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Minimum-energy vortex configurations in anisotropic superconductors
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In a type-II superconductor, the optimal vortex configuration is the one that minimizes the free energy
for a given value of B, the spatial average of the magnetic field. Using anisotropic London theory, we

compare the free energy of two very different configurations: (I) a lattice of vortex lines parallel to B and

(II) a combination of a lattice of lines parallel to c and a lattice of lines parallel to a, producing the same

B as in (I). For large enough anisotropy, configuration (II) can have the lower free energy, for a wide

range of B.

I. INTRODUCTION II. LONDON THEORY

The structure of the vortex lattice in highly anisotropic
type-II superconductors is a topic that has received much
theoretical attention in recent years, chieAy due to in-
terest in the high-T, oxide compounds. When the aver-
age magnetic field B is not parallel to one of the crystal
symmetry axes, finding the configuration of vortices that
minimizes the free energy can be a nontrivial task. For
example, at low 8 vortex "chain" phenomena turn out to
be important. '

Several recent papers have explored the idea that a lat-
tice of vortices, with each vortex line parallel to B, is not
necessarily the optimal configuration. Daemen et al. ,
using London theory, show that when the sample is a
finite slab, a mixture of two types of vortices, neither one
parallel to B, can have a lower free energy. Bulaevskii,
Ledvij, and Kogan, using the Lawrence Doniach model,
claim that when B is almost parallel to the a-b plane, a
"combined lattice" consisting of vortices parallel to c and
vortices parallel to a can be optimal. Sardella and
Moore perform a stability analysis on a lattice of vortex
lines parallel to B, and find that in some cases an unstable
mode exists.

In this paper we use the London theory in an infinite
medium; thus none of our results depend on boundary
effects or on additional physics added by the Lawrence
Doniach model. Our goal is to minimize the free energy
at fixed B. We compare two possibilities.

In this paper we are only interested in the case y & 1.
The free energy is given by

F= J d xIh +A, (VXh)M(VXh)] .
8a

(3)

One crucial result, which can easily be seen using (3), is
that the interaction energy between a vortex line parallel
to c and a vortex line parallel to a is zero. Thus when we
calculate the free energy for case II, we can simply add
together the energy of each vortex lattice. So for either
case I or case II we need the energy density of a lattice of
vortex lines, parallel to an arbitrary axis which we denote
by z. We take z to be at an angle 0 with respect to the c

To do our calculation we use the London formalism as
described in our previous paper. We treat an anisotropic
superconductor, with mutually perpendicular symmetry
axes a, b, and c; the effective mass tensor is given by

M;J =M, c; c +M, ( a; aI +b; bI ),
normalized so that det (M)=M, M, =l. The average
penetration depth is A, , and an anisotropy parameter y is
defined by

Case I. An array of vortex lines parallel to B, ar-
ranged in the Bravais lattice shown in Fig. 1.

Case II. A lattice of vortex lines parallel to c plus a
lattice of vortex lines parallel to a, producing the
same B as in case I.

We find that for large enough anisotropy case II can have
a lower free energy for a whole range of angles and field
strengths. Of course there are many other interesting
states to consider besides cases I and II. In this paper we
simply want to make clear that case I is not always the
best, even in a simple London theory calculation with no
boundary effects. FIG. 1. The vortex line Bravais lattice in the xy plane.
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The lattice vectors are give»yasis, in the xy p ane.axis:

z=c cosO+a sinO

x= —c sinO+a cosO,

(4) R =n ax+n2Ly;

vortices are located at the point R+p, where p is given by

r O=O andFor case II we nee od to combine the answers fo
O Q 0QQO

lattice, with a two-pointThe vortices form a Bravais a
I

p= —x+ —y .
4 4

bThe free energy density is then given by

[1+A,,G (1+Ecos 8)]cos (Cx P)
A~G2][1+A, G (1+v, )+AUG (1+Ecos 8 ]2wa L (G) [ 1+ l y

Here, the reciprocal lattice vectors gs G are iven by

2' ~ 2' ~6= l X+n2' a

The average magnetic field is paarallel to z, and given by
and

=cos O+ sin O
g2 y2

(13)

A&) =exp[ —~[Gxkx+Gy'ky]] . (12)

1' If dxdyh, =2+,al cell

ced a cutoff function P(Cr), since other-
ver Cx diverges at large . iswise the sum ove g

th breakdown of London theory at s ort engt e rea
randt and use an aniso-We follow the suggestion of Bran

tropic Gaussian

g2 2/3 (14)

That is, we a juh ', djust a and I. to minimize, j9 sub'ect to the
condition that B =2&o/aI. .

