
PHYSICAL REVIEW 8 VOLUME 48, NUMBER 13 1 OCTOBER 1993-I

Nature of hysteresis in glass transitions of the first order
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The distribution of relaxation times in a glass is very broad. As a result the free energy of a glass
slowly approaches its equilibrium value but never reaches it. This slow relaxation explains why,
in the hysteresis cycle, the melting temperature is higher than the solidification temperature. We
estimate the width of this hysteresis for a general type of transition into the glassy state. We apply
these estimates to the special case of the vortex melting transition and find good agreement with
recent experiments.

(a) Introduction Recent. ly Safar et al. reported de-
tailed measurements of flux. lattice melting in high-T su-
perconductors in fields H, i (( H (( H 2 on a very clean
sample. They observed considerable hysteresis as well as
discontinuity of resistivity at a certain temperature. It
is natural to interpret this temperature as a first-order
melting transition in the flux lattice. This interpreta-
tion was recently confirmed by the measurements of the
angular dependence of the melting temperature.

The "solid" flux phase formed below this transition
temperature lacks long-range order: it is destroyed by
weak disorder. This phase has glassy properties: it has
many metastable states separated by large energy bar-
riers. Since some barriers can be arbitrarily large, this
state never reaches the thermal equilibrium. In the ab-
sence of disorder the melting of the solid flux phase is a
first-order transition. The melting transition is affected
slightly by a weak disorder; it remains a sharp first-order
transition. ' A character of the melting transition may
be changed by a strong disorder completely. A rela-
tive strength of disorder depends on the applied magnetic
field, so both regimes may be realized in the same sample
in different fields. In the conditions of the experiment
the disorder is not sufFiciently strong to change the char-
acter of the transition. We shall consider only the limit
of weak disorder, which is realized in the experiment.

The glassy properties of the solid result in the novel
mechanism of hysteresis at the melting transition. The
free energy of a glass approaches its equilibrium value
very slowly. Melting happens when the free energy of
the liquid state equals the free energy of the solid state.
Consider the hysteresis cycle through solidification and
melting. We start in the liquid state and begin to lower
the temperature until solidification occurs. The free en-

ergy of the nascent solid is determined by the time scale
of the solidification process. After solidification the state
continues to approach equilibrium and its free energy de-
creases. Next, we raise the temperature of the solid back

dP(U)
exp( —U/T) P (U), (1)

where wo is the microscopic attempt rate.
Solving this equation we find the rate at which the

to the former solidification point. But now the free en-

ergy of the solid is lower than the free energy of the liquid;
hence no transition takes place until higher temperature.

The mechanism for hysteresis is not specific to the flux
lattice, but may happen in all glasses displaying first-
order phase transitions. The specific property of this hys-
teresis is that its width depends on the time the system
spends in the glass phase (aging time). Such dependence
was observed in a recent experiment.

In spin glasses the first-order transition usually hap-
pen when the spin glass coexists with a ferromagnet or
an antiferromagnet. In this case the order parameter is
likely to jump when the external temperature or mag-
netic field is varied (spin flip transition). The other well
known example of a first-order transition in spin glasses
with local ferromagnetic ordering is the jump in magneti-
zation that occurs when the direction of the applied field
is reversed.

(b) Barrier dynamics in glassy state. In glasses the
distribution of barriers between metastable states is very
broad. At any particular moment of time the glass is
in some metastable state. The free energy of this state
contains the entropy of the thermal fluctuations that oc-
cur on a time scale shorter than the aging time. There
are other metastable states in which the free energy is
lower but those states are separated from this state by
large barriers. With time the glass surmounts larger and
larger barriers and buries itself into deeper states. We
consider only the barriers leading to deeper states. Let
us denote by P(U)dUU ~ the density of these barriers
with heights in the interval (U, U+ dU). Neglecting very
rare processes in which the system returns from a deep
state back to a shallow one, we get
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barriers disappear:

( I ) —1 —( exP( —U/T) t/70+U/T) P
dt

(2)

nent P = 1 for the vortex glass. Combining the transition
rate (2) with the scaling estimates (4), (6), we get the rate
at which the free energy of the glass decreases with time:

where Po(U) is the initial distribution of barriers. This
distribution is broad and smooth in the glassy state. At
large time scales t &) ro the rate (2) has a sharp maxi-
mum at a typical barrier height

Ut ——T ln(t/70).

The density of barriers can be conveniently described
by the "volume" V(U) = 1/P(U) per barrier. We assume
that the function V(U) is characterized by one energy
scale U, by one volume scale V„and has a scaling form
at large U:

V(U) = V,v(U/U, ), v(x) = x" at x )) 1, v(0) = 1. (4)

The function V(U) does not depend weakly on the way
in which the glass state was prepared.

At short scales the vortex glass forms a unique ordered
state, with no metastability. The transitions between
metastable states happen when part of the vortex lattice
jumps &om one position to another. There is a minimal
volume that can jump; this volume plays the role of V
in (4). The barrier between the states at these scales is
U, . In spin glasses the minimal volume coincides (away
from transition temperature) with the unit cell volume;
the energy barrier at these scales is simply the exchange
interaction constant.

