like to draw your attention to the fact that this
term is allowed in the high-symmetry phase for the phase
transition considered.

The characteristic feature of the W1 region is the pres-
ence of the intermediate polar phase separated from the
neighboring phases by second-order phase transitions:
one of them is accompanied by a singularity of the dielec-
tric constant and the other by a discontinuity [see Fig.
4(d)]. The presence of the intermediate phase also reveals

phases, i.e., for t ) t„and for the polar phase (t & t&) the
behavior of the dielectric constant is given by Eqs. (9),
(10), and (16). The temperature dependence of the dielec-
tric constant in the mixed phase, as is shown in the Ap-
pendix, obeys the following expression:

X = —
—,'[1+t(1—b,y)] (19)

To elucidate the properties of the model for the 8'1 re-
gion let us consider three cross sections (A, B, and C) of
the diagram [Fig. 3(e)].

For cross section 3, a change in field causes a second-
order phase transition and there is a nonhysteresis polar-
ization electric-field dependence with a change of slope at
e =ek. For cross section B, the variation of the field
apart from the aforementioned transition also causes a
first-order phase transition at e =0 between states with
opposite signs of the spontaneous polarization of the in-
termediate ferroelectric phase. This phase transition be-
ing induced by the electric field implies a single ferroelec-
tric hysteresis loop. For temperatures close to but below
the temperature of the transition to the intermediate
phase t„one can expect the coercive field for the loop e&
to be smaller than ek. For these temperatures the polar-
ization electric-field dependence should have two
features: a single hysteresis loop and a change of slope
for a greater value of the field. At the "low-temperature
end" of the intermediate phase, i.e., close to t&, one can
expect the inverse relation between the coercive and criti-
cal fields e&))ek. That should manifest itself in the dis-
torted shape of the hysteresis loop. That is due to the su-
perimposing of the change of the slope and the single hys-
teresis loop. For the C cross section we have an ordinary
single "ferroelectric" loop.

The most interesting feature of the behavior of the
model in the 8'1 region is the second-order phase transi-
tion between two polar phases at t =t& accompanied by a
discontinuity in the dielectric susceptibility. This discon-
tinuity can be easily understood, on the analogy of the
discontinuities in the longitudinal sound velocity at a
second-order phase transition. This discontinuity is due
to the "electrostriction"-type term in the free-energy ex-
pansion. We mean the term proportional to

(20)
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itself in the distortion and variation of the hysteresis loop
shape in the vicinity of the transition between the two po-
lar phases.

F. W2 region

On moving from the 8'1 to the 8'2 region
(q~ & b, & I/q~) the mixed phase that appeared in the Wl
region becomes stable at any temperature below t, . Ac-
tually in this region we have an ordinary ferroelectric
with a second-order phase transition at r, (cf., region I
describing a ferroelectric with a first-order phase transi-
tion). For the W2 region, the e tpha-se diagram and the
temperature dependence of the dielectric constant are
shown in Figs. 3(f) and 4(f), respectively.

Concluding this section we note that the defined bor-
ders between regions in the b -y plane do not correspond
to any steplike variation of the physical properties of the
material but rather they indicate the lines on crossing
which the behavior of the system changes from one type
to another.

IV. CONCLUSIONS

We have analyzed the properties of the simplest model
with ferroelectric and structural (nonpolar) instabilities.
We have shown that the properties are governed by two
parameters A,y only. The model can describe many quite
diferent types of dielectric behavior depending on the re-
lation between the parameters.

The classification of the di6'erent types of dielectric
behavior of the model is presented in Table I with the no-

Region c( T„)

Antiferroelectric Ferroelectric
hysteresis hysteresis The sequence

loops loops of the phase

TABLE I. The properties of the model for various types of
its behavior. Columns: (1) Type of behavior according to the
regions on the 6-y plane (see Fig. 1). (2) The shape of the
dielectric anomaly at the structural phase transition; "cusp" im-

plies a variation of the c(T) dependence at T, &
(i.e., t =0) from

decreasing to increasing, "change of slope" implies a change of
slope of the increasing dependence c.(T) at T, &. (3) The presence
and the type of double hysteresis loops; "—"implies no loops,
"diverge" implies diverging on cooling double hysteresis loops,
"converge" implies converging loops. (4) The presence of a fer-
roelectric hysteresis loop; "—"and "+"imply the absence and
the presence of the loop, respectively. (5) The sequence of the
phase of the model on cooling in the absence of the electric
field; I, the paraelectric phase (q =O, Q =0); II, the nonpolar
phase (q&O, Q =0); III, the polar phase (q =O, QWO); IV, the
mixed phase (q+0, QXO).