Here ~ is an average d Ginzburg-Landau parameter. We
will usually take ~=60 and a =0.02.

We define V(B,O) in the following way:

9'(B,O)= min F(a,L, H) .
a, L, aL =24p/B

H is a numerical parameter,r of the order of unity,ere a is
band the coherence lengths are defined y

0.80

III. RESULTS

ensities for case I and caseWe now express the energy en
'

II in terms of the, oV(B 0) of Eq. (15). We take the mag-
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FIG. 4. Phase diagram in the y-B space. In the region la-
beled II, configuration II has the lower free energy; in the re-
gion labeled I, configuration I has the lower free energy. The
magnetic field angle is p=60', while the other parameters are
given by a =0.02 and ~=60.

FIG. 6. The free energy difference, V&
—2», as a function of

the angle p. Curves for two different values of B are shown. Pa-
rameter values are ~=60 and o.=0.02.

For case I, then, we have

netic field B to be
V,(B,P)= V(B,P) . (18)

B=B,a+ B,c=B sinpa+ B cosi3c,

B=QB'+B2 .
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For case II we have

~n(B, f3) = V(B cos(P), 9=0 )+V(B sin(P), 9=90 ) .

(19)

So the expression in (19) is the sum of two terms: a vor-
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FIG. 5. This figure illustrates the effect of changing the cutoff
parameter a on the y-B phase diagram. Two phase boundaries
are shown, one for o.=0.02 and one for a=0.005. Other pa-
rameter values are P=60' and Ir=60.

FIG. 7. Magnified version of Fig. 6, showing the region from
p= 80' to p=90' in more detail. For both curves the free energy
difference reaches zero at p=90', as it should.
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tex lattice parallel to the c axis with magnetic field
8 cos(P), and a vortex lattice parallel to the a axis with
magnetic field 8 sin(P).

In Fig. 2 we show a plot of V, and V» as functions of
8, for P=60 and y = 100. The noteworthy feature is that
P„ is actually slightly lower than 9, up to
log, o(A, 8 /2@o) =0.03. Figure 3 shows the same plot for
@=5. At this much lower value for the anisotropy pa-
rameter, V, is always lower. Finally in Fig. 4 w show the
phase diagram in the y Bspa-ce, with P=60'. There is a
large region, at higher y and lower 8, where V« is lower
than V, . We thus find, perhaps surprisingly, that the
combination of a 0' vortex lattice and a 90' vortex lattice
can have the lower free energy, at fixed B.

We can test the sensitivity of our result to the cutoff
parameter. In Fig. 5, we show the phase diagram, for
P=60', for two different values of the cutoff parameter a.
Changing a by a factor of 4 simply causes a small shift in
the phase diagram.

It is also of interest to investigate the range of angle /3

over which 9'„ is lower than 7,. In Fig. 6 we plot
V, —F» as a function of 13, for fixed y and ~B~. We see
that 9;, is lower over a wide range of angles, for the two
values of ~B~ chosen. We also note that the two curves
display interesting structure near 90'; this structure is
shown in more detail on the expanded plot of Fig. 7.

IV. DISCUSSION

Our results show that, in the framwork of a well-
defined London theory with a cutoff, a combination of
two perpendicular vortex lattices can have a lower free
energy than a single vortex lattice with the same B. This
provides another example of the surprising features aris-
ing from vortices in anisotropic superconductors.

As can be seen from Fig. 1, at y =100 case II is lower
in free energy than case I by only a small amount. It is
therefore important to go beyond London theory, and
treat the vortex energetics with a more accurate theory;
in particular, an approach which handles vortex core
effects more carefully, such as the Ginzburg-Landau
theory, should be applied. We hope to turn to this work
in the future.
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