A jump of a larger volume must overcome a larger
barrier. In the case of pinning of one-dimensional (1D)
structures~s (single vortex line, dislocation, etc. ) the
length of the jumping part of the structure plays the role
of the volume V(U). The structure of the metastable
states in 3D vortex glasses at large scales can be more
complicated and such a simple picture may not hold.

In spin glasses the transitions between large metastable
states can be visualized as a magnetization fIip in a spin
cluster. In general this cluster may have a fractal dimen-
sion and many clusters may overlap strongly as they do
in some spin glass models. In a phenomenological ap-
proach to the spin glass dynamics one assumes that
the properties of these clusters at large scales can be de-
scribed by a set of scaling exponents. A similar scal-
ing approach was applied to the vortex glass problem by
Fisher, Fisher, and Huse at scales larger than the pin-
ning length.

Each transition over the barrier decreases the free en-

ergy of the glass by some amount E. The transition over
the minimal barrier U decreases the energy by roughly
the same energy E U . In the 1D case, this energy is
of the order of the barrier energy at larger scales as well.
We assume that this decrease always correlates with the
energy of the barrier, i.e., that E is a function of U and
that this function also has a scaling form:

E(U) = U e(U/U, ),

e(x) = eox~ at x && 1, e(0) 1, ep l.
The theory of collective pinning assumes that the expo-

dF
dt

dP(U) dU E(Ut)
V(U, )t ln(t/rp)

' (6)

If the aging time is so long that 1n(t2/tz) in(tz/rp),
we estimate the change in the free energy only in the
limiting cases of (i) very large barriers U, )) Tin(t2/rp)
and (ii) very small ones U, (( Tin(tq/ro). In the first
case all energy distributions are determined by a single
scale U:

In the second case we use the scaling estimates (6, 4):

(ii) && = —
l

—
I

lin (t2/ro)
U.e, f T )

V (P —~) (U, )
—in~ "(t,/ro)]. (9)

As a result of the energy decrease during aging, melting
occurs at a higher temperature than solidification:

AFT
) (10)

where q is the latent heat of the melting transition.
For erst-order transitions due to a varying magnetic

field, the width of the hysteresis is

where AM is a jump of magnetization at the transition.
Taken together, formulas (7)—(11) determine the hys-

teresis width in a first-order transition to a glassy state.
The width of the hysteresis increases if q —+ 0 (or
EM ~ 0). This might happen when the tricritical point
is approached. However, in all second-order transitions
into the glass states known to us, the width of the distri-
bution of metastable states goes to zero at the transition
as a high power of the order parameter. So, the ratio
(10),(11) actually tends to zero when the tricritical point
is approached.

(c) Estimates of the hysteresis width in the vortex
melting transition. Now we apply the general formu-

where we performed the integral over U in the saddle
point approximation.

To find the change in free energy during glass aging we
have to integrate the rate (6) from time scales of solidifi-
cation ti to the aging time t2. The time scale of solidifi-
cation is determined by experimental conditions. In most
experiments both times scales ti and t2 are macroscopic,
whereas ~0 is the microscopic rate of attempts. In this
case it is likely that 1n(t2/tz) (( ln(tj /ro) and the change
in free energy is

E(U, ) ln(t2/t, )
V(U, ) in(v'tgt2/ro)
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eCss(4 (T) C 5/2~3/2

(16~2)2$(T)2H (T)

T. r B i" T.
32~/~a' qH. 2(0) y

(12)

where Gi = [T,/H2(0)e(s(0)] /2 is the Ginzburg num-
ber, and H (0), ((0), H 2(0) are linear extrapolations to
T = 0. For YB2Cu&O& we estimate (12) eCss( (T)/a—
0.2 K at T = 80 K in fields H = 6 T applied in the
experiment. Lastly, to estimate U we need the value of
the pinning length B . Let us define the critical current j
as the current which suppresses the pinning completely:
at currents j ) j the resistivity reaches its flux flow
value. The pinning length can be determined from the
expression for the critical current: j = jo((/R, ), where

jo is the depairing current:

~ &~c

6~3vrvA
(13)

For YB2Cus07 we estimate jo(0) = 10s A/cm2 and
jo(T ) 3 10s A/cm . Using the value j, = 10s A/cm2

las derived above to the melting of the vortex lattice
as observed in experiment. First, we check the con-
jecture that the discontinuity of resistivity in this ex-
periment is due to the melting of the vortex lattice.
We use Lindemann melting criteria, which relates the
thermal mean-square displacement of the vortices at the
melting temperature to the distance a between vortices:
g(u&) = cL,a, where cl, is the Lindemann number. We
estimate the thermal mean-square displacement of the
vortices by employing the Debye approximation to re-
place the sum over the whole Brillouin zone by an inte-
gral over a sphere, chosen to contain the correct number
of phonons: T = 16Cssc&a e, ' where e = A~g/A,
is a parameter characterizing the anisotropy of the ma-
terial and C66 is the shear modulus of the vortex lat-
tice. To estimate the shear modulus C66 we express it
through the penetration depth A: Css ——COB/(8vrA)
Extracting the Lindemann number &om this equation
we get cI. ——0.15 which is in a very good agreement with
the values obtained in other experiments or numerical
simulations.