tation of the regions corresponding to Fig. 1. Roughly,
the model produces two types of dielectric behavior: (i)
the "ferroelectric" (I, Wl, and W2 regions) type when
the main dielectric anomaly corresponds to the ferroelec-
tric phase transition; (ii) the "antiferroelectric" (U, T, and
S regions) type when the interaction between the order
parameters "shifts" the main dielectric anomaly from the
ferroelectric phase transition to the structural one (at
T, i). A more detailed classification is based on simul-
taneous analysis of the small-signal and the "strong-
signal" dielectric response, i.e., the hysteresis loops. The
model can describe a gradual transition from the antifer-
roelectric to the ferroelectric behavior. For example, it is
possible to trace how the "antiferroelectric" double hys-
teresis loops convert into the double hysteresis loops
which appear above the usual ferroelectric first-order
phase transition. This conversion corresponds to the
path T~S~I on the 5-q& diagram (Fig. 1). The most
interesting region is the S region which can be considered
as intermediate between the "classic" antiferroelectric
behavior (T region) and the ferroelectric behavior. The
systems in this region manifest the sequence of an antifer-
roelectric and a noncritical first-order ferroelectric phase
transition, the latter being accompanied by a weak dielec-
tric anomaly. Also, these systems manifest double "anti-
ferroelectric" hysteresis 1oops converging on cooling and
finally converting into a single "ferroelectric" hysteresis
loop.

A polarization response of this type has been observed
in several compounds. The clearest examples are deu-
terated betaine arsenate and Pb2CoWO6. We have ana-
lyzed the dielectric properties of deuterated betaine ar-
senate and shown that the model provides us with a
comprehensive description of them: the weak and strong
signal response, the electric-field —temperature phase dia-
gram, and the phase diagram (temperature —degree-of-
deuteration); the compound with 85% of deuteration cor-
responds to the model with b, =O. 7, y= 15 (the S region).
This analysis will be presented elsewhere.

APPENDIX

In the absence of a bias field the states of the system
are determined by Eqs. (11) and (12). Four states are pos-
sible. For these states, the values of the dimensionless or-
der parameters qo and Qo, the stability condition for the
state, and the normalized dielectric susceptibility X [ob-
tained with the help of Eq. (8)] are, respectively, (i) the
paraelectric state, q =0, Q =0,

U
T
S
I

Cusp
Cusp
Cusp

Change
of slope
Change
of slope
Change
of slope

Diverge
Converge
Converge

I,II
I,II

I,II,III
I,II,III

I,II,IV,III

I,II,IV

(ii) the nonpolar state, qXO, Q =0,
(Al)

(A2)

(A3)

(A4)

where t, =(pb, —1) ', (iii) the polar state, q =0, Q&0,
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Qo= —(1+t),
—2(b, —@)(I+ t)(r —rf ) & 0,
X = —

—,'(1+ r)

(A6)

(A7)

where tf =(b/p —1) ', (iv) the mixed state, q&0, QWO,

the states is continuous. It is true if

[1+t (1 —yb)]/3((p —1) & tb—/(p . (A18)

ek = [1—(b/y)][t +p/(q b)—]( tb—/q )' ' (A19)

This inequality together with Eq. (33) yields the critical
field for a continuous phase transition:

qo = —[tb, y(1—+t)]/(I —y ),
Qo = —[(1+t) pter,

—)/(1 —
q& ),

y(b @)(@b —1)(t tf—)(r—, —t) & 0,
X = —

—,'[1+t (1 —by)]

(A9)

(A10)
t (t, = —y/[y(1 —yb)+3b((p —1)] . (A20)

When the inequality (A18) is not met the transition is of
first order. That implies the criterium for the first-order
phase transition:

q = tb. yQ— —

e =Q [1+1(1 —yb. )]+( I —gP)Q

(2) For q =0, the state equation is

e =(I+t)Q+Q

(A 1 1)

(A12)

It is convenient to present the stability conditions (12) in
the form

In the presence of the bias field e one can distinguish
only two states: with q&0 and the other with q =0.

(1) For q@0, the state equations obtained from Eq. (11)
have the following form:

The critical fields ek, and ekz at which the states (with
q&0 and with q =0, respectively) lose their stability, can
be found from Eqs. (A15) and (All) and Eqs. (A16) and
(A12). They are

e„,=(1 b/@)(—t+y/(y —b )](—tb/q )' '
3/2

2 1+t (1—gb)
'k2 —'~' —'

3( 2 1)

(A21)

(A22)

To determine the electric field e, where the energy of
two states with q&0 and q =0 are equal, it is necessary
to solve the following system consisting of two equations
of the state and two expressions for the free energies for
the two phases

8 a/BQ &0, 8 a/Bq &0, de/dQ &0 . (A13)

Using (All) —(A13), one finds the explicit forms for
these conditions.

(1) The state with q&0:
Q' & rb/@, —

Q ([1+t(1 yb)]/3(g —1) . —

(2) The state with q =0:
Q' & t b/q, —

Q2 & —
( I + t)/3 .

(A14)

(A15)

(A16)

(A17)

If the stability of the states is determined by inequali-
ties (A14) and (A16) then the phase transition between

a = —
—,'(th) —

—,'Q, [1—t(pb, —1)]+—', Q ((p
—1),

e =Q, [1 t(yb, —1)]—+Q, (1 —
cp ),

a = —
—,'(1+ t)Qf —

—,'Qf,
e =(I+t)Qf+Qf,

(A23)

where Q, and Qf are the equilibrium values of order pa-
rameter Q in the phase with qAO, and in that with q =0,
respectively.

In the case of the first-order phase transition this sys-
tem has a solution with Qf&Q„ this solution determines
the critical field e, . The e, (t) dependence has been found
by numerical calculations.
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