Below we show that in the samples used in this exper-
iment the pinning length R is sufIiciently long: B ))
a. However, it is still shorter than penetration depth

)) B, which is very large in the high-T materi-
als, especially in the vicinity of T . In this pinning
regime, the pinning length along the direction of the
field L is related to the pinning length in the trans-
verse direction R, by I, = eR, /a. For YB2CusOy we
have e 60. Thus, the minimal volume that can
jump between metastable states is V, = eR, /n. The
energy scale of these jumps is determined by the elas-
tic energy of the lattice deformations at these scales:
U, = Css(2L, (T /16c~z)((2R2/a4), where ( is the
coherence length of the superconductor.

To estimate U we represent it as a product of two
terms U, = [eCss( (T)/a][(R, /() ] and estimate them
separately:

we find that U, /T 10 in the regime of the experiment.
This estimate of the pinning energy means that for the
experimentally accessible time scales [ ln(t2/vo) 20] the
most important are the barriers that are somewhat larger
than U.

The width of the hysteresis (10) is also determined by
the latent heat of melting. The only energy scale involved
in melting is set by the melting temperature T and the
only spatial scale is the lattice spacing, so q = (T /ea,
where ( is a numerical coefficient. A reliable value of
this numerical coefBcient is not known. Earlier numerical
simulations show that this value is small ( =0.3—0.5.2s'

However, simulations performed on larger lattices show
that the transition becomes split into two. The melting
of the lattice happens at the lower transition. The spe-
cific heat does not show any observable anomaly at this
temperature, indicating that this coeKcient is very small.
This smallness is likely to be a consequence of a numer-
ically small difference between the energies of quadratic
and triangular lattices. We also performed rough analytic
estimates of the entropy associated with this transition
and get ( 0.15. Combining these estimates and assum-
ing that U, /T = 1n(tq/To) ) in(t2/tz) so that (7) can be
applied, we get the width of the hysteresis:

which gives AT/T 10 in reasonable agreement with
the experiment.

If an electrical current flows, large energy barriers dis-
appear: U & U(j). Since the dissipation of the current is
limited by the transitions over these barriers, the resistiv-
ity R oc exp[ —U(j)/T]. In a scaling regime the energy of
the largest remaining barrier is related to the current by
U = U, (j,/j)~. The value of the exponent p, extracted
from the experimental data is small: p —0.2. The
absence of large barriers means that there are no pro-
cesses which take very long. All equilibration processes
are cut off at the time scale 7o exp[U(j)/T]. When ro be-
comes less than the solidification time t~, the vortex glass
reaches the steady state during the solidification and hys-
teresis disappears. Assuming that ln(tq/ro) 2U, /T we
estimate that the current sufricient to smear the hystere-
sis completely should be j, —0.03j . In this estimate we
assumed that the scaling formula for U(j) is still valid
for U/U, 2. It is possible to avoid this assumption and
extract this current from the magnetization experiment.
The remanent magnetization of the sample is produced
by the current jM that does not decay on the time scale
of tq. U(jM) = T 1n(tq /7o), this current measured at the
temperature just below the melting coincide with the cur-
rent that smears the hysteresis: jM j,.

The longer the time of the aging (or the smaller is the
current) the larger is the hysteresis width: at longer ag-
ing times (or smaller currents) the melting of the solid
happens at higher temperature. Neither the aging time
nor the current afI'ects the solidification process signif-
icantly. This prediction is in complete agreement with
the experiment in which the drift of the resistivity curve



9920 V. B. GESHKENBEIN, L. B. IOFFE, AND A. I. LARKIN

obtained during the heating part of the hysteresis cycle
was observed when a current was changed, whereas the
cooling part of the curve stayed still.

Finally, we discuss briefly the importance of other
mechanisms of hysteresis for vortex glass melting. One
such mechanism is the nucleation process. The time scale
of this process is set by the energy of the nuclei which
is determined by the surface energy of the solid-liquid
boundary. It is likely that this energy is small in the vor-
tex problem where the energies of all phases are close to
each other. Indeed, in the experiment many small steps
in the resistivity curve were observed indicating that nu-
cleation is not the limiting process in this experiment.
The other such mechanism may be the pinning of the

boundary between the glass and the liquid phase. The
strength of this pinning is determined also by the prop-
erties of the boundary between the glass and the liquid
state. For the broad boundary that we expect in this
transition, the pinning energy should be small and the
eKect of the pinning weak. Unfortunately, the theoreti-
cal investigation of these eKects is plagued by a lack of
understanding of the melting transition of the vortex lat-
tice.
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